
328

J.S. Marques et al. (Eds.): IbPRIA 2005, LNCS 3523, pp. 328–335, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Dynamic Stroke Segmentation Technique
for Sketched Symbol Recognition

Vincenzo Deufemia and Michele Risi

Dipartimento di Matematica e Informatica
Università di Salerno,

84084 Fisciano (SA), Italy
{deufemia,mrisi}@unisa.it

Abstract. In this paper, we address the problem of ink parsing, which tries to
identify distinct symbols from a stream of pen strokes. An important task of this
process is the segmentation of the users’ pen strokes into salient fragments
based on geometric features. This process allows users to create a sketch sym-
bol varying the number of pen strokes, obtaining a more natural drawing envi-
ronment. The proposed sketch recognition technique is an extension of LR pars-
ing techniques, and includes ink segmentation and context disambiguation.
During the parsing process, the strokes are incrementally segmented by using a
dynamic programming algorithm. The segmentation process is based on tem-
plates specified in the productions of the grammar specification from which the
parser is automatically constructed.

1 Introduction

Sketches greatly simplify conceptual design activities through abstract models that let
designers express their creativeness, and focus on critical issues rather than on intri-
cate details [9]. Due to their minimalist nature, i.e., representing only what is neces-
sary, they enhance collaboration and communication efficiency.

Underlying a sketch-based user interface several processes can be activated. These
include the processing of pen strokes, recognition of symbols, stroke beautification,
reasoning about shapes, and high-level interpretation. The sketch understanding tasks
are not trivial because recognizing the meaningful patterns implied by a user’s pen
stroke must be flexible enough to allow some tolerance in sketch recognition, but
sufficiently constrained not to accept incorrect patterns. Furthermore, the context in
which a particular stroke or group of strokes appears considerably influences the
interpretation of that stroke. From a visual language point of view, this means that the
interpretation of a graphical object is strongly influenced by the objects surrounding
it. Moreover, semantically different objects might be graphically represented by iden-
tical or apparently similar symbols.

Another important issue in sketch understanding concerns ink parsing, which re-
fers to the task of grouping and segmenting the user’s strokes into clusters of intended
symbols. This allows users to create a sketch symbol varying the number of pen
strokes, obtaining a more natural drawing environment.

A Dynamic Stroke Segmentation Technique for Sketched Symbol Recognition 329

Several systems for sketch recognition constrain users to draw an entire symbol as
single stroke [8,9], or to draw only strokes representing single primitive shapes such
as lines, arcs, or curves [7,14]. In other systems prior to parsing, the input sketch is
segmented into line and arc segments allowing symbols to be drawn with multiple
pen strokes, and a single pen stroke to contain multiple symbols [2,11]. Different
approaches to segmentation have been proposed, some systems segment the strokes
by using their curvature and speed information [2,11], Saund uses both local features
(such as intersections and curvatures) and global features (such as closed paths) to
locate breakpoints of a stroke [12], whereas Yu applied the mean shift procedure to
approximate strokes [13]. Hse et al. [6] have presented an optimal segmentation ap-
proach based on template that does not suffer of over- and under-segmentation of
strokes. In particular, given a sketched symbol S and a template T, the algorithm finds
a set of breakpoints in S such that the fitting performed according to T yields the
minimum fit error. The templates T can be of two types, one specifies a sequence of
lines and ellipses and the other specifies the number of lines and ellipses.

Segmentation is a basic problem that has many applications for digital ink capture
and manipulation, as well as higher-level symbolic and structural analyses. As an
example, the structural information generated by the segmentation process can be
useful for the beautification of the symbols [7], for developing a user interface with
which to interact with sketched ink.

In this paper, we present a sketch recognition technique that takes into account
both the problem of context based ambiguity resolution and ink segmentation. The
sketch parser relies on an extension of LR parsing techniques and is automatically
generated from a grammar specification. The proposed segmentation technique dy-
namically segments the strokes during the parsing process by using an extended ver-
sion of the optimal pen strokes segmentation technique proposed by Hse et al. [6].
The template given in input to the algorithm is a sequence of primitive shapes itera-
tively extracted from grammar productions. Thus, the parser’s context drives the
segmentation process of the strokes.

The paper is organized as follows. We first discuss the formalism for describing
sketch languages, and the parsing approach underlying the proposed framework.
Successively, we present a dynamic segmentation technique that integrated into the
parsing algorithm solves the problem of multi-stroke recognition. In section 4 we
describe an example of application of the parsing algorithm on hand-drawn circuit
diagrams. Finally, the conclusion and further research are discussed in Section 5.

2 A Grammar-Based Sketch Parsing Approach

Because we use an extension of LR parsing technique [1], we describe sketch lan-
guages using the formalism of eXtended Positional Grammars (XPG, for short) [4].
XPGs represent a direct extension of context-free string grammars, where more gen-
eral relations other than concatenation are allowed. A sentence is conceived as a set
of symbols with attributes. Such attributes are also determined by the relationships
holding among the symbols. Thus, a sentence is specified by combining symbols with
relations. In particular, the productions have the following format:

330 Vincenzo Deufemia and Michele Risi

A → x1 R1 x2 R2 … xm-1 Rm-1 xm

where each Rj define a sequence of relation between xj+1 and xj-i, with 1≤i<j, by means
of a threshold tj.

An XPG for modeling a sketch language L can be logically partitioned into two
XPG grammars. The first, named ink grammar, defines the symbols of the language
L as geometric compositions of primitive objects, i.e., patterns that cannot be recog-
nized as a combination of other objects and must be recognized directly, such as line
segments and elliptical arcs. For example, a production specifying an Arrow symbol
is shown in the bottom of Figure 1 together with a sketch matching such production.
The second grammar, named language grammar, specifies the sentences of the lan-
guage as compositions of shapes defined in the ink grammar through spatial relations.
The production at the top of Figure 1 defines a SubCircuit object as the composition
of three language symbols: Gain, Arrow and Sum, and shows a sketch matching the
production.

Fig. 1. The two levels of XPG grammar specification.

The recognition of line segments is performed with the least square fitting [5],
whereas the elliptical arc fitting is performed with the technique proposed in [10].

The definition of XPGs has been strongly influenced by the need of having an ef-
ficient parser able to process the generated languages. Due to their analogy with
string grammars, it has been natural the use of LR parsing techniques [4]. The result
was a parser that scans the input in a non-sequential way, driven by the relations used
in the grammar. In order to guide the scanning of the input symbols, a new column
next is added to the usual action and goto parts of an LR parsing table. For each state
of the parser, this column contains an entry with information to access the next sym-
bol to be parsed. This information is derived by the relations of the grammar produc-
tions, during the parser generation. Thus, during the parsing process, a sketch parser
generates a sequence of calls to a function Fetch_Stroke that linearizes the input at
run-time [3].

Figure 2 shows the structure of the recognition process. During the parsing of a
sketch diagram, a rank value is computed by combining the accuracy of the strokes
forming the sketch and of their spatial relations. Thus, the output of the parser is a
probabilistic parse forest where each tree in corresponds to an interpretation of the

Ink

grammar

Language
grammar

Arrow → LINE1 <joint(t1),rotate(45,t2)> LINE2
 <joint(t3,LINE1),rotate(45,t4)> LINE3

SubCircuit → Gain joint(t1) Arrow joint (t2) Sum

A Dynamic Stroke Segmentation Technique for Sketched Symbol Recognition 331

sketch sentence. Each node of a tree has associated a probability representing the rank
of the stroke interpretation associated to the leaves of its subtree. Such trees can be
analyzed to obtain a rank of the interpretations by considering the probability associ-
ated to the roots of the trees and the number of language symbols recognized, simi-
larly to what done for natural languages.

Fig. 2. The sketch parsing approach.

3 A Dynamic Ink Segmentation Technique

The previous sketch parsing approach does not allow pen strokes to represent any
number of shape primitives connected together, since the function Fetch_Stroke finds
in the input sketch a single stroke that matches the primitive shape specified in a
grammar production.

This problem can be overcome by segmenting the strokes when the parser cannot
proceed in the recognition of the sketch. Thus, the sequences of primitive shapes
specified in the grammar productions, together with their geometric relationships,
guides the segmentation algorithm to identify the points for dividing the strokes into
different primitives.

More formally, given a stroke S formed by a set of m data points, a template p
formed by a sequence of primitive shapes, and an array r of relations between such
shapes, the segmentation algorithm finds a subset of the m points that matches with
the pattern p and the array r yielding the minimum fit error.

This “fitting to a template” problem can be optimally solved by using the dynamic
programming approach proposed by Hse et al. [6], and considering both the similar-
ity between segments and patterns, and the quality of the relations between the seg-
ments. Thus, the output of the algorithm is the best segmentation according to the
best fit shape error and the best accuracy of the shape relations.

Let d(m,k,p,r) be the minimum error segmentation, where m is the number of data
points describing the stroke S, k is the number of breakpoints to be determined by the
segmentation process (the start value is k= p.len-1), p is the template of primitive

332 Vincenzo Deufemia and Michele Risi

shapes, and r is the array of relations specified in the XPG productions between the
shapes in p.

The recursive definition for segmentation of S is given in the following.

{ }

>+−
=

=
<<

0 if]).[],.[,,,(])...1[],...1[,1,(min

0 if])1[],1[,,0,(
),,,(

klenrrlenppmiSflenrrlenppkid

krpmSf
rpkmd

mik

f(S,i,m,p[j],r[n]) is the segmentation error function defined as:

).,,(
),,,(

),,,,(
threlprelrelation

pmiSfitting
relpmiSf =

This function is calculated considering the fitting of a segment from i-th point to

m-th point in S using p, and considering the accuracy of the relation rel between the
current matched symbol p and the previous one by means of the threshold rel.th.

When the Fetch_Stroke function fails to find a stroke accurately related with a pre-
viously parsed stoke, the last visited stroke s could contain multiple symbols. Thus,
the segmentation process is activated on s in order to calculate the breakpoint that
divide s into two strokes s1 and s2, and such that they have a good compromise
between their fitting shape error and the accuracy in the relations involving them.
Successively, the parser considers s1 as the last visited stroke, and the Fetch_Stroke
function returns s2 as the next stroke to be parsed. The segmentation process on the
stroke s is iterated until both m>p.len and Fetch_Stroke fails to find a stroke not in s
and accurately related with a previously parsed stoke.

For example, a square can be drawn as a single pen stroke, or as two separate
strokes, or even as three or four strokes (Fig. 3(a)-(d), respectively).

(a) (b) (d) (c)

S

S2

S1
S1

S2

S3

S1

S3

S2 S4

Fig. 3. Segmentation of a square.

The production used to recognize the square is:

Square → LINE
1
 <joint(t1), rotate(90, t2)> LINE

2
 <joint(t1), rotate(90, t2)>

 LINE
3
 <joint(t1), rotate(90, t2), joint(t1, LINE1)> LINE

4

If the square is drawn using four strokes then the production is correctly reduced
without segmentation since the strokes returned by Fetch_Stroke match the relations
in the production.

During the parsing of the square in Figure 3(c), the Fetch_Stroke matches the first
three lines of the production with the strokes S1, S2 and S3, but it fails to find the sym-
bol LINE4. Thus, a segmentation process is activated on the last visited stroke S3. In
particular, the algorithm calculates the value d(m,1,[L,L],[{joint(t1),rotate(90,t2)},
{joint(t1), rotate (90,t2), joint(t1)}]) determining the breakpoint shown as a filled circle

A Dynamic Stroke Segmentation Technique for Sketched Symbol Recognition 333

in Figure 3(c). The parser continues the recognition of the square by matching the
segmented stroke S3 with LINE3 and LINE4. Similarly, the parser recognizes the squares
in Figures 3(a) and 3(b) by segmenting the strokes S and S2 with
d(m,3,[L,L,L,L],[∅,{joint(t1), rotate(90,t2)}, {joint(t1), rotate(90,t2)},{joint(t1), ro-
tate(90,t2), joint(t1)}]) and d(m,2,[L,L,L],[{joint(t1), rotate(90,t2)},{joint(t1),rotate
(90,t2)},{joint(t1), rotate(90,t2), joint(t1)}]), respectively.

It worth noting that the time and space complexity of the segmentation process is
the same of the Hse’s algorithm [6] since when the parser segments a stroke with the
pattern p=[p1,…,pn-1,pn], the segmentation value of the pattern pr=[p1,…,pn-1] has al-
ready been calculated previously.

4 Segmenting Hand-Drawn Electrical Circuits

In this section we show how the proposed dynamic stroke segmentation technique
works during the recognition of hand-drawn circuit diagrams.

The symbols in the circuit domain are given in Figure 4.

Fig. 4. The visual symbols in the circuit language.

In the following we describe some productions of the ink grammar for modeling
the resistor, the wire, the capacitor and the ground symbols. In particular, the resistor
symbol starts and ends with a line, and in the middle it is composed of a sequence of
at least four oblique lines forming a wave.

Resistor → LINE <joint(t1), rotate(225, t2)> Wave <joint(t1), rotate(135, t2)> LINE
Wave → LINE1 <joint(t1), rotate(45, t2)>
 LINE2 <joint(t1), rotate(135, t2), >
 LINE3 <joint(t1), rotate(45, t2), parallel(LINE1, t3)>
 LINE4 <joint(t1), rotate(135, t2), parallel(LINE2, t3)> Multiwave
Multiwave → LINE <joint(t1), rotate(45, t2), parallel(LINE(-1), t3)> Multiwave
Multiwave → LINE

Wire → Wire <intersect(t1)> LINE
Wire → LINE

Capacitor → LINE1 <perpendicular(t1), intersection(t2)> LINE2 <parallel(t3), length(1.0, t4)>
 LINE3 <perpendicular(t1), intersection(t2)> LINE2

Ground → LINE <perpendicular(t1), intersection(t2)> Multiline
MultiLine → LINE <parallel(t3),length(0.7, t4), centered(t5)>
 LINE <parallel(t3),length(0.7, t4), centered(t5)> Subline
Subline → LINE <parallel(t3),length(0.7, t4), centered(t5)> Subline
Subline → LINE

334 Vincenzo Deufemia and Michele Risi

Notice that the LINE symbol may further be refined in order to also consider multi-
stroke segments.

The following productions represent some of the language grammar productions
for the circuit language.

Circuit → SubBlock
SubBlock → SubBlock <joint(t1)> Wire <joint(t1)> Component
SubBlock → SubBlock <joint(t1)> Wire
SubBlock → SubBlock <any> Component
SubBlock → Component
Component → Resistor
 → Capacitor
 → Ground
 → Diode
 → pnpTransistor

 → npnTransistor
 → Energy

Fig. 5 shows an electric circuit and the segmentation of a resistor symbol. In par-
ticular, when the parser starts the recognition of the resistor it looks for a line seg-
ment. Since the resistor symbol has been drawn with two complex strokes, the line
fitting algorithm fails on matching the first stroke with a line. Thus, the parser seg-
ments the stroke identifying a breakpoint that divides the stroke into two lines accord-
ing to the grammar productions. The optimal breakpoint is point 1 and the parser
proceeds the recognition on the remaining part of the segmented stroke. In particular,
driven by the production defining the symbol Wave the parser segments the stroke
into four line segments identifying the breakpoints 2, 3 and 4. Successively, the
parser segments the second stroke forming the resistor by considering the production
defining the symbol Multiwave.

Fig. 5. An electric circuit with a resistor drawn with two strokes and segmented by the pro-
posed algorithm during its parsing.

5 Conclusion

We have presented a sketch parsing approach that includes a context based ink seg-
mentation technique. Indeed, template derived from grammar productions drives the

A Dynamic Stroke Segmentation Technique for Sketched Symbol Recognition 335

segmentation process. The approach is designed to enable natural sketch-based com-
puter interaction since it allows for multiple symbols to be drawn in the same stroke,
and allows individual symbols to be drawn in multiple strokes.

We have integrated the proposed approach in the SketchBench system [3], a tool
supporting the early phases of sketch language modeling, such as shape modeling and
grammar specification, and the generation of the final parser.

We are currently conducting an evaluation test of the segmentation technique.

References

1. Aho, A., Sethi, R., and Ullman, J.: Compilers Principles ,Techniques, and Tools. Addison-
Wesley Series in Computer Science. 1987.

2. Calhoun, C., Stahovich, T.F., Kurtoglu, T. and Kara, L.B.: Recognizing Multi-Stroke Sym-
bols, in AAAI Symposium - Sketch Understanding, (2002), 15–23.

3. Costagliola, G., Deufemia, V., Polese, G., and Risi, M.: A Parsing Technique for Sketch
Recognition Systems, in Proceedings of IEEE Symposium VL/HCC’04, (Rome, September
2004), IEEE Press, 19–26.

4. Costagliola, G. and Polese, G.: Extended Positional Grammars, in Proceedings of IEEE
Symposium VL’00, (Seattle, WA, September 2000), IEEE Press, 103–110.

5. Duda, R.O. and Hart, P.E.: Pattern Classification and Scene Analysis. Wiley Press, New
York, 1973.

6. Hse, H., Shilman, M., and Newton, A.R.: Robust Sketched Symbol Fragmentation using
Templates, in Proceedings of IUI'04 (Madeira, Portugal, January 2004), ACM Press, 156–
160.

7. Igarashi, T., Matsuoka, S., Kawachiya, S. and Tanaka, H.: Interactive beautification: A
technique for rapid geometric design, in Proceedings of UIST’97, 105–114.

8. Kimura, T.D., Apte, A., and Sengupta, S.: A graphic diagram editor for pen computers.
Software Concepts and Tools, 1994, 82–95.

9. Landay, J. and Myers, B.: Sketching interfaces: Toward more human interface design.
IEEE Computer, 34(3), 2001, 56–64.

10. Pilu, M., Fitzgibbon, A. and Fisher, R.: Direct Least-Square Fitting of Ellipses. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21 (5), 1999, 476–480.

11. Sezgin, T.M., Stahovich, T. and Davis, R.: Sketch Based Interfaces: Early Processing for
Sketch Understanding, in Procs of PUI’01, (Orlando, 2001).

12. Saund, E.: Finding Perceptually Closed Paths in Sketches and Drawings. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 25 (4), 2003, 475–491.

13. Yu, B.: Recognition of Freehand Sketches using Mean Shift, in Proceedings of IUI'03,
(Miami FL, 2003), 204–210.

14. Weisman, L.: A foundation for intelligent multimodal drawing and sketching programs,
Master’s thesis, MIT, 1999.

