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Abstract

In this paper we present an efficient and fast parallel waveform relaxation method for
Volterra Integral equations of Abel type, obtained by reformulating a non–stationary
waveform relaxation method for systems of equations with linear coefficient constant
kernel. To this aim we consider the Laplace transform of the equation and here
we apply the recurrence relation given by the Chebyshev polynomial acceleration
for algebraic linear systems. Back in the time domain, we obtain a three term
recursion which requires, at each iteration, the evaluation of convolution integrals,
where only the Laplace transform of the kernel is known. For this calculation we
can use a fast convolution algorithm. Numerical experiments have been done also on
problems where it isn’t possible to use the original non–stationary method, obtaining
good results in terms of improvement of the rate of convergence with respect the
stationary method.
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1 Introduction

Parallel Waveform Relaxation (WR) methods for Volterra Integral Equations
(VIEs) with weakly singular kernels (of Abel type) have been introduced re-
cently [2] [4].
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A large system of VIEs of Abel type has the form:

y(t) = f(t) +
∫ t

0

k(t, s, y(s))

(t− s)α
ds, t ∈ [0, T ], 0 < α < 1, (1.1)

y, f, k ∈ Rd, d >> 1,

and arises directly in many applications as, for example, in reaction–diffusion
problems in small cells [6] or indirectly as well as by the semidiscretization in
space of Volterra-Fredholm integral equations with weakly singular kernels [1],
and of Abel partial integral or integro–differential equations (such as models
of an omalous diffusion processes, wave propagation in viscoelastic materials
[5]).

The high computational cost for computing the numerical solution of these
problems requires high performances numerical methods. A fully parallel WR
method satisfies such expectations by decoupling the system into indepen-
dent equations. In fact, if G = G(t, s, u, v) is a suitable function such that
G(t, s, u, u) = k(t, s, u), we introduce the “waveforms” {y(i)(t)}i∈N from:

y(i+1)(t)= f(t) +
∫ t

0

G(t, s, y(i)(s), y(i+1)(s))

(t− s)α
ds (1.2)

t ∈ [0, T ], i = 0, 1, . . .

y(0)(t)= f(t).

Obviously, if the sequence {y(i)(t)}i∈N is convergent, its limit is the solution of
(1.1). In particular, if the function G is such that the system (1.2) is decoupled
into independent subsystems that can be solved in parallel, the corresponding
WR method is a parallel method.

The convergence properties as well as the computational cost of each wave-
form depend heavily on the choice of the function G. Unfortunately, fully
parallel WR methods are usually slowly convergent. So, with the aim to
develop fully parallel fast convergent WR methods, in [4], have been intro-
duced Non Stationary WR (NSWR) methods. There, it was considered a se-
quence of functions {Gi(t, s, u, v)}i∈N depending on the iterate i, such that
Gi(t, s, u, u) = k(t, s, u) for each i, and it was obtained the corresponding
NSWR method

y(i+1)(t) = f(t) +
∫ t

0

Gi(t, s, y
(i)(s), y(i+1)(s))

(t− s)α
ds . (1.3)

In section 2 we will recall in particular the fast Non Stationary WR Richardson
method (see [3] [4] ), for which

Gi(t, s, u, v) = µiIu− µiIv + k(t, s, v), i = 0, . . . , ν, (1.4)
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where I is the identity matrix of order d and the µi are the Chebyshev zeros
of order ν, opportunately translated.

A limitation in the application of this method is that, in order to use the
Chebyshev zeros as acceleration parameters, we have to fix a priori the num-
ber of iterations (i.e. ν in (1.4)). To overcome this problem, in section 3 we
formulate the Chebyshev–Richardson WR method using a three term recur-
rence relation and we prove that this new method satisfies the same error
bound.

To construct the method we consider the Laplace transform of the equation
(1.1), limiting for the moment our analysis to the case of linear constant kernel,
and here we apply the recurrence relation given by the Chebyshev polynomial
acceleration for algebraic linear systems. Back in the time domain, we have
constructed a sequence

{
z(i)(t)

}
i∈N

in which we can obtain z(i+1)(t), ∀i, from
z(i)(t) and z(i−1)(t) by computing the convolution integrals

∫ t

0
f
(i)
0 (t− τ)z(i−1)(τ)dτ and

∫ t

0
f
(i)
1 (t− τ)z(i)(τ)dτ,

where we only know the Laplace transform of the functions f
(i)
0 and f

(i)
1 . So,

for this calculation, we use a fast convolution algorithm given in [9]. A further
improvement with respect the Richardson method, as it will be described in
detail in section 3, is that Chebyshev–Richardson method is applicable to all
linear constant VIEs whose kernel has singularities lying in the open left half
complex plane.

In section 4, in order to evaluate the performances of the new method, we
construct an analogous WR Stationary method and in section 5 we present
the numerical experiments, in which we measure the number of iterations the
two methods need to obtain a required accuracy. From these tests we can find
out the problems for which the Chebyshev–Richardson method has the best
performances.

All the numerical experiments we report are done on the test problem

y(t) = f(t) +
∫ t

0

A

(t− s)α
y(s)ds , t ∈ [0, T ], (1.5)

A ∈ Rd×d , d >> 1,

where we suppose that the matrix A has eigenvalues lying in the open left half
complex plane.
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2 Non Stationary Richardson waveform relaxation method

In this section we recall how the acceleration parameters are chosen in Richard-
son waveform relaxation method [3] [4].

The non stationary fully parallel Richardson waveform relaxation method has
the form:

y(i+1)(t) = f(t)+
∫ t

0

µi

(t− s)α
Iy(i+1)(s)ds+ (2.1)

+
∫ t

0

(A− µiI)

(t− s)α
y(i)(s)ds,

where µi ∈ R−.

If put e(i)(t) = y(t)− y(i)(t), from [4] we have the error bound:

∥∥∥e(i)∥∥∥
T
≤ ‖Pi(A)‖

T i(1−α)Γ(1− α)i

Γ[i(1− α) + 1]

∥∥∥e(0)∥∥∥
T
, (2.2)

where Pi(z) =
∏i−1

j=0 (z − µj) is a monic polynomial of degree i.

We can choose the parameters {µi}i=0,...,ν−1 in order to obtain a sequence
{
vy(i)(t)

}v
i=0

(2.3)

which minimizes the error e(ν) at the iterate ν (with ν fixed), in the sense that
it minimizes the ‖Pν(A)‖. The dependence of this sequence on the fixed v has
been put in evidence by the superscript v in (2.3). We now describe the choice
of the parameters {µi}i=0,...,ν−1.

We remind that if D is a convex region of the complex plane which contains
the eigenvalues of A the virtual spectral radius of Pν(A) with respect to D is
defined to be: SD (Pν(A)) = max

z∈D
|Pν(z)| (see [7]).

Let us assume that the spectrum of A can be enclosed in the region E delimited
by the ellipse: (

x− δ

a

)2

+
(
y

b

)2

= 1, a, b ∈ R, (2.4)

belonging to the family F (δ, c) (i.e. centered at δ ∈ R− and with foci at δ + c
and δ − c), where c is given by c2 = a2 − b2 and with

a+ δ < 1. (2.5)
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We find (see [7] [10] [11] ) that, when c ∈ R, the monic polynomial Pν(z) of
degree ν which minimizes the virtual spectral radius of Pν(A) with respect to
the ellipse E is the monic translated Chebyshev polynomial of degree ν :

Pν(z) =
cν

2ν−1
Tν((z − δ)/c).

So, the parameters {µi}i=0...ν−1 which minimize the error at the ν-th iterate
are the zeros of Pν(z), given by:

µi = δ + cξi, (2.6)

where ξi = cos [(2i+ 1)π/2ν], i = 0, ..., ν − 1, denote the zeros of Tν .

Obviously the spectrum of the matrix A can be enclosed in many different
ellipses: in fact, given any family of ellipses F (δ, c) there is some member of
the family that contains the spectrum of A in its interior. We can choose the
family F (δ, c) so that the convergence is optimal in some sense. Let

r (λ) = lim
n→∞

∣∣∣Pn(λ)
1
n

∣∣∣
be the asymptotic convergence factor of Pn(λ) at the point λ. In particu-
lar, each eigenvalue λk, k = 1, ..., d is associated with the convergence factor
r (λk). One way to optimize the choice of δ and c (see [10] [11]) is to make
the maximum r (λk) as small as possible, so they will satisfy the mini-max
problem:

min
δ,c

max
λk

r (λk) . (2.7)

3 Chebyshev–Richardson waveform relaxation method

A disadvantage in the implementation of the method (2.1) with parameters
(2.6) is that, in order to choose the ”optimal” parameters, we have to fix the
number of iterates ν. Moreover this method is applicable only when the c ∈ R,
that is when the ”optimal” ellipse containing the spectrum of A has real foci.

To overcome these difficulties we have formulated the Richardson-Chebyshev
WR method, through the construction of a new sequence {zi(t)}i∈N which
minimizes the iteration error, and for which these minimal properties do not
depend on the choice a priori of the number of iterations. In order to construct
this new sequence we first look at Richardson WR method from another point
of view.
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Let us consider the Laplace transform of the integral equation (1.5):

ŷ(s) = f̂(s) +
AΓ(1− α)

s1−α
ŷ(s). (3.1)

For each s this is a system of linear equations, and we can consider the iterative
method

ŷ(i+1)(s) = f̂(s) +
AΓ(1− α)

s1−α
ŷ(i)(s), (3.2)

which, back in the time domain, corresponds to Picard iteration. We can
accelerate the method (3.2) by considering a split of the matrix A:

ŷ(i+1)(s) = f̂(s) +
µiΓ(1− α)

s1−α
ŷ(i+1)(s) +

(A− µiI)Γ(1− α)

s1−α
ŷ(i)(s). (3.3)

This method corresponds to the Laplace transform of Richardson method
(2.1), and the expression of the error is:

ê(i)(s) = ŷ(i)(s)− ŷ(s) =
(A− µi−1I)Γ(1− α)

s1−α − µi−1Γ(1− α)
ê(i−1)(s) .

Therefore, if we put B(s) = AΓ(1− α)/ (s1−α), we obtain:

ê(i)(s) = Qi(s,B(s))ê(0)(s) (3.4)

with Qi(s, z) =
∏i−1

j=0

(
z − µjΓ(1−α)

s1−α

)
/
(
1− µjΓ(1−α)

s1−α

)
. If we choose the optimal

parameters {µi}i=0,...,ν−1 of Richardson method, given by (2.6), from (3.4) we
find that the error at the ν-th iterate is given by:

ê(ν)(s) = Qν(s,B(s))ê(0)(s), with Qν(s, z) = Tν(
z−δ̄(s)
c̄(s)

)/Tν(
1−δ̄(s)
c̄(s)

) (3.5)

where
δ̄(s) = δΓ(1−α)

s(1−α) , c̄(s) = cΓ(1−α)

s(1−α)
(3.6)

represent the center and the focal length of an ellipse Ē ∈ F (δ̄(s), c̄(s)) con-
taining the spectrum of B(s). So Qν(s, z) is the translated Chebyshev poly-
nomial of degree ν satisfying the condition Qν(s, 1) = 1. The presence of this
Chebyshev polynomial minimizes the error (3.5) at the iterate ν, in the sense
that, being δ̄(s) and c̄(s) complex numbers, this polynomial asymptotically
minimizes the virtual spectral radius of the matrix Qν(s,B(s)) over the el-
lipse Ē, and the asymptotic convergence factor is achieved very quickly ([10]).
Moreover it can be easily seen that, if δ and c solve the mini-max problem
(2.7), the parameters chosen according to (3.6) are the solution of the same
mini-max problem, with λk eigenvalues of B(s).

Now, using the previous observations, we can prove the following:
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Theorem 3.1 Let
{
z(i)(t)

}
i∈N

be the sequence given by the iteration:

z(i+1)(t)= z(i−1)(t)−
∫ t

0
f
(i)
0 (t− τ)z(i−1)(τ)dτ + [A− δI] · (3.7)

·
∫ t

0
f
(i)
1 (t− τ)z(i)(τ)dτ +

∫ t

0
f
(i)
2 (t− τ)f(τ)dτ,

where the functions f
(i)
0 (t), f

(i)
1 (t) and f

(i)
2 (t) have Laplace transforms given

by:
f̂
(i)
0 (s) = ρi(s), f̂

(i)
1 (s) = ρi(s)β(s), f̂

(i)
2 (s) = ρi(s)β(s)

s1−α

Γ(1−α)
,

with

ρi(s) =


1 if i = 1(
1− 1

2
σ2(s)

)−1
if i = 2(

1− 1
4
σ2(s)ρi−1(s)

)−1
if i > 3 ,

(3.8)

where σ2(s) = c2β2(s) and β(s) = Γ(1−α)

s(1−α)−δΓ(1−α)
. Then the error

ε(i)(t) = z(i)(t)− y(t)

is minimal for each i ∈ N , in the sense that it satisfies the bound:

∥∥∥ε(i)∥∥∥
T
≤ ‖Pi(A)‖

T i(1−α)Γ(1− α)i

Γ[i(1− α) + 1]

∥∥∥ε(0)∥∥∥
T

(3.9)

where Pi(z) = ci/2i−1 · Ti((z − δ)/c) is the monic translated Chebyshev poly-
nomial of degree i, for each i ∈ N .

Proof. Let us consider the Chebyshev polynomial acceleration of the iterative

method (3.2) and in this way we construct a new sequence
{
ẑ(i)(s)

}
i∈N

such
that

ε̂(i)(s) = ẑ(i)(s)− ŷ(s) = Qi(s,B(s))ε̂(0)(s) (3.10)
with

Qi(s, z) =
Ti(

z−δ̄(s)
c̄(s)

)

Ti(
1−δ̄(s)
c̄(s)

)
(3.11)

Chebyshev polynomial of degree i, for each i ∈ N . The iterates of this poly-
nomial method can be expressed (see [7]) in the three term form:

ẑ(i+1)(s)= ρi(s) [γ(s)B(s) + (1− γ(s))I] ẑ(i)(s) + (1− ρi(s))ẑ
(i−1)(s) +

+ρi(s)γ(s)f̂(s)
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where γ(s) = 1/(1− δ(s)) = s(1−α)/
(
s(1−α) − δΓ(1− α)

)
and ρi(s) = 2(1−

δ̄(s))/c̄(s) · Ti−1

(
(1− δ̄(s))/c̄(s)

)
/Ti

(
(1− δ̄(s))/c̄(s)

)
, from which, with easy

computation, we obtain

ẑ(i+1)(s)= [A− δI] ρi(s)β(s)ẑ
(i)(s) + (1− ρi(s))ẑ

(i−1)(s) + (3.12)

+ρi(s)β(s)
s1−α

Γ(1− α)
f̂(s).

where β(s) = Γ(1− α)/
(
s(1−α) − δΓ(1− α)

)
.

Back in the time domain the iteration (3.12) corresponds to the iteration (3.7).
Moreover, making use of Chebyshev polynomial recurrence relation, we can
express the parameters ρi(s) in the more computationally convenient form
(3.8). We can easily verify that, by construction of the sequence

{
ẑ(i)(s)

}
i∈N

,
for each i ∈ N the function z(i)(t) is equal to the y(i)(t) given by (2.1) if we fix
ν = i and consider the parameters (2.6): it corresponds to the function iy(i)(t)
given in (2.3). It obviously follows the expression (3.9) for the error.

Following the strategy of [4] we can come to a more significant estimate of the
error:

‖ε(ν)‖T ≤ γ
{
1

2ν
[(a+ b)ν + |a− b|ν ] + ϵ

}
T ν(1−α)Γ(1− α)ν

Γ[ν(1− α) + 1]
‖ε(0)‖T

where γ and ϵ are positive constants. This is an immediate consequence of
the:

Theorem 3.2 Let Pi(z) = ci/2i−1 · Ti((z − δ)/c) be the monic translated
Chebyshev polynomial of degree i. Then

SE (Pi(A)) ≤
1

2i

[
(a+ b)i + |a− b|i

]
(3.13)

where a and b are the semiaxes of the ellipse E given by (2.4).

Proof. Let us consider the virtual spectral radius of Pi(A) with respect to

the ellipse E:

SE (Pi(A)) = max
z∈E

|Pi(z)| = max
z∈E

∣∣∣∣∣ ci

2i−1

∣∣∣∣∣ |Ti((z − δ)/c)| = max
z∈E1

∣∣∣∣∣ ci

2i−1

∣∣∣∣∣ |Ti(z)|

where E1 ∈ F (0, 1) has the real semiaxe a1 = a/c if c is real, or a1 = b/ |c| if
c is purely immaginary. Now, using the fact that a maximum of |Ti(z)| over

8



the ellipse E1 occurs at z = a1, we obtain, after some algebraic manipulation,
the relation (3.13).

The iterative method (3.7), which we call Richardson-Chebyshev method, re-
quires the evaluation of temporal convolutions of the type

∫ t

0
f(t− τ)g(τ)dτ

where it is the Laplace transform f̂(s) of the kernel f(t), rather than the kernel
itself, which is known a priori and can be evaluated easily. So we can apply
the fast convolution algorithm given in [9], which uses evaluations only of f̂(s)
and g(τ), and only requires O(Nt logNt) to compute the convolution on the
grid t = 0,∆t, 2∆t, ..., T = Nt∆t with stepsize ∆t.

We remind that, in order to apply the convolution algorithm, we have to choose
some Talbot contours (see [8] [9] [13] [14]) such that the singularities of f̂(s) lie
to the left of the contours. The convolution algorithm, in fact, approximates
the kernel f(t) by sum of exponentials locally on a sequence of fast growing
intervals Il covering [∆t, T ]:

Il =
[
Bl−1∆t,

(
2Bl − 1

)
∆t
]

.

The approximation of f(t) on Il results from the approximation of the contour
integral for the inverse Laplace transform:

f(t) = 1
2πi

∫
Γl

f̂(λ)etλdλ ≈
N∑

j=−N

ω
(l)
j f̂(λ

(l)
j )etλ

(l)
j t ∈ Il (3.14)

obtained applying the trapezoidal rule to a parametrization of this integral,
where the complex Talbot contours Γl are of the form:

(−π, π) −→ Γl ϑ 7−→ σ + µl (ϑ cot(ϑ) + iνϑ) .

We set σ0 = 0, µ0 = 8, µl = µ0/(
(
2Bl − 1

)
∆t), ν0 = 0.6. The parameter µl

depends on l, whereas the parameters ν and σ depend on the singularities of
the kernel and have to be chosen in a way such that those singularities lie to
the left of the contours. The parameters µ0 and ν0 are obtained by minimizing
the error in the approximation of the inverse Laplace transform (3.14) (see
[8] [9] for details). In our case, if we consider α = 1/2, we observe that ρi(s)
and γ(s) have no singularities in the complex plane, except than a diramation
point at s = 0. So we can choose the Talbot contours putting σ = σ0 = 0 and
ν = ν0 = 0.6:
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Fig. 1. Talbot contour

4 Stationary method

In numerical tests we will compare the Chebyshev-Richardson WR method
with the stationary acceleration of Picard method (3.2), which has the form:

ŷ(i+1)(s) = f̂(s) +
µΓ(1− α)

s1−α
ŷ(i+1)(s) +

(A− µI)Γ(1− α)

s1−α
ŷ(i)(s). (4.1)

where the parameter µ must be chosen in order to accelerate the convergence.

Back in the time domain the iteration (4.1) becomes:

y(i+1)(t) = [A− µI]
∫ t

0
f1(t− τ)y(i)(τ)dτ +

∫ t

0
f2(t− τ)f(τ)dτ (4.2)

where the functions f1 and f2 have Laplace transforms given by: f̂1(s) =

Γ(1− α)/
(
s(1−α) − µΓ(1− α)

)
, f̂2(s) = s(1−α)/

(
s(1−α) − µΓ(1− α)

)
.

We know from [4] that if A has real eigenvalues the best stationary method is
obtained choosing µ as the mean value between the minimum and maximum
eigenvalue of A. When A has complex eigenvalues, in analogy to the real case,
we can choose the parameter µ to be the center δ of the ellipse E in which such
eigenvalues are supposed to be contained. We can also observe that choosing
µ = δ, the non stationary method (3.12) becomes the stationary one (4.1) if
we take ρi(s) = ρ1(s) = 1 ∀ν > 0.

Theorem 4.1 Let E be an ellipse of the form (2.4) containing all the eigen-
values of A.

If a > b the stationary method (4.1) with parameter µ = δ is convergent ∀ δ.

If a < b and δ < 1 − b the stationary method (4.1) with parameter µ = δ is
convergent.

Proof. Let λj, j = 1, ..., d be the eigenvalues of A. From (4.6) in ([12], p.139)

we obtain that the stationary method (4.1) is convergent with parameter µ = δ
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if and only if

δ <
1− |λj|2

2− 2Re(λj)
∀j = 1, ..., d. (4.3)

Let us consider the real function of two real variables:

f(x, y) = 1−x2−y2

2−2x
(x, y) ∈ E.

If δ satisfies the relation:

δ < min
(x,y)∈F

f(x, y) =: m (4.4)

in particular the relation (4.3) will be satisfied (because λj ∈ E ∀j), and
the stationary method (4.1) will be convergent. The function f(x, y) has no
critical points in the interior of the ellipse E, and so takes its minimum on the
boundary ∂E. Let us consider a parametrization of ∂E given by: x(θ) = δ + a cos(θ)

y(θ) = b sin(θ)
θ ∈ [0, 2π] .

We have that m = min
θ∈[0,2π]

f(x(θ), y(θ)). The derivative of the real function
f(θ) = f(x(θ), y(θ)) is given by:

f ′(θ) = {− sin(θ)
{
a(a2 − b2) cos2(θ) + 2(a2 − b2)(δ − 1) cos(θ)+

+a
[
(δ − 1)2 − b2

]}
/
{
2[δ − 1 + a cos(θ)]2

}
,

and a further easy computation shows that:

- If a > b, the relation (4.4) is an immediate consequence of (2.5).
- If a < b, the relation (4.4) is verified, under he hypothesis (2.5), if and only

if δ < 1− b.

5 Numerical results

In this section we want to show the results on the rate of convergence obtained
by numerically solving the problem (1.5) using Chebyshev-Richardson WR
method (3.7). Moreover, to compare the numerical results with theoretical
expectations we have evaluated the rate of convergence RE,∞ of Chebyshev–
Richardson iterative method. Using the definition (see [7]), if a and b are the
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semiaxes of the ellipse E containing the eigenvalues of A, c its focal length,
and δ its center, we have

RE,∞ = − log

 a+ b

1− δ +
√
(1− δ)2 − c2

 , (5.1)

The Richardson method (2.1) described in [4] represents an improvement with
respect the stationary method (4.2), with a limitation of its applicability only
in cases when c is real (i.e. b < a). The Chebyshev-Richardson method (3.7)
leads, in cases when b < a, to the same improvement of Richardson method
(2.1) with respect the stationary one (4.2) in terms of number of iterations, but
with a considerably reduced computational effort, overcoming the problem of
the choice a priori of the number of iterations. In fact, if we underestimate the
degree ν of the Chebyshev polynomial, then the Richardson method (2.1) will
not satisfy the required tolerance in ν iterations, and so we have to reintegrate
the problem with a larger ν. If we overestimate the degree ν, we need as much
more iterations as ν is larger than the right degree for the required tolerance
thus leading to superflous iterations.

Moreover, the Chebyshev-Richardson method (3.7) mantains a good improve-
ment also in the case when Richardson method (2.1) is not applicable (i.e.
b > a). This is shown in tables below, where we report the direct comparison
between the Chebyshev-Richardson method (3.7) and the stationary one (4.2).

The numerical experiments differ from each other for the position of the eigen-
values of A in the open left half complex plane. The matrix A has been con-
structed by forcing it to have the chosen eigenvalues, and the minimal ellipse
has been found using the algorithm given in [10] [11]. The numerous numer-
ical experiments show, according to (5.1), that the rate of convergence (and
thus the number of iterations), does not depend neither on the dimension d
of the matrix A (we tested for d from 100 to 1000), nor on the entries of the
matrix A, but only on the values of the center δ of the minimal ellipse and its
semi-axes a and b.

In the tables we report, for each value of the parameters δ, a and b, the number
of iterations of each method for a required tolerance of 10−6 and the percentage
of improvement of the Chebyshev-Richardson WR method with respect the
stationary one.

In table 1 we consider the case 0 ≤ a + b ≤ 1, with center near the origin
(δ = −0.6, δ = −10.1) and far from the origin (δ = −100) and in table 2 the
case 10 ≤ a + b ≤ 20, with center near the origin (δ = −10.1) and far from
the origin (δ = −100). In both the tables, for every single method, there are
several columns, each corresponding to a different value of δ. In table 3 we
show an example of what happens when we start from a circle (a = b), and
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we increase b until it exceeds the limit value 1− δ (see theorem (4.1)).

Table 1: 0 ≤ a+ b ≤ 1, δ = −0.6, −10.1, −100.

a b Chebyshev −Richardson Stationary improvement(%)

0.5 0 10 6 4 16 8 5 37, 5 25 20

0.5 0.2 12 6 4 16 8 5 25 25 20

0.5 0.5 15 7 4 16 8 5 6, 25 12, 5 20

0.2 0.5 11 6 4 15 7 5 26, 66 14, 2 20

0 0.5 9 6 4 15 7 5 40 14, 2 20

We can note we have the best results in terms of improvement with respect
the stationary method when the ellipse is flattened (a >> b or b >> a). We
have little improvement when the ellipse become a circle (a = b). Moreover
the Chebyshev-Richardson method is faster when δ is large and a+ b is small,
while the rate of convergence of the stationary method in this case does not
change with a + b. When δ is sufficiently large (δ = −10.1, δ = −100), we

have few improvements because the number of iterations is already small for
the stationary method.

In table 2, as in table 1, the improvements are very good when the ellipse is
flattened (a = 10, b = 0 and a = 0, b = 10) and when δ is smaller, they are
negligible when the ellipse becomes a circle (a = b). Chebyshev–Richardson
method is again faster when δ is larger and a+ b is smaller, while the rate of
convergence of the stationary method little depends on a+ b: comparing table
2 with table 1 it seems to depend on the maximum between a and b (i.e. it is
faster when this maximum is smaller).

In table 3, as before when a = b, we have very little improvement, but when b
tends to its limit for the convergence of the stationary method, as this value is
very far with respect to the fixed a, we have a very flattened ellipse and so the
improvements is very very good. Naturally, this depends on the deteriorated
performances of the stationary method: the iterations for the Chebyshev–
Richardson grow up only twice, from 12 to 29, for the stationary ten times
from 14 to 1454! The last row of this table reports the case in which b becomes
bigger than 1− δ: the stationary method looses its convergence.
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Table 2: 10 ≤ a+ b ≤ 20, δ = −10.1,−100.

a b Chebyshev −Richardson Stationary improvement(%)

10 0 44 8 150 11 70, 66 27, 27

10 4 79 8 150 11 47, 33 27, 27

10 8 124 9 150 11 17, 33 18, 18

10 10 150 10 151 11 0, 66 9, 09

8 10 75 9 144 11 47, 91 18, 18

4 10 35 8 144 11 75, 69 27, 27

0 10 21 8 144 11 85, 41 27, 27

Table 3: δ = −100, b > a = 10, 1− δ = 101

a b Chebyshev −Richardson Stationary improvement(%)

10 10 10 11 9, 09

10 20 12 14 14, 28

10 50 18 32 43, 75

10 100 29 1454 98

10 105 30 −

6 Concluding remarks and future work

We have constructed an efficient and fast fully parallel WR method for Volterra
integral equations of Abel type, which we called the Chebyshev-Richardson
method, characterized by an efficient computation of each waveform (through
a fast convolution algorithm) and by the fast convergence of the sequence to
the solution. The numerical experiments lead to the following remarks:

• The method is faster when a + b is small and when the ellipse is far from
the origin (δ is large), while the improvement with respect the stationary
method is bigger when a >> b or b >> a, and when the ellipse is near to
the origin.

• If we fix a + b we have a faster convergence when b > a. In fact in this
case c is purely immaginary and the denominator in (5.1) becomes bigger
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(compare for example the rows 2 and 6 of table 2).
• When we increase b until the limit value 1 − δ, the rate of convergence

decreases, according to (5.1), while there is a rise in the improvement with
respect the stationary method (table 3).

• For the values of b > 1 − δ the Chebyshev-Richardson method converges
and has good results, while the stationary one looses its convergence (last
row of table 3).

All these results are in perfect agreement to what we expected from the
expression (5.1) for the rate of convergence and from the theorem (4.1).

Actually, we are working to apply the Chebyshev-Richardson method to
the more general case of VIEs (1.1) with linear convolution kernels and to
VIEs with regular kernels.
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