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Abstract

This paper deals with the problem of a large number of multi-attributes stimuli in
Conjoint Analysis. The aim of this paper is to critically discuss some specific aspects of the
bridging technique originally proposed by Bretton and Clark and to propose an innovative
approach based on the same philosophy but on a different estimation method. The new
technique is based on several estimation steps. It is able to make the most of the
orthogonality properties related to the experimental designs. Furthermore, a validation
procedure for the bridging results has been proposed. This procedure allows answering to
the general question on the reliability of performing a bridging technique.
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1. INTRODUCTION

Conjoint Analysis (CA) made its first appearance in marketing research in the
early ’70s and its use has increased since then. CA (for a review see Green and
Srinivasan, 1990) is nowadays the most applied methodology of multivariate
analysis for studying and showing the consumer preferences on different products
or services. Since consumers can express reliable preference judgements on
products/services characterized by a lot of different and complex aspects, the
construction of designs with many attributes and levels has become a necessity
(Green,1974). This involves that a large number of multi-attributes stimuli (hereafter
defined “complex stimuli”) will be submitted to consumers for the evaluation.

A survey with complex stimuli principally shows two different kinds of

1 This paper has been supported by PRIN’04 “Models for Designing and Measuring Customer
Satisfaction” coordinated by prof. Carlo Lauro.
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problems. The first problem is related to the data collection phase. A judge,
probably, having to consider a lot of different and complex stimuli, will not be able
to understand the real meaning of each of them. Consequently, he will have some
difficulties in giving his preference. Therefore, whereas on the one hand it is
possible to reduce the measurement error by including more conjoint questions in
a sample survey, on the other hand the respondents could get tired and so they could
no longer give reliable responses.

The second problem is directly linked to the estimation of the utility coefficients.
If it is possible to consider the complexity of products by taking into account a large
number of attributes and levels, the accuracy of the utility estimations can
nevertheless decrease due to too few degrees of freedom

The classical solutions, proposed by the Conjoint Analysis for handling
stimuli characterised by many attributes and levels, concern two main aspects: the
type of experimental design to plan and the method to use for presenting the
different stimuli to respondents (Pullman et al. 1999).

The selection of the design is an a-priori choice: to consider all the possible
factor-level combinations (Full Factorial Designs) or only a fraction (Fractional
Designs). Although a fractional design reduces the number of stimuli to submit to
judges, from a statistical viewpoint it causes many difficulties in the estimation of
the effects, in particular for the interaction effects. Nevertheless,  from a marketing
point of view, it could be not interesting to estimate all the interactions among
attributes, but can be considered much more important to obtain reliable judgments
on the principal effects.

As regards to the second aspect, that is the choice of the method, CA provides
us with different solutions. Starting from the same number of factor-level
combinations, it is possible to present all the stimuli at the same time (Full-profile
methods) or by paired-comparison questions. Full-profile method has been the
most popular approach to CA in the literature on the subject. But, as noted, its
usefulness has been widely considered as limited to problems involving smaller
number of attributes due to the respondent fatigue and inability to process a large
number of attributes. Only recently some papers (Brazell and  Louviere, 1998) have
successfully tried to measure fatigue-effects in full-profile methods and the results
are surprising: fatigue effects in full-profile may be much less important than it is
widely believed. However, although the use of visual presentations can help the
judges in their evaluation and the problem-size of full-profile methods may be
limited, other alternative methods, that are less taxing to respondents, have been
proposed.

An alternative solution to the classical CA is the use of the Adaptive Conjoint
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Analysis (ACA; Johnson, 1987). The ACA consists of a computer-administer
interview customized for each respondent. At each step, previous answers are used
to decide which question to ask next. There are several steps. The initial steps are
based on  the compositional approach, while the successive steps are based on the
decompositional one.

ACA is a user-friendly approach both for the analyst and the respondents
(ACA 5.0, Sawtooth Software). In the ACA, respondents do not evaluate all
attributes at the same time and this helps to solve the problem of “information
overload” that plagues many full-profile studies. The interview can consider many
attributes and levels, paying special attention to those the respondents consider
more important. Questioning is done in “intelligent” way; the respondent’s utilities
are continually re-estimated as the interview progresses, and each question is
chosen to provide the most additional information, given what is already known
about the respondent’s value. Finally, as regards to the classical CA, in ACA the
number of final stimuli to submit is very limited and it is focused on stimuli
considered the most important and the less important, by giving minor importance
to middle stimuli. Moreover, in terms of restrictions and limitations, ACA must be
computer-administered. The estimated time for a generic interview is not less than
20-25 minutes. Furthermore, ACA is a main effect model. This means that utilities
for attributes are measured in an “all else equal” context, without the inclusion of
attribute interactions.

On a different philosophy (Baalbaki and Malhotra, 1995), is based another
method proposed as practical solution to the problem of complex stimuli: the
Bridging technique (Albaum,1989). The basic idea of this approach is to split up the
planned attributes and levels in two different lists with at least two common
attributes. The successive steps of the analysis are the same of those characterizing
a full-profile approach, but with the realization of two different fractional factorial
designs and consequently, of two different surveys on the same consumers. At the
end, partial utilities and importance of the attributes will become one group of
results, as if the researcher has worked with only one fractional design, with a
number of attributes equal to the sum of no-common attributes plus the common
attributes. This technique has been implemented in the software Bridger 1.1
(Bretton-Clark,1988).

The aim of this paper is to critically discuss some characteristic features of the
bridging technique (par. 2) and to propose an innovative approach based on the
general bridging philosophy but on a peculiar estimation method. The new
technique, (par. 3), here called  the “GIP technique”,  is based on several steps of
estimation and it is able to make the most of the orthogonality properties of the
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experimental designs. The proposed approach is enriched with a validation proce-
dure (par.4) on its results; this procedure allows to answer to the general question
on the reliability of performing a bridging technique. Therefore the validation
procedure can be generalised for evaluating the results of a bridging technique.

2. THE BRIDGING TECHNIQUE

The Bridging philosophy (Albaum, 1989) consists in splitting several planned
attributes in two or more different sets with some attributes common to all sets
(“bridging-attributes”). Each set of attributes is treated like a distinct conjoint
analysis. A fractional factorial design is created for each set of attributes. Respondents
are asked to rate or rank two smaller sets of products rather than one large set. The
utilities are calculated for each trade-off exercise independently and bridged
together to create one final set of utilities. The Bridging technique is implemented
in the software Bridger 1.1 developed by Bretton and Clark (BC) in 1988. This
software is jointly used with other two software proposed by the same authors,
Conjoint Designer 3.0 (1990) and Conjoint Analyzer 3.0 (1992). The Bretton and
Clark suite of programs (Carmone and  Shaffler, 1995) was designed to handle most
of the task in a paper-and-pencil conjoint study, for example, profile design, utility
estimation, and simulations.

Conjoint Designer software provides experimental designs for the use in
Conjoint Analysis studies. All generated designs continue to be only orthogonal
arrays; it is not possible to estimate interactions with the class of designs. To
generate a design, it is necessary to specify the type of estimation model for each
factor (parth worth, linear, or quadratic), so the number of parameters to estimate
can be calculated.

For initialising a Bridging procedure, two fractional experimental designs
with at least one bridging-attribute are generated with Conjoint Designer.

Let us indicate with X1 (n1, k1), the first experimental designed matrix. This
matrix has n1 stimuli (combinations of factors and levels) as rows and k1 columns
defined by levels of the factors of the first survey. In particular, k1 is the sum of

k NB
1

levels of no-bridging factors and k B
1

levels of the bridging factors; k1= k NB
1

+ k B
1

.

X2(n2, k2) is the matrix of the n2 stimuli and k k k kNB B

2 2 2 2
= +( )  levels of the second

survey, where k kB B

2 1
= .

Successively, we collect the judgments of G judges (g=,...,G) on the n1
stimuli in the preference matrix Y1 (n1,G); the columns of this matrix are the
expressed judgments. The matrix Y2 (n2, G) is referred to the judgments of the same



A new technique for dealing with complex stimuli in conjoint analysis 109

judges on the n2 stimuli.
The software used to enter respondent data and estimate individual utilities

is the Conjoint Analyser. We indicate as U1(k1, G) and U2(k2, G) the utility matrices
obtained by applying  the Conjoint Analysis respectively on (Y1, X1) and on (Y2, X2).

Furthermore, assume  U
1 1

NB NBk G,( )and U
2 2

NB NBk G,( )  the sub-matrices related

to the estimates of the utilities only for the no-bridging factors respectively in the

first and in the second survey. Therefore, U
1 1

B Bk G,( ) and U
2 2

B Bk G,( ) are the sub-

matrices related to the estimates of the utilities of the bridging factors in the two
cases.

The estimation method for these initial utilities is based on the Ordinary Least
Squares and on the choice of the preference model (part-worth model, vector
model, or the ideal-point model) for each factor used in the analysis. It is possible
to statistically test the difference between an ideal point and a vector model to see
which provides a better model fitting. This is, of course, done at group level, but
software may be available to do this at the individual level.

As we will demonstrate in the following, the choice of the preference model
is very important related to this bridging procedure.

2.1. THE ESTIMATION OF UTILITIES IN THE BRETTON CLARK’S BRIDGING
PROCEDURE

It is important to underline that each consideration in this paragraph is derived
and interpreted from the reading of the Bridger 1.1 software manual and from the
actual use of the Software, because it is very difficult to find papers on the estimation
method proposed by Bretton and Clark.

Bridger can be divided into three basic parts. First, it looks for matching or
bridging features in the two designs. Second it determines the optimal scaling
factors for bridging these designs, and measures how well this scaling works. And
third, it creates a new design and utility file to describe the integrated results of these
operations.

In particular, in the first step Bridger verifies whether the two features were
analysed using the same type of the model. If the models are not identical, the
features cannot be bridged. Furthermore, if both features were analysed by the part-
worth model, they would also be checked to determine whether they contain the
same number of levels. Features with different number of levels cannot be used with
the part-worth model, because the part-worth estimates are measured relative to the
other levels of the feature.

We also observe that if the part-worth model is used and only one bridging
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factor is chosen, the number of levels must be more than two. This derives from the
method used for determining the” scale factor”.

The “scale factor” is an important coefficient in this estimation method
because it is directly linked with the basic hypothesis of the procedure. Therefore,
Bridger 1.1 works considering that in the first design there are the main factors.

Therefore, the researcher must well choose the factors in the previous step of
the analysis and he must decide, on the basis of a-priori knowledge, both the
bridging factors and the main no-bridging factors. The hypothesis of the different
role of the factors affects the whole estimation method.

Let us suppose that in X1 there are the main factors. Bridger considers the

elements of the matrix U
1

NB  as estimates of the no-bridging utilities of the first

survey.  Therefore it does not modify the initial classical conjoint utilities.
Successively, Bridger 1.1 calculates the “scale factor ”. This scale factor is the

factor which best scales the bridging utilities of the second design, in U
2

B , for

matching the corresponding utilities of the first design, in U
1

B .

In particular, the scale factor for each respondent, fg, is derived from the
following regression model:

u u
1 2, ,g

B

g

B= +f
g g

εε with g = 1, …, G     (1)

where u
1 1

1
,

,
g

B Bk( ) is the g-th column vector of U
1

B , u
2

B is the g-th column vector of

U
2 2

1
B Bk ,( )  and εg is the residual vector for g-th  judge.

Because of (1), Bridger 1.1. doesn’t work if  the chosen model is a part-worth
model and the bridging factor is only one with two levels. Therefore, for this type
of model, two factors, or one factor with at most three levels are necessary!

The procedure measures the goodness of fit of this scale factor. In particular,
the scores between the corresponding bridging utilities are computed. Scores lower
than twenty to thirty represent a poor fit and may be due to respondents treating the
features differently in the two tasks. These respondents may be eliminated from the
analysis.

The scale factor is used for weighting the no-bridging utilities for the factors

of the second survey. Therefore, the matrix U
2

NB  is re-computed by multiplying

each column vector of this matrix for the scale factor fg.
Finally, the scaling does not produce an exact match between the results.
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Therefore, for obtaining an unique estimate for the utilities of the bridging
attributes, the estimation method proposes an average of the obtained results. In
particular, for each judge the estimates of bridging utilities are computed as:

u
u + u

g

B g

B

g

B

=
( )1 2

2

, ,
f
g

(2)

2.2 CRITICAL CONSIDERATIONS

Bridging seems to be a user-friendly technique for respondents because it
allows both to consider several stimuli and to submit them without respondent’s
fatigue. The division in two phases can represent a positive aspect, particularly
when we deal with repeated surveys.

The drawbacks of this technique are in the method used for the estimation of
partial utilities. This method still seems to be primitive in comparison with those
methods, for example the hierarchical Bayes estimation, recently used in ACA. The
hypothesis on the different importance of the two designs is justified by an a-priori
knowledge of the main factors and it affects the estimates of bridging and no-
bridging utilities. In particular, the scale factor is computed on the basis of this
hypothesis with the aim of deriving the value that transforms the estimates of the
bridging utilities, of the second survey,  into the bridging utilities of the first survey.
Furthermore, by using this procedure it is very difficult to reconstruct the original
preferences because the first no-bridging utilities are the classical conjoint utilities,
while the second ones are scaled with the “scale factor”.

Finally, Bridger 1.1 has several constraints on the number of factors and levels
to consider in the experimental designs.

The problem of the utility estimation of bridging-attributes has been very little
discussed in the literature and it has not been definitively solved.

3. THE GIP TECHNIQUE

The GIP technique is based on the same philosophy of the classical Bridging
technique, but the estimation method used is different  (Ramunno, 2004). Therefore,
we start with the same phases of design and survey of data, by defining the same
starting matrices: X1 (n1,k1), X2(n2,k2), Y1 (n1,G) and Y2 (n2,G).

Furthermore, let us indicate X
1

B n k B
1 1
,( ) as the design sub-matrix obtained by

selecting only the column vectors of the matrix X1 (n1,k1) referred to the bridging-
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factors for the n1 stimuli and X
2

B n k B
2 2
,( )  the design sub-matrix of the matrix  X2(n2,

k2) referred to the bridging-factors for the n2 stimuli. Therefore X
1

NB n k NB
1 1
,( ) and

X
2

NB n k NB
2 2
,( ) are the design sub-matrices referred to the no-bridging factors in the

two survey.
The orthogonality propriety of the experimental matrix X1, such as for X2,

allows us to divide this matrix into the experimental design matrices X
1

B and X
1

NB .

Consequently it is possible to use these matrices in two separate models but
obtaining the same utility estimates.

Differently from Bridging of  BC, in GIP technique no hypothesis on the role
of the factors is advanced. Furthermore, it is not required a fixed number of
attributes or levels.

3.1 THE ESTIMATION OF UTILITIES IN THE GIP PROCEDURE

The GIP procedure starts with the estimation of bridging attribute utilities
and, in particular, GIP aims at obtaining an unique estimation of  bridging utilities
by means of an unique regression model. For doing this, the procedure uses the
whole possible information derivable from the preference matrices.

In fact, we define a new matrix cY(n,G), where the first n1  rows are the rows
of  the preference matrix Y1 (n1,G) and the second n2  rows are the rows of the matrix
Y2 (n2,G), with n = n1 + n2. The G columns of this matrix are the G judges. Therefore
the new matrix is obtained by the vertical concatenation of the starting two
preference matrices.

In the same way, we define the new design matrix  cX
B (n, kB)  by the vertical

concatenation of the sub-matrices X
1

B n k B
1 1
, ( )and X

2

B n k B
2 2
, ( ) .

In the first step of the procedure, these new matrices are used for obtaining
common estimates of the bridging utilities by the following multivariate multiple
regression model:

c c c

B B

c
Y X U E= + (3)

where the matrix cU
B (kB ,G) is the matrix whose general element is the utility of

each level of each bridging attribute for each respondent and  cE (n,G) is the residual
matrix.

The residual matrix cE  of the model (3) includes all information related to the
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no-bridging utilities. Therefore, we use it for computing the estimates of these
utilities. In particular, exploiting again the orthogonality property, it is possible to
divide cE into two sub-matrices E1 (n1,G) and  E2 (n2,G) relating respectively to n1
and n2 stimuli. These two residual matrices can be used in two different regression
models for obtaining separate utilities estimates for the no-bridging attributes.

In particular, for estimating the no-bridging utilities of the first survey the
following regression model is applied:

E X U W
1 1

NB

1

NB

1
= + (4)

where U
1

NB k GNB

1
,( )  is the matrix whose general element is the utility of each level for

every single no-bridging attribute, for each respondent in the first survey and  W1 (n1,G)
is the residual matrix.

In the same way, for the utilities of the no-bridging factors of the second
survey, the regression model is:

E X U W
2 2

NB

2

NB

2
= + (5)

where U
2

NB k GNB

2
,( )  is the matrix whose general element is the utility of  each level

for every single no-bridging attribute for every respondent in the second survey and
W2 (n2,G)  is the residual matrix.

3.2 CRITICAL CONSIDERATIONS

The GIP technique is based on the same basic idea of Bretton Clark’s Bridging
technique, but it has some important differences. First of all, in GIP it is not
necessary an  a-priori knowledge of the main factors, moreover it is not required a
fixed number of attributes or levels. Therefore, the GIP technique allows us to solve
the problem of complex stimuli with less constraints in comparison with the other
Bridging technique.

The most important contribute consists in the estimation method that takes
into account the ortoghonality properties making possible to reconstruct the
original preferences. In particular, the orthogonality allows to separate the starting
design matrices for obtaining a common estimate of the utilities of the bridging
factors and allows to separate estimates of the effects of the no-bridging factors.
SAS/IML  routines have been developed by the authors for implementing this
procedure.

However, a problem that must be considered: how reliable are the bridging
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results?
For answering to this question, we introduce a validation test for evaluating

the results of the GIP procedure. This test can be generalized to any bridging
technique.

4. A VALIDATION PROCEDURE FOR THE BRIDGING RESULTS

The bridging procedures are based on two partial Conjoint experiments where
some common factors lead to a global model. The bridging factors are considered
relevant in the judge’s assessment task and their right definition is the key for the
success of  the experiment. Hopefully, the presence of such important factors
induces the respondent towards rational choices, so that all stimuli showing the
same bridging levels could take similar scores in the two analyses.

In summary, it is assumed in the two sub-experiments that the judges give
reliable responses on the bridging factors regardless on the interaction with the
other non-bridging factors. We call such assumption the hypothesis of

coherent judgement.
In many circumstances, however, it could happens that the presence of non-

bridging factors highly influences the choices of the “absent-minded” respondent
in one of the two sub-experiments. In this case, the estimated utility coefficients, for
the bridging factors, may vary and the consequent bridging process is inadequate.

Thus, it is interesting to settle down a test procedure in order to verify the
presence of incoherent judgements. Let’s distinguish the two cases of metric and
non-metric Conjoint models both estimated with the OLS.

4.1 THE METRIC CASE

When the overall preference is expressed by a rating on a continuous scale, the
most feasible estimation procedure is based on the Ordinary Least Squares method.
Conjoint Analysis can be seen both as a Multiple Linear Regression model and as
an Analysis of Variance model. The classical assumptions on the distribution
of the random error still hold.

In this framework, for each respondent, the hypothesis of Coherence can be
tested against a significant deviation. The test statistic can be based on the difference
between two estimate coefficients, for the same level of the bridging attributes, in
the two different classical CA. An usual t-test for independent sample comparison
can be used, because the observations (the stimuli) in the two regression models are
independently evaluated, even if it is the same judge who assigns the two different
sets of scores.

Actually, it is possible to test the presence of the Coherence effect by
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introducing multiplicative dummy variables in the model (3) used for the estimation
of the bridging factors in the GIP procedure.

These variables assume the value “-1” for the first set of answers and the value
“+1” for the second set. Therefore, the presence of a significant difference is tested
according to the usual t-test on the value of the dummy coefficients.

Assuming one bridging factor with kB levels, the Conjoint Analysis model (3)
becomes:

c c c c c
y x d x x d x= u +u +v + +u +vB B B

k

B

k

B

k k

B

B B B B0 1 1 1 1
… ++

c
e  (6)

where 
c
x

l

B (with l = 1,…, kB) is the generic column vector of  design matrix cX
B, d

is the dummy vector, uB is the generic Bridging utility coefficient and vl (l = 1,…,
kB) is the generic coefficient of the dummy variable.

The null hypothesis of Coherence on the significance of the dummy coefficients
can be formulated as follows:

H : = ; l ,k
l

B

0
0 1,...υ ∀ ∈{ } (7)

against the alternative:

H :
l1

0υ ≠

If  the null hypothesis is accepted for the whole set of levels, the judge is
coherent. If the null hypothesis is rejected for at least a – υl, we have detected an
incoherent judge. This judge should be eliminated from the bridging analysis. The
presence of a lot of incoherent judges can suggest us the inopportunity of making
the bridging procedure.

4.2 THE NON-METRIC CASE

Let’s suppose that in a bridging analysis the preferences are expressed as
untied ranks. The OLS method can be still used (Saporta,1992) at explorative aim.
An empirical validation procedure of the bridging results can be performed.

Let’s consider the distribution of the part-worth estimates. This is the
distribution of the means computed on the all possible subsets, of fixed dimension,
drawn by blocks from the first N natural numbers. Indeed, the OLS estimate of the
generic part-worth bridging coefficient, uB,  is given by:

u
N

x y
N L

yB

i i
i

N

i
i

N L

= ∑ = ∑
= =

1 1

1 1

/

(8)

where L is the number of levels of the generic bridging factor, xi is the coded value
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x
i
∈{ }( )0 1,  of the dummy bridging factor and yi is the generic rank y N

i
∈{ }( )1, ,… .

Therefore, the part-worth coefficients are averages of ranks. The distribution
of the part-worth coefficients defined in (8) is the following:

u N
N

N

N N N L

N

B
∼

+ − −( )
−













1

2

1 1

12 1

2

;               N→∞ (9)

In real applications, N is not so large, for example, an experimental design
with seven factors at two levels and three factors at four levels needs at leastN=32
stimuli. In the bridging technique the number of stimuli is split up in two sets.
Therefore the asymptotic approximation could be doubtful. However, the distribu-
tion is approximately normal even if we have  N = 8 stimuli and L = 2 levels (Fig.1).

For taking a decision on the coherence of each judge we consider two bridging

coefficients – uB
1

 and uB
2

– obtained from the analysis and we select the corresponding

two cumulative frequencies, F uB
1( )  and F uB

2( )  on the cumulative standardized

normal distribution.
Finally, we compute for each judge the squared distance

Fig.1 : Cumulative density function distribution of all samples (size 4) drawn from the set of
N = 8 natural numbers.
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d F u F u
g

B B2
2

1 2

= ( )− ( )( ) , and if this distance is less than a given value , for the most

judges, the whole process can be considered appropriate, otherwise we can detect
the incoherent judges. Note that the value of  can be appraised by comparing the
quantiles of the exact distribution of d2.

CONCLUDING REMARKS

The problem of complex stimuli in Conjoint Analysis has been discussed in
this paper by looking at bridging techniques. The bridging technique developed  by
Bretton-Clark and a new proposal (the‘GIP technique) have been described and
compared. A validation procedure on the bridging results has been performed.

 We have applied the GIP technique on different data sets. We have compared
the GIP results with the results obtained on the same data sets with the Bridging of
Bretton and Clark. The GIP performs better than the other technique because the
coefficients are more similar to those obtained by applying classical conjoint
analysis on  the full design.

Further studies concern the extension of the bridging procedures to the case
of non-metric estimation techniques (Monanova, Morals; Kruskal, 1969). Another
interesting point consists in carry out the bridging procedure to surveys where it is
necessary to split up the original design in more than two subsets.
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UNA NUOVA METODOLOGIA PER IL TRATTAMENTO
DEGLI SCENARI COMPLESSI NELL’ANALISI CONGIUNTA

Riassunto

Questo lavoro si occupa del problema del trattamento degli stimoli complessi, (così
definiti per la presenza di numerosi fattori e livelli), nell’ambito dell’Analisi delle
preferenze dei consumatori. In particolare, si propone una nuova metodologia che si basa
sulla filosofia del “bridging”  (Albaum, 1989), cioè sull'idea di poter suddividere una
indagine complessa in due sottoindagini con dei fattori in comune (fattori ponte). La
metodologia nuova, denominata GIP, sviluppa un’originale tecnica di stima per passi che
sfrutta l’ortogonalità dei disegni sperimentali sulla base dei quali sono state progettate le
indagini. Nell’ambito del lavoro viene, inoltre, proposta una procedura per la validazione
dei risultati della metodologia. Tale procedura ha il vantaggio di poter essere generalizzata
e applicata a qualsiasi procedura di bridging.


