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Abstract

This paper deals with the problem of a large number of multi-attributes stimuli in
Conjoint Analysis. Theaimof this paper isto critically discuss some specific aspects of the
bridging technique originally proposed by Bretton and Clark and to propose an innovative
approach based on the same philosophy but on a different estimation method. The new
technique is based on several estimation steps. It is able to make the most of the
orthogonality properties related to the experimental designs. Furthermore, a validation
procedurefor the bridging results hasbeen proposed. Thisprocedure allows answering to
the general question on the reliability of performing a bridging technique.
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1. INTRODUCTION

ConjointAnalysis(CA) madeitsfirst appearancein marketing researchinthe
early ' 70s and its use has increased since then. CA (for areview see Green and
Srinivasan, 1990) is nowadays the most applied methodology of multivariate
analysisfor studying and showing the consumer preferences on different products
or services. Since consumers can express reliable preference judgements on
products/services characterized by a lot of different and complex aspects, the
construction of designs with many attributes and levels has become a necessity
(Green,1974). Thisinvolvesthat alargenumber of multi-attributesstimuli (hereafter
defined “ complex stimuli”) will be submitted to consumers for the eval uation.

A survey with complex stimuli principally shows two different kinds of

1 This paper has been supported by PRIN’' 04 “ Models for Designing and Measuring Customer
Satisfaction” coordinated by prof. Carlo Lauro.
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problems. The first problem is related to the data collection phase. A judge,
probably, having to consider alot of different and complex stimuli, will not beable
to understand the real meaning of each of them. Consequently, he will have some
difficulties in giving his preference. Therefore, whereas on the one hand it is
possible to reduce the measurement error by including more conjoint questionsin
asamplesurvey, onthe other hand the respondents coul d get tired and so they could
no longer give reliable responses.

Thesecond problemisdirectly linkedtotheestimationof theutility coefficients.
If itispossibleto consider the complexity of productsby taking into account alarge
number of attributes and levels, the accuracy of the utility estimations can
neverthel ess decrease due to too few degrees of freedom

The classical solutions, proposed by the Conjoint Analysis for handling
stimuli characterised by many attributes and levels, concern two main aspects: the
type of experimental design to plan and the method to use for presenting the
different stimuli to respondents (Pullman et al. 1999).

The selection of the design isan a-priori choice: to consider al the possible
factor-level combinations (Full Factorial Designs) or only a fraction (Fractional
Designs). Although afractional design reduces the number of stimuli to submit to
judges, from a statistical viewpoint it causes many difficultiesin the estimation of
theeffects, in particul ar for theinteraction effects. Nevertheless, from amarketing
point of view, it could be not interesting to estimate all the interactions among
attributes, but can be considered much moreimportant to obtain reliablejudgments
on the principal effects.

Asregardsto the second aspect, that isthe choice of the method, CA provides
us with different solutions. Starting from the same number of factor-level
combinations, it is possibleto present all the stimuli at the same time (Full-profile
methods) or by paired-comparison questions. Full-profile method has been the
most popular approach to CA in the literature on the subject. But, as noted, its
usefulness has been widely considered as limited to problems involving smaller
number of attributes due to the respondent fatigue and inability to process alarge
number of attributes. Only recently somepapers(Brazell and Louviere, 1998) have
successfully tried to measure fatigue-effectsin full-profile methods and the results
are surprising: fatigue effectsin full-profile may be much lessimportant than it is
widely believed. However, although the use of visual presentations can help the
judges in their evaluation and the problem-size of full-profile methods may be
limited, other alternative methods, that are less taxing to respondents, have been
proposed.

Anaternative solution to theclassical CA isthe use of the Adaptive Conjoint
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Analysis (ACA; Johnson, 1987). The ACA consists of a computer-administer
interview customized for each respondent. At each step, previous answersare used
to decide which question to ask next. There are several steps. Theinitial stepsare
based on the compositional approach, while the successive steps are based on the
decompositional one.

ACA is a user-friendly approach both for the analyst and the respondents
(ACA 5.0, Sawtooth Software). In the ACA, respondents do not evaluate all
attributes at the same time and this helps to solve the problem of “information
overload” that plagues many full-profile studies. Theinterview can consider many
attributes and levels, paying special attention to those the respondents consider
moreimportant. Questioningisdonein “intelligent” way; therespondent’sutilities
are continually re-estimated as the interview progresses, and each question is
chosen to provide the most additional information, given what is already known
about the respondent’s value. Finally, as regards to the classical CA, in ACA the
number of final stimuli to submit is very limited and it is focused on stimuli
considered the most important and the lessimportant, by giving minor importance
tomiddlestimuli. Moreover, intermsof restrictionsand limitations, ACA must be
computer-administered. The estimated timefor agenericinterview isnot lessthan
20-25 minutes. Furthermore, ACA isamain effect model. Thismeansthat utilities
for attributes are measured in an “all else equal” context, without the inclusion of
attribute interactions.

On adifferent philosophy (Baalbaki and Malhotra, 1995), is based another
method proposed as practical solution to the problem of complex stimuli: the
Bridging technique (Albaum,1989). Thebasicideaof thisapproachistosplitupthe
planned attributes and levels in two different lists with at least two common
attributes. The successive steps of the analysis are the same of those characterizing
afull-profile approach, but with the realization of two different fractional factorial
designs and consequently, of two different surveys on the same consumers. At the
end, partia utilities and importance of the attributes will become one group of
results, as if the researcher has worked with only one fractional design, with a
number of attributes equal to the sum of no-common attributes plus the common
attributes. This technique has been implemented in the software Bridger 1.1
(Bretton-Clark,1988).

Theaim of thispaper isto critically discusssome characteristic featuresof the
bridging technique (par. 2) and to propose an innovative approach based on the
general bridging philosophy but on a peculiar estimation method. The new
technique, (par. 3), here called the “GIP technique’, isbased on several steps of
estimation and it is able to make the most of the orthogonality properties of the



108 Scepi G., Giordano G., Ramunno .

experimental designs. The proposed approach is enriched with avalidation proce-
dure (par.4) on itsresults; this procedure allows to answer to the general question
on the reliability of performing a bridging technique. Therefore the validation
procedure can be generalised for evaluating the results of a bridging technique.

2. THE BRIDGING TECHNIQUE

TheBridging philosophy (Albaum, 1989) consistsin splitting several planned
attributes in two or more different sets with some attributes common to all sets
(“bridging-attributes’). Each set of attributes is treated like a distinct conjoint
analysis.A fractional factoria designiscreatedfor each set of attributes. Respondents
are asked to rate or rank two smaller sets of products rather than onelarge set. The
utilities are calculated for each trade-off exercise independently and bridged
together to create onefinal set of utilities. The Bridging techniqueisimplemented
in the software Bridger 1.1 developed by Bretton and Clark (BC) in 1988. This
software is jointly used with other two software proposed by the same authors,
Conjoint Designer 3.0 (1990) and Conjoint Analyzer 3.0 (1992). The Bretton and
Clark suiteof programs(Carmoneand Shaffler, 1995) wasdesi gned to handlemost
of thetask in apaper-and-pencil conjoint study, for example, profile design, utility
estimation, and simulations.

Conjoint Designer software provides experimental designs for the use in
Conjoint Analysis studies. All generated designs continue to be only orthogonal
arrays; it is not possible to estimate interactions with the class of designs. To
generate adesign, it is necessary to specify the type of estimation model for each
factor (parth worth, linear, or quadratic), so the number of parameters to estimate
can be calculated.

For initialising a Bridging procedure, two fractional experimental designs
with at least one bridging-attribute are generated with Conjoint Designer.

Let usindicate with X, (n,, k), thefirst experimental designed matrix. This
matrix has n, stimuli (combinations of factors and levels) as rows and k, columns
defined by levels of the factors of the first survey. In particular, k, is the sum of

k" levelsof no-bridging factorsand &,” levelsof thebridgingfactors; k= k¥ + k" .
X,(n,, ky) isthematrix of then, stimuli and , (k, = k. + k') levelsof the second

survey, where k) =k .

Successively, we collect the judgments of G judges (g=....,G) on the n;
stimuli in the preference matrix Y; (n,,G); the columns of this matrix are the
expressed judgments. Thematrix Y, (n,, G) isreferred to thejudgments of thesame
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judges on the n, stimuli.

The software used to enter respondent data and estimate individual utilities
isthe Conjoint Analyser. WeindicateasU, (k;, G) and U,(k,, G) the utility matrices
obtained by applying the Conjoint Analysisrespectively on(Y,, X;) andon(Y,, X,).

Furthermore, assume U " (klNB , G) andU,” (k;"B , G) thesub-matricesrel ated
to the estimates of the utilities only for the no-bridging factors respectively in the

first and in the second survey. Therefore, U/ (le,G) and U} (kf,G) are the sub-

matrices related to the estimates of the utilities of the bridging factors in the two
Cases.

Theestimation method for theseinitial utilitiesisbased onthe Ordinary L east
Squares and on the choice of the preference model (part-worth model, vector
model, or the ideal-point model) for each factor used in the analysis. It ispossible
to statistically test the difference between an ideal point and avector model to see
which provides a better model fitting. Thisis, of course, done at group level, but
software may be available to do this at the individual level.

Aswewill demonstrate in the following, the choice of the preference model
is very important related to this bridging procedure.

2.1. THEESTIMATIONOFUTILITIESINTHEBRETTONCLARK’SBRIDGING
PROCEDURE

Itisimportant to underlinethat each considerationinthisparagraphisderived
and interpreted from the reading of the Bridger 1.1 software manual and from the
actual useof the Software, becauseitisvery difficulttofind papersontheestimation
method proposed by Bretton and Clark.

Bridger can be divided into three basic parts. First, it looks for matching or
bridging features in the two designs. Second it determines the optimal scaling
factorsfor bridging these designs, and measures how well this scaling works. And
third, it createsanew design and utility fileto describetheintegrated resultsof these
operations.

In particular, in the first step Bridger verifies whether the two features were
analysed using the same type of the model. If the models are not identical, the
featurescannot bebridged. Furthermore, if both featureswereanal ysed by the part-
worth model, they would aso be checked to determine whether they contain the
samenumber of levels. Featureswith different number of level scannot beused with
the part-worth model, becausethe part-worth estimates are measured rel ativeto the
other levels of the feature.

We also observe that if the part-worth model is used and only one bridging
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factor ischosen, the number of levels must be morethan two. Thisderivesfromthe
method used for determining the” scale factor”.

The “scale factor” is an important coefficient in this estimation method
becauseit isdirectly linked with the basic hypothesis of the procedure. Therefore,
Bridger 1.1 works considering that in the first design there are the main factors.

Therefore, the researcher must well choose the factorsin the previous step of
the analysis and he must decide, on the basis of a-priori knowledge, both the
bridging factors and the main no-bridging factors. The hypothesis of the different
role of the factors affects the whol e estimation method.

L et us suppose that in X, there are the main factors. Bridger considers the

elements of the matrix U™ as estimates of the no-bridging utilities of the first
survey. Thereforeit does not modify theinitial classical conjoint utilities.
Successively, Bridger 1.1 calculatesthe* scalefactor ”. Thisscalefactor isthe

factor which best scales the bridging utilities of the second design, in Uf, for

matching the corresponding utilities of the first design, in UIB .
In particular, the scale factor for each respondent, f,, is derived from the

following regression mode!:

B B H —
u,=u, [+, withg=1,...,G 1)

l.g =
where ufg (le ,1) isthe g-th column vector of U, u; istheg-th column vector of

U; (kf ,1) and ¢, istheresidual vector for g-th judge.

Becauseof (1), Bridger 1.1. doesn’'t work if thechosen model isapart-worth
model and the bridging factor is only one with two levels. Therefore, for thistype
of model, two factors, or one factor with at most three levels are necessary!

The procedure measures the goodness of fit of this scale factor. In particular,
the scoresbetween the corresponding bridging utilitiesare computed. Scoreslower
than twenty to thirty represent apoor fit and may be dueto respondentstreating the
featuresdifferently inthetwo tasks. Theserespondents may be eliminated fromthe
analysis.

The scalefactor isused for weighting the no-bridging utilitiesfor the factors

of the second survey. Therefore, the matrix U,"” is re-computed by multiplying

each column vector of this matrix for the scale factor fg.
Finally, the scaling does not produce an exact match between the results.
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Therefore, for obtaining an unique estimate for the utilities of the bridging
attributes, the estimation method proposes an average of the obtained results. In
particular, for each judge the estimates of bridging utilities are computed as.

PRALEA @

22CRITICAL CONSIDERATIONS

Bridging seems to be a user-friendly technique for respondents because it
allows both to consider several stimuli and to submit them without respondent’s
fatigue. The division in two phases can represent a positive aspect, particularly
when we deal with repeated surveys.

The drawbacks of thistechnique are in the method used for the estimation of
partial utilities. This method still seems to be primitive in comparison with those
methods, for examplethehierarchical Bayesestimation, recently usedinACA. The
hypothesison the different importance of thetwo designsisjustified by an a-priori
knowledge of the main factors and it affects the estimates of bridging and no-
bridging utilities. In particular, the scale factor is computed on the basis of this
hypothesis with the aim of deriving the value that transforms the estimates of the
bridging utilities, of the second survey, intothebridging utilitiesof thefirst survey.
Furthermore, by using this procedureit is very difficult to reconstruct the original
preferencesbecausethefirst no-bridging utilitiesaretheclassical conjoint utilities,
while the second ones are scaled with the “scale factor”.

Finally, Bridger 1.1 hasseveral constraintsonthenumber of factorsandlevels
to consider in the experimental designs.

Theproblem of theutility estimation of bridging-attributeshasbeenvery little
discussed in the literature and it has not been definitively solved.

3. THE GIP TECHNIQUE

The GIP techniqueisbased on the same philosophy of the classical Bridging
technique, but theestimation method usedisdifferent (Ramunno, 2004). Therefore,
we start with the same phases of design and survey of data, by defining the same
starting matrices: X, (n,.,k,), X,(n,,k,), Y, (n,,G) and Y, (n,,G).

Furthermore, let usindicate X (n1 , le) asthe design sub-matrix obtained by

selecting only the column vectors of the matrix X, (n, k) referred to the bridging-
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factorsforthen, stimuli and X (n2 , kf) thedesign sub-matrix of thematrix X,(n,,
k,) referred to the bridging-factors for the n, stimuli. Therefore X, (n1 : klNB) and

X ;VB (n2 , k;VB ) arethe design sub-matricesreferred to the no-bridging factorsin the

two survey.
The orthogonality propriety of the experimental matrix X, such asfor X,

allowsusto dividethis matrix into the experimental design matrices X and X" .

Consequently it is possible to use these matrices in two separate models but
obtaining the same utility estimates.

Differently from Bridging of BC, in GIP technique no hypothesisontherole
of the factors is advanced. Furthermore, it is not required a fixed number of
attributes or levels.

31THE ESTIMATION OF UTILITIESIN THE GIP PROCEDURE

The GIP procedure starts with the estimation of bridging attribute utilities
and, in particular, GIP aims at obtaining an unique estimation of bridging utilities
by means of an unique regression model. For doing this, the procedure uses the
whole possible information derivable from the preference matrices.

In fact, we define anew matrix .Y(n,G), where thefirst n, rowsarethe rows
of thepreferencematrix Y, (n;,G) andthesecond n, rowsaretherowsof the matrix
Y, (n,,G), withn=n, +n,. The G columnsof thismatrix arethe G judges. Therefore
the new matrix is obtained by the vertica concatenation of the starting two
preference matrices.

In the same way, we define the new design matrix XB (n, kB) by thevertical

concatenation of the sub-matrices X, (nl, k]B) and X, (nz, k) ) :
In the first step of the procedure, these new matrices are used for obtaining
common estimates of the bridging utilities by the following multivariate multiple

regression model:
Y= XU+ E 3)

where the matrix UB (kB ,G) is the matrix whose general element is the utility of
eachlevel of each bridging attributefor eachrespondentand E (n,G) istheresidual
matrix.

Theresidual matrix E of themodel (3) includesall informationrelatedtothe
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no-bridging utilities. Therefore, we use it for computing the estimates of these
utilities. In particular, exploiting again the orthogonality property, it ispossibleto
divide .E into two sub-matricesE, (n;,G) and E, (n,,G) relating respectively ton,
and n, stimuli. Thesetwo residua matrices can be used in two different regression
models for obtaining separate utilities estimates for the no-bridging attributes.

In particular, for estimating the no-bridging utilities of the first survey the
following regression model is applied:

NBy7NB
EI = XI UI + I/I/I (4)

where UY* (klNB , G) isthematrix whosegeneral elementisthe utility of eachlevel for

every singleno-bridging attribute, for eachrespondentinthefirst survey and W, (n,,G)
isthe residual matrix.

In the same way, for the utilities of the no-bridging factors of the second
survey, the regression model is:

E,=X"UY+W, (5)

where U,” (kZNB , G) isthematrix whose general element isthe utility of eachlevel

for every singleno-bridging attributefor every respondent inthe second survey and
W, (n,,G) istheresidua matrix.

3.2CRITICAL CONSIDERATIONS

The Gl P techniqueisbased onthesamebasicideaof Bretton Clark’sBridging
technique, but it has some important differences. First of al, in GIP it is not
necessary an a-priori knowledge of the main factors, moreover it isnot required a
fixed number of attributesor levels. Therefore, the GI P techniqueallowsusto solve
the problem of complex stimuli with less constraints in comparison with the other
Bridging technique.

The most important contribute consists in the estimation method that takes
into account the ortoghonality properties making possible to reconstruct the
original preferences. In particular, the orthogonality alowsto separate the starting
design matrices for obtaining a common estimate of the utilities of the bridging
factors and allows to separate estimates of the effects of the no-bridging factors.
SAS/IML routines have been developed by the authors for implementing this
procedure.

However, a problem that must be considered: how reliable are the bridging
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results?

For answering to this question, we introduce a validation test for evaluating
the results of the GIP procedure. This test can be generalized to any bridging
technique.

4. AVALIDATION PROCEDURE FOR THE BRIDGING RESULTS

Thebridging proceduresarebased ontwo partial Conjoint experimentswhere
some common factors|ead to aglobal model. The bridging factors are considered
relevant in the judge's assessment task and their right definition is the key for the
success of the experiment. Hopefully, the presence of such important factors
induces the respondent towards rational choices, so that all stimuli showing the
same bridging levels could take similar scores in the two analyses.

In summary, it is assumed in the two sub-experiments that the judges give
reliable responses on the bridging factors regardless on the interaction with the
other non-bridging factors. We call such assumption the hypothesis of

coherent judgement.

In many circumstances, however, it could happens that the presence of non-
bridging factors highly influences the choices of the “ absent-minded” respondent
inoneof thetwo sub-experiments. Inthiscase, theestimated utility coefficients, for
the bridging factors, may vary and the consequent bridging processisinadequate.

Thus, it isinteresting to settle down atest procedure in order to verify the
presence of incoherent judgements. Let’s distinguish the two cases of metric and
non-metric Conjoint models both estimated with the OLS.

41 THE METRIC CASE

Whentheoverall preferenceisexpressed by arating onacontinuousscale, the
most feasi bl e estimation procedureisbased on the Ordinary L east Squaresmethod.
Conjoint Analysis can be seen both asaMultiple Linear Regression model and as
an Analysis of Variance model. The classical assumptions on the distribution
of the random error still hold.

In thisframework, for each respondent, the hypothesis of Coherence can be
tested against asignificant deviation. Thetest statistic can bebased onthedifference
between two estimate coefficients, for the same level of the bridging attributes, in
thetwo different classical CA. An usual t-test for independent sample comparison
can beused, becausethe observations (the stimuli) in thetwo regression modelsare
independently evaluated, eveniif it isthe same judge who assigns the two different
Sets of scores.

Actually, it is possible to test the presence of the Coherence effect by
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introducing multiplicativedummy variablesinthemodel (3) usedfor theestimation
of the bridging factorsin the GIP procedure.
Thesevariablesassumethevalue®-1" for thefirst set of answersandthevalue
“+1” for the second set. Therefore, the presence of asignificant differenceistested
according to the usual t-test on the value of the dummy coefficients.
Assuming one bridging factor with kB levels, the Conjoint Analysismodel (3)
becomes:

_ B B B B B B
J=ugtul xitvd xPt o tu, xty L d xO e (6)

where x’ (with1=1,..., kB) isthe generic column vector of design matrix X5 d

is the dummy vector, uB isthe generic Bridging utility coefficientand v, (1 = 1,...,
kB) is the generic coefficient of the dummy variable.

Thenull hypothesisof Coherenceonthesignificanceof thedummy coefficients
can be formulated as follows:

Hyv,=0; WIe{1,..k"} (7)
against the alternative:
H :v,=0
If the null hypothesis is accepted for the whole set of levels, the judge is
coherent. If the null hypothesisis rejected for at least a— vu;, we have detected an
incoherent judge. Thisjudge should be eliminated from the bridging analysis. The

presence of alot of incoherent judges can suggest us the inopportunity of making
the bridging procedure.

4.2 THE NON-METRIC CASE

Let’'s suppose that in a bridging analysis the preferences are expressed as
untied ranks. The OL S method can be still used (Saporta,1992) at explorative aim.
An empirical validation procedure of the bridging results can be performed.

Let's consider the distribution of the part-worth estimates. This is the
distribution of the means computed on the all possible subsets, of fixed dimension,
drawn by blocksfrom thefirst N natural numbers. Indeed, the OL S estimate of the
generic part-worth bridging coefficient, uB, is given by:

1~ 1 NI

Xy =——>, (8)

B _
" _Ni:1 N/Li:l

where L isthe number of levels of the generic bridging factor, x; isthe coded value
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(xi € {O, 1}) of thedummy bridgingfactor andy; isthegenericrank ( y.€ {1,. N }) .

Therefore, the part-worth coefficients are averages of ranks. The distribution
of the part-worth coefficients defined in (8) is the following:

| N—(N/L
PV LER N (V/L) N o
2 N 12 N-1

In real applications, N is not so large, for example, an experimental design
with seven factors at two levels and three factors at four levels needs at |eastN=32
stimuli. In the bridging technique the number of stimuli is split up in two sets.
Therefore the asymptotic approximation could be doubtful . However, the distribu-
tionisapproximately normal evenif wehave N=8stimuli and L = 2levels(Fig.1).

For taking adecision onthe coherence of each judgeweconsider two bridging

coefficients— ulB and uf —obtainedfromtheanalysi sand wesel ect thecorresponding

two cumulative frequencies, F(ulB) and F(uf ) on the cumulative standardized

normal distribution.
Finally, we compute for each judge the squared distance

#

Fig.1: Cumulative density function distribution of all samples (size 4) drawn from the set of
N =8 natural numbers.
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1 2

2
a’; :(F(MB)—F(MB)) ,andif thisdistanceislessthanagivenvalue , for themost

judges, the whole process can be considered appropriate, otherwise we can detect
the incoherent judges. Note that the value of can be appraised by comparing the
quantiles of the exact distribution of d?.

CONCLUDING REMARKS

The problem of complex stimuli in Conjoint Analysis has been discussed in
thispaper by looking at bridging techniques. The bridging technique devel oped by
Bretton-Clark and a new proposal (the' GIP technique) have been described and
compared. A validation procedure on the bridging results has been performed.

We have applied the GI P technique on different data sets. We have compared
the GIP resultswith the results obtained on the same data sets with the Bridging of
Bretton and Clark. The GIP performs better than the other technique because the
coefficients are more similar to those obtained by applying classical conjoint
analysison the full design.

Further studies concern the extension of the bridging procedures to the case
of non-metric estimation techniques (Monanova, Morals; Kruskal, 1969). Another
interesting point consistsin carry out the bridging procedureto surveyswhereitis
necessary to split up the original design in more than two subsets.
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UNA NUOVA METODOLOGIA PER IL TRATTAMENTO
DEGLI SCENARI COMPLESSI NELL'ANALISI CONGIUNTA

Riassunto

Questo lavoro si occupa del problema del trattamento degli stimoli complessi, (cosi
definiti per la presenza di numerosi fattori e livelli), nell’ambito dell’ Analisi delle
preferenze dei consumatori. In particolare, si propone una nuova metodologia che si basa
sulla filosofia del “ bridging” (Albaum, 1989), cioe sull'idea di poter suddividere una
indagine complessa in due sottoindagini con dei fattori in comune (fattori ponte). La
metodol ogia nuova, denominata GIP, sviluppa un’ originaletecnica di stima per passi che
sfrutta |’ ortogonalita dei disegni sperimentali sulla basedei quali sono state progettatele
indagini. Nell’ ambito del lavoro viene, inoltre, proposta una procedura per lavalidazione
dei risultati dellametodol ogia. Taleprocedurahail vantaggiodi poter esseregeneralizzata
e applicata a qualsiasi procedura di bridging.



