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(�)-Linalool inhibits in vitro NO formation: Probable involvement in the

antinociceptive activity of this monoterpene compound
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Abstract

Recent studies performed in our laboratory have shown that (�)-linalool, the natural occurring enantiomer in essential oils, possesses anti-

inflammatory, antihyperalgesic and antinociceptive effects in different animal models. The antinociceptive and antihyperalgesic effect of (�)-

linalool has been ascribed to the stimulation of the cholinergic, opioidergic and dopaminergic systems, to its local anaesthetic activity and to the

blockade of N-Methyl-d-aspartate receptors (NMDA). Since nitric oxide (NO) and prostaglandin E2 (PGE2) play an important role in oedema

formation and hyperalgesia and nociception development, to investigate the mechanism of these actions of the (�)-linalool, we examined the

effects of this compound on lipopolysaccharide (LPS)-induced responses in macrophage cell line J774.A1. Exposure of LPS-stimulated cells to

(�)-linalool significantly inhibited nitrite accumulation in the culture medium without inhibiting the LPS-stimulated increase of inducible nitric

oxide synthase (iNOS) expression, suggesting that the inhibitory activity of (�)-linalool is mainly due to the iNOS enzyme activity. In contrast,

exposure of LPS-stimulated cells to (�)-linalool failed, if not at the highest concentration, both in inhibiting PGE2 release and in inhibiting

increase of inducible cyclooxygenase-2 (COX2) expression in the culture medium. Collectively, these results indicate that the reduction of NO

production/release is responsible, at least partially, for the molecular mechanisms of (�)-linalool antinociceptive effect, probably through

mechanisms where cholinergic and glutamatergic systems are involved.
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Introduction

(�)-Linalool is the natural occurring enantiomer of the

monoterpene compound commonly found as a major volatile

component of the essential oils in several aromatic plant

species. It has been shown that (�)-linalool possess anti-

inflammatory and antinociceptive activity in several experi-

mental models. In fact, (�)-linalool administration in rats

inhibits carrageenan-induced oedema (Peana et al., 2002) and

reduces pain responses elicited by different stimulus, i.e., acetic

acid-induced writhing (Peana et al., 2003), hot plate, formalin

injection (Peana et al., 2004a), hyperalgesia induced by

carrageenan, l-glutamate and prostaglandin E2 (PGE2) (Peana

et al., 2004b). Antinociceptive effects of (�)-linalool have been
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related to the positive interference with muscarinic, opioid and

dopaminergic transmission, since it was reduced by pre-

treatment with the unselective muscarinic receptor antagonist

atropine, the opioid receptor antagonist naloxone or the

dopamine D2 receptor antagonist sulpiride (Peana et al.,

2003, 2004a) and negative modulation of glutamate trans-

mission (Elisabetsky et al., 1999; Silva Brum et al., 2001a,b).

Furthermore, the antinociceptive effect of (�)-linalool has

complicated pathway; indeed, it cannot be excluded an

involvement of ATP-sensitive K+ channels, since glibencla-

mide, an inhibitor of these channels, has been shown to abolish

the antinociceptive effect of (�)-linalool (Peana et al., 2004a).

Moreover, this compound possesses local anaesthetic activity

(Ghelardini et al., 1999) and antioxidant properties (Celik and

Ozkaya, 2002).

The intraplantar injection of carrageenan and formalin cause

the production and release of nitric oxide (NO) at the injured

side (Omote et al., 2001). In recent years, considerable
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evidence has accumulated suggesting a role for NO as a

mediator of inflammation (Lyons, 1995). NO increases the

synthesis/release of pro-inflammatory mediators such as

cytokines and reactive oxygen species (Marcinkiewicz et al.,

1995) and prostanoids (Sautebin et al., 1995), resulting in

promotion of inflammatory reaction. In this way, peripherally

released NO contributes to the development of oedema and

hyperalgesia in tissue injury and inflammation. In the

inflammatory process we can observe the expression of several

inducible enzymes that contribute to the release of pro-

inflammatory mediators like NO and PGE2 by the inducible

nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)

respectively (Dudhgaonkar et al., 2004). COX-2 is the

inducible form of the enzyme, the synthesis of which is

triggered by those cytokines that also induce iNOS (Clancy and

Abramson, 1995). The two pathways interact closely and NO

can stimulate COX-2 activity by combining with its heme

component (Dudhgaonkar et al., 2004). Carrageenan and

formalin injection induce expression of iNOS and COX-2.

Since NO and/or PGE2 are related to the transmission of

nociceptive stimulus in inflammatory site, in this work we

investigate the effect of (�)-linalool on the formation and

release of NO and PGE2 in macrophages cell line J774.A1

stimulated by lipopolysaccharide (LPS), a cellular model of

inflammation.

Materials and methods

Pharmacological methods

Reagents

Escherichia coli lipopolysaccharide (LPS) was obtained

from Fluka (Milan, Italy). 3-(4,5-Dimethyl-thiazolyl-2yl) 2,5

diphenyl tetrazolium bromide (MTT), PBS, NaCl, KCl,

Na2HPO4, K2HPO4, Tris–HCl, sodium orthovanadate, phenyl-

methylsulfonylfluoride, bovine serum albumin (BSA) and 6-

mercaptopurine (6-MP) were obtained from Sigma Chemicals

Co. (Milan, Italy). Kodak X-Omat film, ECL detection system,

Hybond polyvinyldene difluoride membrane were from Milli-

pore (USA). Leupeptin, trypsin inhibitor, Nonidet P40, Biorad

reactive, Laemmli’s sample buffer, polyacrylamide, non-fat

milk, Tween 20, horseradish peroxidase conjugated goat anti-

mouse, mouse monoclonal antibody for iNOS and COX-2 was

obtained from Transduction Laboratories (Lexington, KY, UK).

The peroxidase secondary antibody was purchased from

Jackson (West Grove, PA). Dulbecco’s modified Eagle’s

medium (DMEM), penicillin/streptomycin, HEPES, glutamine,

foetal calf serum (FCS) and horse serum were from Hy Clone

(Euroclone-Cellbio, Pero, Milan, Italy).

Cell treatment

Monolayers of J774.A1 cells were routinely harvested by

gentle scraping with a teflon cell scraper, diluted in fresh

medium and cultured to confluency at 37 -C. Prior to each

experiment cells were harvested, plated to a seeding density of

1.5�106 in P60 well plates. After cell adhesion, (�)-linalool

(Sigma) (0.0001–0.01–1 mM) was added to the culture
medium 1 h before and always simultaneously to LPS

(6�103 u/ml/24 h).

Analysis of nitrite

Nitrite accumulation, an indicator of NO release, was

measured in the culture medium by Griess reaction (Green et

al., 1982) 24 h after LPS challenge. Briefly, 100 Al of cell

culture medium were mixed with 100 Al of Griess reagent

[equal volumes of 1% (w/v) sulfanilamide in 5% (v/v)

phosphoric acid 0.1% (w/v) naphthylethylenediamine-HCl]

and incubated at room temperature for 10 min, and then the

absorbance at 550 nm was measured in a Titertek microplate

reader (DASIT). Fresh culture medium was used as blank in all

the experiments. The amount of nitrite in the samples was

calculated from a sodium nitrite standard curve freshly

prepared in culture medium. Results are expressed as percent-

age of inhibition calculated versus cells treated only with LPS.

Analysis of PGE2 production

PGE2 levels in macrophages’ medium were quantified by

EIA kit according to the manufacturer’s instructions.

Western blot analysis for iNOS and COX-2 expression

After 24 h of incubation with LPS medium was removed

and cells were washed twice with ice cold PBS and lysed in

Tris–HCl (20 mM pH 7.5) containing 10 mM NaF, 150 mM

NaCl, 1% Nonidet P40, 1 mM phenylmethylsulfonylfluoride, 1

mM sodium orthovanadate, leupeptin (10 Ag/ml) and trypsin

inhibitor (10 Ag/ml). After 1 h, cell lysates were obtained by

centrifugation at 100,000�g for 15 min at 4 -C. Protein

concentrations were estimated by the Bio-Rad protein assay

using bovine serum albumin as standard. Equal amounts of

protein (70 Ag) of cell lysates were dissolved in Laemmli’s

sample buffer, boiled for 5 min, and subjected to sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (8% poly-

acrylamide). Western blot was performed by transferring

protein from a slab gel to a sheet of polyvinyldene difluoride

membrane at 5 mA/min for 40 min at room temperature. Filters

were blocked with PBS, 5% (w/v) non-fat dry milk for 40 min

at room temperature and then skinned overnight at 4 -C with

the monoclonal antibody for iNOS or COX-2, diluted 1:10,000

in PBS, 5% w/v non-fat dry milk and 1% tween-20. Blots were

then skinned and incubated, after four washes in PBS

containing 5% w/v non-fat dry milk and 1% tween-20, with

horseradish peroxidase conjugated goat anti-mouse IgG

(1:5000) for 1 h at room temperature. Immunoreactive bands

were visualized using ECL detection system according to the

manufacturer’s instructions and exposed to Kodak X-Omat

film. The protein bands of iNOS or COX-2 on X Omat films

were quantified by scanning densitometry (Imaging Densitom-

eter GS-700 BIO-RAD, USA).

Statistics

All data were expressed as the meanTS.E.M. from each

group and were analysed by analysis of variance Student’s t-

test (ANOVA t-test).
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Fig. 2. Effect of (�)-linalool added to LPS-stimulated macrophages J774.A1 on

iNOS expression. Data represent mean valuesTS.E.M.
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Results

Effect of (�)-linalool on NO release and iNOS expression

Stimulation of macrophages J774.A1 with LPS (10 Ag/ml)

induced the expression of iNOS measurable as protein expres-

sion or as NO release. (�)-Linalool added to LPS-stimulated

macrophages J774.A1 at concentrations of 10�7, 10�5 or 10�3

M, significantly reduced NO release evaluated as nitrites with

respect to the control LPS group (Fig. 1). This inhibition was not

very high but it was however concentration related.

The Western blotting analysis for the iNOS expression did

not reveal any change in the enzyme formation induced by (�)-

linalool treatment to tested concentrations (Fig. 2).

Effect of (�)-linalool on PGE2 release and COX-2 expression

The LPS (10 Ag/ml) stimulation on macrophages J774.A1

induced a significant (P <0.0001) increase in the PGE2

formation. (�)-Linalool treatment (10�7, 10�5 or 10�3 M)

on macrophages J774.A1 1 h previously and simultaneously to

LPS stimulation revealed a significant (P <0.005) reduction of

PGE2 formation only with the highest used dose (10�3 M)

compared to control LPS group (Fig. 3).

Similar results were obtained with Western blot analysis for

COX-2 expression. Indeed only the highest concentration

(10�3 M) significantly (P <0.05) inhibited the expression of

COX-2 (Fig. 4).

Discussion

Recent studies have suggested that NO peripherally

produced by different NOS isoforms contributes to oedema

formation and development of nociception and hyperalgesia

(Omote et al., 2001; Rivot et al., 2002). Results of present

study show that the antinociceptive activity of (�)-linalool

could be related to the inhibition of NO formation/release, but

not to the interference in the PGs pathway. Exposure of LPS-
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Fig. 1. Effect of (�)-linalool added to LPS-stimulated macrophages J774.A1 on

NO release evaluated as nitrites (NO2
�) in incubation medium. Data represent

mean valuesTS.E.M. Significant differences from LPS control group are

indicated by asterisks (**P <0.01; ***P <0.005; ANOVA t-test).
stimulated J774.A1 macrophages to (�)-linalool, significantly

and in concentration-dependent manner, inhibited nitrite

accumulation in the culture medium. This effect is due to the

inhibitory interaction of (�)-linalool on the iNOS enzyme;

indeed Western blotting analysis revealed no reduction of

protein expression of this enzyme. In contrast, exposure of

LPS-stimulated J774.A1 macrophages to (�)-linalool (10�7 or

10�5 M) did not modify the PGE2 formation and COX2

expression. The reduction of PGE2 formation obtained with

higher concentration (10�3 M) of this monoterpene could be

addressed to a reduction of COX-2 expression operated by (�)-

linalool as revealed by Western blotting analyses. This effect

could be due to an aspecific action on transduction factors.

These in vitro effects of (�)-linalool might contribute in the

anti-inflammatory, antinociceptive and antihyperalgesic activ-

ity of (�)-linalool. In fact, our previous in vivo studies showed

that systemic administration of (�)-linalool attenuated the
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Fig. 3. Effect of (�)-linalool added to LPS-stimulated macrophages J774.A1 on

PGE2 release in the incubation medium. Data represent mean valuesTS.E.M.

Significant differences from LPS control group are indicated by asterisks

(ANOVA t-test).
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Fig. 4. Effect of (�)-linalool added to macrophages J774.A1 1 h before and

simultaneously to LPS on COX2 expression. Data represent mean val-

uesTS.E.M. Significant differences from LPS control group are indicated by

asterisk (ANOVA t-test).
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development of carrageenan-induced oedema and hyperalgesia

in rat (Peana et al., 2002, 2004b) as well as antagonized

different pain responses in different animal models (Peana et

al., 2003, 2004a). (�)-Linalool did not interfere on PGE2

release and on COX2 expression, thus the efficacy in reducing

oedema induced by carrageenan or by formalin as well as the

hyperalgesia induced by carrageenan, l-glutamate or by

prostaglandin E2 (Peana et al., 2004b) might be related not

only to the inhibitory effect of this monoterpene on nitrite

accumulation but also to its inhibitory effect on different

transmission systems such as glutamate, acetylcholine, K+

channels, dopamine and opioids (Peana et al., 2004a,b). (+/�)-

Linalool is able to block NMDA receptors activity (Silva Brum

et al., 2001a,b); it is generally accepted that NMDA trans-

mission is involved in the nociceptive responses (Haley et al.,

1990; Coderre and Van Empel, 1994; Chizh et al., 2001) and

that the activation of peripheral NMDA receptors contributes to

the development of thermal hyperalgesia (Eide et al., 1995;

Jackson et al., 1995; Carlton and Coggeshall, 1999). Because

activation of the NO cascade is known to occur secondary to

NMDA receptor activation, evidence have been accumulated

implicating a role for spinal NO in models of thermal

hyperalgesia (Coutinho et al., 2001; Kawabata et al., 2002).

Likewise with our observation, ketamine, an NMDA receptor

antagonist, has been reported to significantly reverse the

formalin and carrageenan-induced increase of NO release

(Rivot et al., 2002).

NO is implicated also, in cholinergic and opioid analgesia,

in cholinergic function and muscarinic M2 receptors as well as

in brain levels of glutamate and dopamine (Smith and

Ogonowski, 2003).

Previous study demonstrated that systemic administration of

NO synthase inhibitors increased the antinociception induced
by the administration of the muscarinic receptor agonist

oxotremorine (Pavone et al., 1997) indicating an involvement

of l-arginine–NO pathway in antinociceptive effects of

cholinergic stimulation (Machelska et al., 1999). Thus the

muscarinic M2 properties of (�)-linalool-induced antinocicep-

tive effect (Peana et al., 2004a) might also concur in

determining its effect on iNOS enzyme activity. The increase

of potassium conductance in cholinomimetic spinal dorsal horn

neurons results in a reduced activity of nociceptive neurons and

in a diminished neurotransmitter release (Iwamoto and Marion,

1993, 1994). Some evidence indicated localization of these

muscarinic receptors in nerve terminals of the primary afferent

where glutamate is one of the main neurotransmitters involved

in nociceptive transmission (Machelska et al., 1999).

Collectively, these results indicate that the reduction of NO

production/release is responsible, at least partially, for the

molecular mechanisms of (�)-linalool antinociceptive effect,

probably through mechanisms where cholinergic and gluta-

matergic systems are involved.
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