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Abstract. A one-dimensional model is presented to 
predict debris-flow runouts. The model is based on shallow 
water type assumptions. The fluid is assumed to be 
homogeneous and the original bed of the flow domain to be 
unerodible. The fluid is characterized by a rheology of 
Bingham type. 

A numerical tool able to cope with the nature of debris 
flows has been worked out. It represents an extension of a 
second order accurate and conservative method of 
Godunov type. Special care has been devoted to the 
influence of the source terms and of the geometrical 
representation of the natural cross sections, which play a 
fundamental role. 

The application concerns a monitored event in the 
Dolomites in Italy, where field analyses allowed a 
characterization of the behavior of solid-liquid mixture as a 
yield stress material. The comparison between numerical 
simulations and field observations highlights the 
impossibility of representing all phases of the flow with 
constant values of the rheological parameters. Nevertheless 
the results show that it is possible to separately represent 
the phase of the flow in the upstream reach and the phase of 
the deposition in the alluvial fan, with a good agreement 
with field observations. 
0 2000 Elsevier Science Ltd. All rights reserved. 

1 Introduction 

The approach to numerical modeling of debris flows must 
take into account the nature of the flowing material, 
constituted of a mixture of water and sediments, and the 
nature of the flow itself, which is unsteady and includes 
steep fronts. 

A liquid phase and a solid phase form the flowing 
material. The liquid phase is made up of water and of the 
finer grain fractions, while the solid phase is made up by 
the coarser grain fractions. In debris flow modeling two 
different approaches are possible: two phases (or multi- 
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phases) model, and single-phase model. 
A two-phase model treats separately the solids and the 

fluid. When the hypothesis that there is no relative velocity 
between the two phases applies, the resulting integrated 
model presents only one momentum equation, derived for a 
fluid with the bulk density. The equations, which describe 
the flow, are completed by a mass conservation equation 
for each of the two phases. This scheme permits a non- 
homogeneous treatment of the mixture. It is able to 
simulate the entrainment and deposition processes through 
the movable bottom line, and, therefore, is suitable to face 
problems where the morphological evolution is to be 
determined. Zanrt and Needham (1996), Hungr (1995), Lai 
(199 l), Morris and Williams (1996) inspired their works 
from this model. 

Situations with no significant morphological changes 
often take place. In these cases it is possible to consider the 
mixture as a homogeneous and single phase. The resulting 
integrated models present only the volume conservation 
equation and the momentum equation, derived for a fluid 
with the bulk mass density. Only a closure relation relevant 
to the rigid-bottom shear stress is necessary, whereas the 
non-homogeneous-fluid model requires the local transport 
capacity relationship as well. The channel morphology is 
assigned. Despite the bed is unerodible, the simulation of 
stopping processes is still possible when the constitutive 
equation for the bottom shear stress includes a yield stress, 
as for Herschel-Bulkley fluids, Bingham fluids, and so on. 
In deed, there are many field and experimental observations 
of flow behaviors of this kind, as reported in Coussot 
(1994) and Whipple (1997), among others. 

In dealing with simulations of flows an important issue 
concerns the choice of the appropriate dimensional frame in 
which they may be represented. A three-dimensional 
model, given by Navier Stokes equation type, is applicable 
only to local situations because of computing time and 
hardware resources required. 

Usually debris flows can be considered as shallow water 
flows, which means that the flow depth is small compared 
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to the length of the channel. Consequently, following the 
De Saint-Venant approach, local variables can be integrated 
along the vertical direction obtaining a two-dimensional 
model, or over the cross-section, obtaining a one- 
dimensional model. The two-dimensional models are 
suitable to model the open boundary case such as not 
channelled flows and alluvial fans (Fraccarollo, 1996). 
Friction effects along the bed and the banks, and the stress 
between inner adjacent columns of fluid are not known, 
thus they require assumptions for their computation. 

The one-dimensional models properly represent 
channelled flows and possible overtopping condition. In 
this case the overall contribution of the shear stress on the 
rigid boundary is locally provided in analogy with the case 
of a uniform flow having the same depth and mean 
velocity. 

The present work deals with applications to real debris 
flows involving a fluid with a not negligible fine content, 
running down inside a channel. This is the reason why, in 
this paper, we restricted our attention to a one-dimensional 
model of a homogeneous fluid. The need to simulate real 
debris flows puts stiff problems in the treatment of the 
fluxes and of the source terms in the momentum balance. 
The difficulties arise from the deviations from the pure 
conservation form of the momentum equation and from the 
need to detect the stopping of the flow with accuracy both 
in time and in space. Furthermore, in real debris-flow 
events, the- knowledge of the rheological parameters are 
much more important than in sediment transport or in clear 
water cases, and much more difficult to be determined in 
the field, too. The paper presents a numerical model where 
these problems have been faced and a solution is proposed. 

2 The mathematical and numerical modelling 

In the one-dimensional case the De Saint Venant equations 
are: 

W) + WJS) = () - - 
at dx 

(1) 

w-w + aww + kg s cosB a(h) = 
at ax ax 

(2) 

= g S (sir&- iE) 

where x is the distance along channel axis, t is the time, B is 
the channel slope, U is the flow velocity, h is the depth of 
flow, g is the gravity, S is the cross section area, iE is the 
energy-line grade, k is the earth pressure coefficient and p 
is the momentum coefficient. In the applications k and p 
will be assumed equal to 1, 

The numerical strategy here employed has taken into 
account the main features of the debris flows, that include 
steep fronts and discontinuities of the free surface. 
Moreover, when a Bingham-type threshold in the 
constitutive relationship is present, the flow may locally 
stop and restart, even over steep slopes. 

The influence of such a morphology and fluid rheology 
on the flow removes the possibility to employ simplified 
models such as the kinematic model, and makes the use of 
conservative methods necessary. 

In case that the width at the free-surface level depends on 
the longitudinal position and on the flow depth, this purely 
geometrical character affects all the fluxes in the balances 
equations. A further problem arises also from being the last 
term in the momentum flux (Eq. (2)) not conservative 
anymore. The loss of conservation is a major point in the 
numerics, and requires special care. It is also true that the 
resulting system of equations is equivalent to the following 
one, written in an rearranged non conservative form, when 
no discontinuities at the free surface occur: 

a(s)+a(us) =9 
at ax 

(3) 

‘ch) a(u) I  u a(m> + kg coso -=g(sinO-i,) 
at ax ax 

(4) 

From these equations we may infer that the geometrical 
characterisation of the channel shape is still present only in 
the continuity equation. This fact suggests that keeping the 
shape effects in the momentum equation is important only 
when discontinuities have to be computed. After this 
observation, it is possible to build a Godunov type method 
based on the solution of local Riemann problems relevant 
to the following system of equations in conservative form: 

a(u) a(~)=~ 
dt+ ax 

(5) 

where U and F are, respectively, the vectors of the state 
variables and of the fluxes, to be now specified. The 
Riemann-problem solutions contribute, as herein clarified, 
to the evaluation of the numerical fluxes F in Eq.(5). 
Following the above reported observation, we based the 
Riemann-problem solutions on Eq.(3) and on the following 
one for the momentum balance, both written in a 
conservative way: 

aw 
dt+ 

a(phw + g k aWcos8) = o 

ax ax 
(6) 

The first step of the method is relevant to the solution of 
the local Riemann problems defined at the spatial boundary 
between two adjacent grid cell. It is achieved by using the 
approximate HLL solver (Harten et al., 1983), whose 
advantages dwell in its simplicity and robustness 
(Fraccarollo and Toro, 1995). The solution of the Riemann 
problem consists in determining the speed and the type of 
the two bounding waves, the left one E, and the right one 
E,, and the flux vector F’ in the central region of the wave 
structure, where the variables are constant. The wave 
speeds E, and E, are estimated as the values given by the 
two-rarefaction approximation (Toro, 1992), here corrected 
to take into account the effect of the slope, of the section 
shape, and of the non newtonian rheology of the fluid: 
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E, =/9U-,/kghcoso; E,=~+&&%@ (7) 

The HLL approximation provides the following direct 
solution for the intercell flux vector F’ at the boundary 

&l/2? depending on the initial values at the left side 
(position i) and at the right side (position i+l): 

F’ ,+I/2 = 
EL?+, -E,F, +-W,@J,+, -U,) 

ER - EL 

The HLL approximation also provides the state of 
variables u in the star state, as a result of the following 
expression: 

II’ ,*I,2 = 
E$J,+, - E,u, + F, - F,+, 

E/l -EL 
(9) 

These equations are not redundant in the evaluation of the 
fluxes, because of the approximation we introduce in the 
choice of the waves. Based on our experience on shallow 
water equations (Fraccarollo and Toro, 1995), we use 
Eq.(8) for the continuity equation (Eq.(3)), whereas Eq.(9) 
is applied to both continuity and momentum equation (6)), 
in order to obtain the flow depth h’ and the velocity u’ in 
the star state: these two primitive variables are necessary to 
evaluate the momentum fluxes in Eq.(2). The second order 
in time and space WAF method (Toro, 1992) is then 
applied. It consists in a determination of the numerical 
intercell fluxes, at the position i+1/2, as the average of the 
Riemann fluxes, over the distance (x,, xi+,), and at the time 
t=P+dt/2 (where t” is the present time with the variables 
already updated, and dt is the numerical time step). Any 
necessary information for this flux average is available and 
readily applicable. 

Before deploying the final conservation laws it is 
necessary to show the treatment of the cross-section area. 
In case of a rectangular section S=Bh, where B is the width, 
generally variable along the channel. We may rewrite the 
non conservative part of the momentum flux as follows: 

g~cosc9~ 
EJX 

(‘0) 

By doing so, when B is constant, this flux is automatically 
free-divergent. In the general case of a non rectangular 
shape of the cross section, we adopt the following 
equivalence: 

S = w(h)h (‘1) 

and then we may still employ Eq.( lo), where B is replaced 
by w,.which, for a general section, is an assigned function 
of the flow depth h. Using, by instance, a trapezoidal 
section, it comes out that w=b+sh/2, being s the sum of the 
two bank cotangents and b the basal width. The equivalent 
width w depends now also on the flow depth. 

The area S in each grid-cell is updated by means of the 
continuity equation as it follows: 

(‘2) 

from which the flow depth at the new time-step is also 
available. 

The momentum equation (Eq.(2)) is now considered. 
Because of the presence of a non conservative term in the 
fluxes, we use the values h’ and u’, calculated as shown 
above, to calculate separately the conservative and the non 
conservative flux, obtaining the WAF evaluation of 
@.Wh) and of (kg/2 h2 COST), respectively. Finally, the 
time integration of Eq.(2) is obtained by the following 
relationship: 

(us):” = (US); -~[(/!UUwh)~;I -(flUwh)z;z]- (13) 

-w,Y+’ =g,k[(h’):F, - (h2);!$“]cos8 

In the final step the computation treats the source terms in 
the momentum equation, which are so important in debris 
flows. Subsequent Chapter 3 is devoted to this issue. 

3 Source terms and closure relations 

The source terms are particularly important in debris flows, 
also under the hypothesis of an homogeneous fluid. They 
take into account the shear stress on the rigid boundary and 
the slope of the bottom profile. They are both remarkably 
higher than in clear-water flows. 
As far as the averaged shear stress on the rigid boundaries 
is concerned, we consider here the problem of the 
representation of uniform flow relationships for a Bingham 
fluid. The velocity distribution has to be calculated as the 
solution of an elliptic differential system of equations, 
based on the conservation of mass and momentum and 
generalized Bingham constitutive law, with appropriate 
boundary conditions. The analytical solution for the non 
dimensional 
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PLAN VIEW 

Ax 

discharge through an infinitely wide channel is (Johnson, 
1970): 

Q./J = 3 
1) 

(14) 
y.i,.W.H’ z,,, 

where Q is the discharge, p the Bingham viscosity, y the 
mixture unit weight, iE the energy gradient, W the flow 
width at the free surface, H the flow depth at cross section 
centre. The discharge is related to the non-dimensional term 
8 that is a function of the ratio between the yield strength 
(~0) and the critical shear stress (zii,). The critical shear 
stress, that is defined as the maximum yield strength at 
which flow is possible, is a property of channel geometry 
and of acting forces. In the case of an infinitely wide 
channel, critical shear stress is equal to y H sin8 The 
condition that applies at the transition between quiet 
condition and motion, or vice-versa, is qi,,,=~, that gives 4 
equal to zero. 

When the hypothesis of large rectangular section is not 
applicable, the location of the plug boundary and therefore 
the critical shear stress is not known a priori. The solution 
of uniform flow relationships may not be produced in an 
analytical way. The methodology here developed exploits 
the results obtained by Whipple (1997). He provided 
numerical solutions by using a commercially available 
finite-element code (FIDAP). A regression analysis of the 
model results provided general equations. The domain 
portion interested by the maximum-velocity plug does not 
occupy the whole width, and also zero-velocity plugs may 
appear, as those in the low comers of trapezoidal and 
triangular sections. Results by Whipple are proposed as it 
follows: 

Q.P z, 
y.i,.W.H’ rllm 

(15) 

Fig.1. Schematic 
representation of forces 
acting on a one- 
dimensional cell. 
Arrows crossing the cell 
boundaries represent the 
momentum fluxes. 

(16) 

The dimensionless parameters (v, and wi take into 
account the ratio W/H. The results of Whipple analyses 
provide the expression of the terms y, , y2 and gfor some, 
among the most common, section shapes. 

From inverting Eq.( 15) it is possible to compute the 
energy gradient (iE) as a function of the state variable Hand 
Q, and then the average boundary shear stress (~p=yR~&, 
where RH is the hydraulic radius). 

The average strength 5 acting on the section boundary in 
stopping conditions ( qi,,,= ~0) can be obtained by Eq.( 16); 
we may finally use the following expression: 

ro R, 
rp =-- 

(17) 
*‘, H 

4 Local flow stop and restart 

The skill of the model to reproduce the mechanism of arrest 
and restart of the flow is fundamental in debris flow 
simulations. The possibility to model the rest conditions of 
the fluid over slopes is provided by the presence of a 
cohesive-type stress. The presence of a yield stress has also 
a strong implication in the numerical strategy. In the 
present method, we exploit its being explicit in order to 
guarantee a sharp determination of the stop conditions in 
time and space. The time-step is subjected to a Courant 
type restriction for the stability. Figure1 shows the balance 
of forces that are locally applied in a numerical cell before 
marching in time to the subsequent time-level. These forces 
represent each term of the momentum equation (Eq.(2)). 

The numerical fluxes are already determined from the 
solutions of the Riemann problems on the basis of the state- 
variable distribution available at the previous (old) time 
level. It is to be noted that the pre-determination of the 
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inertia force (whU/At), which aids the motion, is under- 
sized when the flow is actually going to stop in less than 
the time-step At, while is over-sized when no local stop will 
take place. Therefore, the prediction is always not biased by 
under- over-estimation of the inertia. When the modulus of 
the algebraic sum of all the forces acting on the cell mass or 
on the cell boundaries exceeds the product (z, c Ax), where 
c is the wetted perimeter of the section, the flow will not 
stop during the present time-step. 

5 Application to Acquabona catchement 

The Acquabona catchement is located on the left side of 
Boite Valley, near Cortina D’Ampezzo (Italy), where 
debris flows occur almost every year. Along the channel, a 
monitoring system has been set up (Berti et al., 1999). An 
ultra sound Doppler system allows the measurement of the 
flow depth in time while an estimation of the average front 
velocity is obtained by using a set of three geophones. 
Registrations of two events happened on June 1 2’h 1997 and 
on August 1 7’h 1998 are available. 

Grain size distribution analyses (Berti et al., 1999), on 
material sampled at Acquabona site, showed that the finer 
fraction (silt and clay) is about 10% in the upper part of the 
channel and about 30% in the deposit area. The amount of 
the finer fractions suggests a global rheological behavior of 
visco-plastic type (Coussot, 1994; Whipple, 1997). 

5.1 Rheological parameters 

In the applications, the rheological parameters are supposed 
to be constant along the channel and in time. 

1 1.2 1.4 1.6 1.8 2 

cl/To-To/P -e-0.1-0.5 
-0.1-0.9 

-0.1-1.3 

Fig.2. Comparison between 
observations. 

11 -0.2-0.5 0.3-0.5 

+~-- 0.2-0.9 0.3-0.9 

0.2-1.3 0.3-l .3 

Whipple flow equation and field 

A field evaluation of the yield stress is given by the 
equilibrium of uniformly deposited layers: 

3 = gh, sin Bd 
P 

(18) 

where h, is the depth of the deposit, observed to be equal to 
about 1 m; and 0, is the bed slope angle in the deposition 
area, whose average value is equal to 7.8”. The resulting 
value is r,,lp = 1.3 mZ/s2. 

The depths and the velocities of the flow, measured in the 
channel upstream the deposit area, during the last 
monitored event, are reported in Fig.2. The relations 
between velocity and depth of flow proposed by Whipple 
(Eq.(15)) are reported in the same figure with different 
values of the rheological parameters. It may be inferred that 
the value of the yield shear stress better representing the 
stopping condition is sensibly different to the one 
representing the dynamic of the flow in the upper part of 
the channel. For this reason the simulations have been 
carried out with two different sets of rheological 
parameters. For the calibration of the flow upstream the 
deposit area, the set (a) has been used: 

set (a) k=O.l s 5 = 0.5 nl2/? (19) 

t0 Pm 

While for the calibration in the stopping conditions, the set 
(b) has been used: 

set(b) l=O.l s 5= 1.3 m2/s2 (20) 

to PI?! 

5.2 Comparison between field data and simulations results 

As showed in Fig.3, the stage hydrographs given by field 
observations show significant fluctuations. 

-measured compg 

a50 950 1050 1150 1250 1350 1450 1550 

t la1 

Fig.3. Comparison between depth of flow, measured and calculated with 
the set of parameters (a). 



762 L. Fraccarollo and M. Papa: Numerical Simulation of Real Debris-Flow Events 

The set (a) of parameters has been used to simulate the 
formation and propagation of the debris waves. The 
numerical model is able to represent, in a qualitative way, 
the fluctuations of the flow that have been observed. The 
time of occurrence of the computed peaks and their 
wavelengths do not correspond to those observed, but 
heights of the peaks are well represented (Fig.3). This latter 
feature is relevant in dealing with the estimation of possible 
overflowing, which is one of the most important 
information for practical purposes. In the computed 
hydrograph the depth of flow cannot be less than the value 
determined by the presence of the yield strength in the 
rheological characterization of the flow. On the contrary the 
form of the measured hydrograph suggests that, in this part 
of the channel, the flow is not of the yield type. 

As far as the downstream stopping process is concerned, 
it has been found that it can not be represented by the same 
set (a) of parameters, since what observed is that the debris 
keeps flowing beyond the actual deposit basin. 

Using the set (b) of parameters the simulation of the 
depth and the spread of the deposit agrees with the 
observations, even though there is no evidence of the free- 
surface oscillations (Fig.4). 

An analysis of the linear stability for a visco-plastic fluid 
(Trowbridge, 1987; Coussot, 1994) has demonstrated that 
free surface flows, of a fluid with large yield stress, is 
susceptible to instability at Froude numbers 
(F,. = u/,/m) greater than a critical value. The value 

of this critical Froude number is found to be less than 0.25. 

I -measured computed I 

180 

130 
F 
Y 
I 80 

30 

-20 
850 950 1050 1150 1250 1350 1450 1550 

t lsl 

Fig.4. Comparison between depth of flow, measured and calculated with 
the set of parameters (b). 

In Fig.5 this stability criteria is compared with field 
observation; the curve relevant to Fr-1, is also reported. 
The field measurements clearly show that the theoretical 
critical Froude number is always overtaken, substantiating 
the formation of the observed and calculated debris waves. 

The graphic in Fig.6 shows the computed maximum 
depth reached in each section of the channel and the 
corresponding measurements derived from the trace left by 

the flow along the channel (Berti et al., 1999), for both the 
sets of the employed rheological parameters. 

Results referring to the use of set b) of the rheological 
parameters determine a good representation of the 
deposition phase, even though there is an under-estimation 
of the maximum flow depth in the upstream channel. On 
the contrary, set a) produces a better simulation of the flow 
in the channel, where the impulsive waves are captured. 
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Fig.5. Comparison between field measurement and the critical Froude 
number. 
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Fig.6. Comparison between the maximum depths of flow measured and 
calculated along the channel. 

6 Conclusions 

The objective of this work was the construction of a 
numerical tool able to reproduce the flooding waves of 
water and debris with considerable content of fine particles, 
and the deposition of the material in the alluvial fans. 
Attention has been paid to the effects induced by the not 
regular geometry of the natural channels, efforts has been 
made to keep as much as of the conservation in both 
volume and momentum balances, thus allowing a reliable 
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representation of the impulsive behavior of the 
phenomenon. Furthermore, the stopping mechanism and 
the treatment of the source terms have been solved in a 
robust way. 

The results of this study show that it is possible to 
represent all the phases of the flow, i.e. the debris waves in 
the intermediate part of the channel and the deposition 
process in the final reach of the basin, by using different 
sets of the rheological parameters. Time and space 
dependence of the rheological parameters may be linked to 
the nature of the phenomenon, where stone abrasion, 
outcropping of materials with the same or different 
characteristics in the flow, loss of water content, happen. 
All these aspects should be taken into account in the 
rheological definition of the fluid in order to increase the 
potentiality of the method and the accuracy of the results. 
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