
www.elsevier.com/locate/jss

The Journal of Systems and Software 78 (2005) 60–72
Overcoming the obfuscation of Java programs by identifier renaming

S. Cimato, A. De Santis, U. Ferraro Petrillo *

Dipartimento di Informatica ed Applicazioni, Universitá degli Studi di Salerno, Via S. Allende, 84081 Baronissi (Salerno), Italy

Received 3 August 2004; received in revised form 4 November 2004; accepted 14 November 2004
Available online 8 January 2005
Abstract

Decompilation is the process of translating object code to source code and is usually the first step towards the reverse-engineering
of an application. Many obfuscation techniques and tools have been developed, with the aim of modifying a program, such that its
functionalities are preserved, while its understandability is compromised for a human reader or the decompilation is made unsuc-
cessful. Some approaches rely on malicious identifiers renaming, i.e., on the modification of the program identifiers in order to intro-
duce confusion and possibly prevent the decompilation of the code.

In this work we introduce a new technique to overcome the obfuscation of Java programs by identifier renaming. Such a tech-
nique relies on the intelligent modification of identifiers in Java bytecode.

We present a new software tool which implements our technique and allows the processing of an obfuscated program in order to
rename the identifiers as required by our technique. Moreover, we show how to use the existing tools to provide a partial implemen-
tation of the technique we propose.

Finally, we discuss the feasibility of our approach by showing how to contrast the obfuscation techniques based on malicious
identifier renaming recently presented in literature.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Java obfuscation; Program protection; Decompilation
1. Introduction

The diffusion of Java has deeply affected the way
simple programs or complex applications are developed
and distributed. The Java platform comes with a rich
set of function libraries which ease the task of software
developers and make the language well suited for the
development of programs in several application areas.
Furthermore, Java applications are composed of dynam-
ically loaded pieces of code which can be downloaded
across the network and linked at runtime as required,
providing an extensible programming environment.

Another characteristic of the Java language which
contributed to its wide diffusion is its portability: Java
0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.11.019

* Corresponding author. Tel.: +39 089965416; fax: +39 089965272.
E-mail addresses: cimato@dia.unisa.it (S. Cimato), ads@dia.

unisa.it (A. De Santis), umbfer@dia.unisa.it (U. Ferraro Petrillo).
programs are compiled into a neutral platform format,
the bytecode, which can be executed by a Java Virtual
Machine (JVM) running on the targeted platform. Since
much of the information needed for the execution of a
bytecode is stored as symbolic references and the JVM
has been designed with a very simple architecture, the
bytecode format is relative simple compared to the com-
plexity of the machine code executed by a real micropro-
cessor. Furthermore, a large source of documentation is
available for both the Java Virtual Machine and the
Java language. These facts make the decompilation pro-
cess very easy and constitute a threat for the interests of
software developers and companies investing money in
the distribution of Java based software.

Decompilation is the process of translating object
code to source code and is relevant to the security of a
Java application for a number of reasons. Indeed,
reverse engineering an executable code favors software

mailto:cimato@dia.unisa.it
mailto:ads@dia.
mailto:umbfer@dia.unisa.it

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 61
piracy, making the attacker able to thief the intellectual
property of the software, appropriating and reusing
(and possibly reselling) a solution to a given problem.
Furthermore, such a process opens a number of security
breaches by allowing an attacker to discover vulnerabil-
ities in the application or retrieve sensitive information
(password, license number, credit card number) hidden
in the executable code.

The Java standard software development kit comes
with a basic disassembler included in the provided stan-
dard development tools: javap allows users to disas-
semble generated bytecode and retrieve some of the
information contained in the class file, such as the name
and the type of variables and methods included in the
class. Since the early days of Java, many third-party
decompilers were also available on the market providing
an easy way to retrieve source code from a compiled
class. At the same time, code obfuscators were devel-
oped with the aim of making decompilation process
hard.

1.1. Obfuscation techniques

The obfuscation process aims to modify the compiled
code such that its functionalities are preserved, while its
understandability is compromised for a human reader or
the decompilation is made unsuccessful. Many practical
approaches have been developed, based on the applica-
tion of different kinds of transformation to the original
source (or machine) code. Following Collberg et al.
(1997, 1998), an obfuscating transformation T changes
the source program P into a program P 0, such that if
P fails to terminate or terminates with an error condi-
tion, then P 0 may or may not terminate, otherwise P 0

must terminate and produce the same output as P.
Obfuscating transformations can be classified accor-

ding to their target, and the kind of modification they
operate on the code. According to the classification in
Collberg et al. (1998), it is possible to distinguish four
basic categories of obfuscation, namely:

• layout obfuscation: affecting the information which is
not really necessary to the execution of the program,
such as identifier names and comments;

• data obfuscation: affecting the data structures used in
the program, such as the way variables are stored in
memory, their encoding, the way data are aggregated
and so on;

• control obfuscation: modifying the control flow of
programs, such as procedure aggregation (replacing
a procedure with the statements it is composed of),
ordering (changing the order of statements in proce-
dures), and so on;

• preventive obfuscation: stopping decompiler opera-
tion, such as adding instructions which cause the
decompiler to crash.
Obfuscation techniques based on the malicious
renaming of the identifiers have been recently presented
in Chan and Yang (2004). Such techniques can be clas-
sified as a form of layout obfuscation, since they reduce
the information available to a human reader which
examines the target program, or of preventive obfusca-
tion since they aim to prevent the decompilation or to
produce an incorrect Java source code. Such techniques
try to hide the structure and the behavior information
embedded in the identifiers of a Java program by replac-
ing them with meaningless or confounding identifiers to
make more difficult the task of the reverse engineer. It is
worth to notice that the information associated to an
identifier is completely lost after the renaming. Further-
more, by replacing the identifiers of a Java bytecode
with new ones that are illegal with respect to the
Java language specification, such techniques try to make
the decompilation process impossible or make the
decompiler return unusable source code. The authors
in Chan and Yang (2004) observed that such effects will
not be easily countered by the existing decompilation
technologies forcing the cracker to spend lots of time
to understand and debug the decompiled program
manually.

1.2. Our contribution

The contribution of this paper is to introduce a new
technique to overcome the obfuscation of Java programs
based on the malicious renaming of the identifiers. The
technique we propose is based on the intelligent renam-
ing of the identifiers in an obfuscated program in order
to avoid any confusion for both the tools or the human
examining and decompiling the program itself. Indepen-
dently of the obfuscating renaming strategy used, we
show that it is possible to contrast the obfuscation by
renaming the identifiers in two phases, in order to firstly
overcome the preventive obfuscation and, then, to add
type information to the identifiers in the source code so
as to contrast layout obfuscation.

We present a prototype implementation of a software
tool which preprocesses an obfuscated program in order
to rename its identifiers as required by our technique.
This makes it possible to decompile the resulting deobfus-
cated program by using one of the existing decompilers.
The tool, called ADAM, is available at http://www.
dia.unisa.it/research/adam. Furthermore, we
show how it is possible to provide a partial implementa-
tion of the technique we propose so to contrast in many
cases the malicious identifier renaming by using the exist-
ing tools.

We examine examples of obfuscation techniques,
downloadable together with the ADAM tool, based on
malicious renaming and show how the decompilation is
operated in an efficient and automatic way by applying
our technique.

http://www.dia.unisa.it/research/adam
http://www.dia.unisa.it/research/adam
http://www.dia.unisa.it/research/adam

62 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
1.3. Organization

The paper is organized as follows. In Section 2 we re-
view some of the available tools for decompilation and
obfuscation of Java code. Obfuscation techniques based
on the renaming of identifiers are discussed in Section 3.
In Section 4 we present our technique for overcoming the
obfuscation of Java programs by identifier renaming. In
Section 5 we show the application of our technique to
contrast several examples of advanced obfuscation based
on malicious identifier renaming recently presented in lit-
erature (Chan and Yang, 2004). Finally, in Section 6 we
outline some conclusions and discuss some future direc-
tions for our work.
2. Java decompilers and obfuscators

Decompilation is the process of turning object code,
that is code expressed in a language that is executed
directly by a real or virtual machine, into source code,
that is high level programming language. Actually, such
process is quite hard since it essentially relies on the re-
trieval of large-scale high-level behavior from small-
scale low-level behavior. With respect to standard object
code, the decompilation of the Java bytecode is a simpli-
fied process, since it includes more information and pro-
vides a higher level representation. However, while it is
relatively easy to retrieve the source code from a byte-
code obtained by a standard compiler with a known
compilation strategy (such as javac), the decompila-
tion of arbitrary bytecode, such as the one produced
by unknown compilers or subjected to optimization,
can be a difficult task.

Many decompilation tools construct an internal
representation of a class file enriching the information
retrieved from the bytecode in order to make easier
the decompilation. Indeed, the basic challenges encoun-
tered during such a process are the recovering of the cor-
rect typing of the variables and of the high level control
constructs. To these purposes, the bytecode is translated
into intermediate representations on which type infer-
ence algorithms and flow analysis techniques are
applied. Usually Control Flow Graphs (CFG) are pro-
duced, where nodes represent (block of) operations
and edges the flow of control. On such structures, sev-
eral transformations are thereafter applied in order to
reconstruct the original source code.

The Sable group produced the SOOT framework
(Miecznikowski and Hendren, 2002), aimed to the anal-
ysis and the optimization of Java bytecode. Based on
such framework, they developed the DAVA decompiler
(Miecznikowski and Hendren, 2001) which uses three
intermediate representations: a list of typed statements
corresponding to the bytecode instructions, a control
flow graph built upon the previous representation, and
a structure encapsulation tree which resembles an
abstract syntax tree, used to reconstruct the Java lan-
guage output.

The JBET tool (McAfee Research, 2003) constructs a
directed acyclic graph (DAG) representation of the byte-
code corresponding to a class file. In such a representa-
tion, method implementations are divided into basic
blocks each corresponding to a DAG, where the edges
connect ‘‘user’’ nodes (such as constants, or the result
of calculations) to ‘‘producer’’ nodes (such as method
calls or other calculations). Such graphs are acyclic,
since a cycle would mean that a node needed its own
value in its computation. Based on the DAG representa-
tion and on the dynamic analysis of the bytecode, the
JBET tool is in many cases able to determine informa-
tion needed to recover the original Java source program.
Two of the most used freely available decompilers are
Jad (Jad—the fast JAva Decompiler), whose engine is
used in numerous visual software development environ-
ments, and JODE (Java Optimize and Decompile Envi-
ronment) (Hoenicke, 2002), whose source code is also
provided. Among commercial decompilers, Source-
Again (Ahpah Software, 2004) is able to correctly
recover many Java control structures and optimizations
from the bytecode. An extensive list of decompiler tools
together with usage tests is provided at http://

www.program-transformation.org/Transform/

DeCompilation.
Other tools, such as Jshrink (Eastridge Technology,

2004) and Proguard (Lafortune, 2004), provide an inte-
grated environment for the optimization and the obfus-
cation of bytecode, through the removal of unused code,
classes and debugging information, and the renaming of
the identifiers. The obtained bytecode is functionally
equivalent, but is usually smaller in size, more efficient
and harder to reverse engineer. KlassMaster (Zelix Pty
Ltd., 2004) provides a wide range of obfuscation tech-
niques, and a specific scripting language allowing users
to automate the obfuscation process and integrate it into
the software development process.

The Sandmark tool (Collberg et al., 1997, 1998; Coll-
berg and Thomborson, 2002), provides a modular exten-
sible framework for the decompilation, obfuscation and
watermarking of Java applications. As soon as new
algorithms and techniques are developed, their imple-
mentation can be easily added to the original frame-
work, using the dynamic class loading mechanism.
3. Obfuscating a Java program by malicious identifiers

renaming

Identifiers are used in the Java language to name enti-
ties such as methods, classes, packages, interfaces and
variables. The Java language specification (Gosling
et al., 2000) defines an identifier as an unlimited-length

http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 63
sequence of Unicode letters and digits, the first of which
must be a letter. An identifier must not be the same as a
boolean literal, the null literal, or a keyword in the Java
programming language.

One of the most used obfuscation techniques consists
of renaming the identifiers of a Java bytecode so to
make it harder to be decompiled or to be understood.
A renaming strategy is a set of rules for transforming
the identifiers of a Java bytecode in an arbitrary
sequence of Unicode characters. The aim of a renaming
strategy is to make a target Java code more difficult to
be understood (layout obfuscation) or to be decompiled
(preventive obfuscation). In the first case, the original
identifiers are replaced with some meaningless or con-
founding ones. It is worth to notice that it is impossible
for a cracker to recover the original identifiers: the infor-
mation associated to an identifier is completely lost after
the renaming. In the second case, the identifiers are
renamed in order to make it difficult, or even impossible,
for a decompiler to translate the program back to Java
source code or to make the resulting source code uncom-
pilable. Notice that, in both cases, the renaming of iden-
tifiers does not affect at all the behavior of the obfuscated
program.

A malicious renaming is the operation of obfuscating
a Java bytecode by applying a renaming strategy. Obfus-
cation techniques based on malicious renaming have
been well-known and practiced for a long time. Simple
renaming strategies include: replacing the original iden-
tifiers of a Java bytecode with meaningless ones (e.g., see
the Klassmaster obfuscator, Zelix Pty Ltd, 2004), shuf-
fling them (e.g., see the JAurora obfuscator, de Roo
and van den Oord, 2003) or replacing them with some
other ones according to a user-defined translation table
(e.g., see the JObfuscator obfuscator, Helseth Digital
Systems Inc. (2001)).

3.1. Which identifiers can be renamed?

When we rename the identifier of an entity in a Java
program, we also need to update all the references to
this entity accordingly, otherwise the obfuscated pro-
gram may not run correctly. However, it is not always
possible to update external references to the renamed
identifiers.

Consider, as an example, the case of an abstract Java
class Y that is defined in the Java runtime library. Sup-
pose we define a new class X that extends and imple-
ments the methods of Y. The renaming of all the
methods of the class X would be possible only by renam-
ing the methods of the class Y too. But this would
require the modification of the Java runtime library
and, thus, it would break the compatibility, of the obfus-
cated application, with standard Java installations.

Following the definition given in Chan and Yang
(2004), we introduce the concept of obfuscation scope
as the set of identifiers in a Java program that can be
safely renamed for obfuscation purposes. By default, this
set does not include the identifiers of parameters and lo-
cal variables because these information are usually
stripped off when compiling a bytecode. The obfuscation
scope of a program can be built by grouping all the iden-
tifiers existing in the program and, then, removing those
ones whose renaming could introduce undesired or erro-
neous behavior.

We also observe that there are some cases where the
set of possible candidates for the renaming is very small.
For example, this is the case of programs that deter-
mine, at run-time, which classes have to be loaded or
referenced, which methods have to be invoked or which
fields have to be accessed. In these cases, arbitrary pro-
gram identifiers could be referred to by program vari-
ables whose content will be known only at run-time; in
such a situation it is, by far, more difficult for an obfus-
cator to determine which identifiers are referred to in a
program and to update these references according to
the renaming.
3.2. Advanced malicious renaming techniques

Several advanced techniques for the obfuscation of
Java programs based on malicious renaming have been
proposed in Chan and Yang (2004). The com-
mon approach of all these techniques is to rename the
identifiers in the obfuscation scope of a Java byte-
code by reusing the same identifier as often as possi-
ble. The decompilation of the resulting code will be
indeed more difficult to be understood by a malicious
user because of the redundancy of these identifiers.
Moreover, by referring to different unrelated entities
with a same identifier, decompilation tools will be
fooled as well leading, in many cases, to the genera-
tion of incorrect Java source code. The expectation
of the authors is that these effects will not be easily
contrasted by existing decompilation technologies; some
of these could also be unable to decompile the code at
all, thus forcing the cracker to spend lots of time
to understand and debug the decompiled program
manually. Instead, we will show that these effects can
be overcome by smartly renaming the identifiers of an
obfuscated bytecode in an automatic way with the help
of the existing bytecode manipulation and decompilation
technologies. In the following we describe some of these
techniques.
3.2.1. Overusing identifiers

The strategy of obfuscating by overusing identifiers
operates by renaming the entities of a Java bytecode
so to reuse an identifier as often as possible. Such a strat-
egy confuses the cracker because he has to understand
the behavior of a decompiled program where each

64 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
identifier has, at the same time, several different mean-
ings depending on the context where it does appear.

This renaming strategy is described by the following
simple algorithm. Let us consider a set of bytecodes that
has to be obfuscated. First of all, the obfuscation scope
(i.e. the set of entities that can be safely renamed) of the
considered bytecodes has to be determined. Then, the
package and the inheritance structures of all the classes
and of all the interfaces in the obfuscation scope are
built. The renaming begins by traversing the package
structure of the bytecodes. During the traversal, pack-
ages, interfaces, and classes are relabeled by using
sequentially generated names (e.g., a, b, c). The next
step is to traverse the inheritance structure of all the con-
sidered classes and interfaces. During the traversal and
for each type T (either a class or an interface), inner
types, fields and methods are relabeled each using the
sequentially generated names adopted in the previous
step. Finally, all the references to the entities that have
been renamed are updated accordingly.

3.2.2. Overloading unrelated methods
The obfuscation technique based on the overloading

of unrelated methods relies on the concept of widening
conversion and methods overloading. The Java language
specification defines a conversion from type S to type T
as the operation that allows an expression of type S to
be treated, at compile time, as if it were of type T

instead. A conversion is widening if the range of values
supported by the target type T is wider than the one
of the source type S.

If two methods of an interface or of a class have a
same name X but different signatures, then the method
name X is said to be overloaded. Whenever, in a Java
source code, the overloaded method X is invoked, the
compiler generates a bytecode containing the invocation
of the method X whose formal parameters types per-
fectly match with the types of the arguments provided
with the invocation. If such a match does not exists, then
the method X whose formal parameters types are
‘‘wider’’ and ‘‘nearest’’ to the arguments provided with
the invocation, is invoked (Gosling et al., 2000).

The obfuscation by overloading unrelated methods
consists in renaming with the same identifer all the
methods of a compiled class, wherever this is possible.
This change does not affect the behavior of the bytecode,
because the identity of the methods to be executed in a
Java program are resolved, via a symbolic reference, at
compile time before performing the obfuscation.
Instead, such a change can drastically change the behav-
ior of a program if this will be decompiled and then
recompiled again.

To explain this, suppose that in the original code
there were several methods having distinct names but
with the same number and similar types of arguments.
By renaming these methods using the same name, they
will all become overloaded. The invocation of one of
these methods in the original source code may now
become troublesome to handle when recompiling the
decompiled code. Here, the Java compiler has to choose
which one of the overloaded methods best matches the
types of the arguments provided with the method invoca-
tion. As a matter of fact, it is not guaranteed that the ori-
ginal (and thus correct) method will be chosen, because
there could exist another method that better matches
the types of the input arguments.

A similar technique can be implemented by renaming
with the same identifiers the field variables of a class and
of all its sub-classes. While the bytecode will be unaf-
fected by this change because references to field vari-
ables are local to the class, the decompilation of the
obfuscated code will return source code where field vari-
ables declared in the parent are erroneously overridden
in the sub-classes.
3.2.3. Introducing illegal identifiers

The rules for naming identifiers in the Java language
are stricter than the ones used for the Java bytecode. For
example, it is possible to use, as identifiers in a bytecode,
the string literals that are reserved words in the Java lan-
guage (e.g., ‘‘try’’, ‘‘catch’’). Furthermore, there exist
several characters, such as ‘‘,’’ or ‘‘.’’, that can be used
to name the identifiers of a Java bytecode but cannot
be used in the Java language since they have some spe-
cial meaning (Gosling et al., 2000). As a consequence,
there may exist some legal identifiers in a Java bytecode
that become illegal when the bytecode is translated back
to a source code.

It is possible to obfuscate a Java bytecode by replac-
ing its identifiers with new illegal ones. Many decompil-
ers will either produce a Java code that is uncompilable,
because it defines illegal identifiers, or they will be
unable to decompile the bytecode at all.
3.2.4. Renaming nested types

A nested type is a type that is defined inside another
type. In a Java program it is possible to refer to a nested
type by just using its name. For this reason, the Java lan-
guage specification does not allow a nested type and its
enclosing type to have the same name so to avoid any
potential ambiguity when referring to either one of
these. Therefore, it is not possible, for example, to define
a nested type named B inside a type with the same name
B.

Differently from the Java language, the standard
bytecode language represents a nested type (e.g., B) in
a machine independent way by prepending to its name
the name of its enclosing type (e.g., A) followed by the
‘‘$’’ character (e.g., A$B). This allows the bytecode inter-
preter to distinguish between enclosing and nesting
types, even if they have the same name.

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 65
The obfuscation by renaming nested types works by
redefining the names of the types in a Java bytecode
so that these match with the names of their correspond-
ing enclosing types. A straightforward decompilation of
the obfuscated code produces an incorrect source code
where nested types have the same name of their enclos-
ing types.
3.2.5. Overriding static methods

The Java language specification does not allow an
instance method M defined in a class A to be overridden
by a static method M 0 defined in a subclass of A and
having the same signature of M, or vice-versa.

This restriction does not hold for Java bytecode. In
this case, there is no ambiguity between static methods
or instance methods since the Java Virtual Machine uses
different instructions for invoking either of them (i.e.,
invokeVirtual or invokeInterface for instance
methods, invokeStatic for static methods).

The obfuscation technique based on the renaming of
static methods processes a set of compiled Java classes
and renames, wherever possible, static methods (respec-
tively, instance methods) using the name of instance
methods (respectively, static methods) defined in one
of their superclasses and having the same number and
types of formal parameters. A decompilation of the
obfuscated code produces an incorrect Java source code
where instance methods are overridden by static methods,
and/or vice versa.

This technique can be applied also to bytecodes that do
not have static methods and instance methods with the
same signature simply by introducing fake static and
instance methods.
4. Good renaming for contrasting malicious renaming

The technique we propose for overcoming the effects
of malicious renaming consists of properly renaming all
the entities of an obfuscated code. Our technique re-
places obfuscated identifiers with new identifiers that
are legal and distinct. In this way, it is possible to con-
trast the effects of preventive obfuscation techniques
by avoiding any ambiguity when parsing the identifiers
during the decompilation of a Java bytecode. At the
same time, it is possible also to reduce the effects of
layout obfuscation techniques since confounding identi-
fiers are replaced with meaningful and non-confounding
ones. Indeed, each identifier is generated in a way to
include the information which can be extracted about
the entity it identifies. This improves the readability
and the understandability of the decompiled code. We
refer to our technique as to a good renaming technique
as it can be used to contrast the effects of malicious
renaming techniques.
In our technique each identifier in the obfuscation
scope of the obfuscated bytecode is renamed using the
following information:

Entity Number Info

where

• Entity is a string literal denoting the category of
the entity, namely class, field, interface,
method, package;

• Number is a unique progressive number for each cat-
egory of entities;

• Info is a string literal containing additional informa-
tion on the entity, such as its type (for field variables),
the return type (for methods), its visibility, the access
modifiers, and so on.

Overriding relationships are preserved by renaming
both overriding and overridden methods with a same
identifier.

Some of the existing decompilers are already pro-
vided with the ability to automatically perform an infor-
mative renaming of the identifiers found during the
decompilation of a Java bytecode. For instance, Source-
Again is capable to replace each identifier with a name
which is unique and denotes the type of the entity it
refers to. However, in many cases these tools fail to per-
form the renaming because this process, that typically
occurs during the decompilation of the code, is fooled
as well by the techniques used to obfuscate the target
program.

Since malicious renaming techniques are targeted to
contrast the decompilation process while not affecting
the structure of the bytecode, a viable approach to
implement the good renaming technique we propose is
to operate it before the decompilation and, thus, at the
bytecode level.

We present two possible approaches for implement-
ing the good renaming technique we propose. The first
approach relies on the usage of existing decompilation
and obfuscation tools but it does provide only a partial
implementation of our technique. The second approach
uses an ad-hoc bytecode renaming tool, called ADAM,
we developed and provides a full implementation of our
renaming technique.

4.1. Implementing (partially) good renaming with

existing tools

A partial implementation of the good renaming can
be carried out by exploiting the same tools used to
obfuscate Java programs. Namely, we observe that
obfuscators generally manipulate Java programs at a
bytecode level and provide, in most cases, the ability
to rename entities with confounding but legal identifiers
for obfuscation purposes. This implies the possibility of

66 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
using obfuscators for canceling the effects of preventive
obfuscation techniques based on malicious renaming.
Then, the good renaming technique we propose can be
partially implemented using existing tools in two steps:

(1) The identifiers of the obfuscated Java bytecode are
renamed using distinct identifiers that are legal for
the Java language. For example, all the identifiers
could be renamed using sequentially generated string
literals in lexicographic order (e.g., a, b, c) or using
progressive numbers (e.g., 1, 2, 3).

(2) The transformed bytecode is decompiled to source
code using a tool able to rename identifiers with
unique names, possibly holding also additional infor-
mation extracted from the bytecode.

Notice that the first step can be performed by using
one of the obfuscators with renaming capabilities (e.g.,
KlassMaster), while the second step can be fulfilled by
using a decompiler with smart renaming capabilities
(e.g., SourceAgain).

On the one side, such an approach has the advantage
that it can cancel the effects of preventive obfuscation
since non-related entities are renamed using distinct
legal identifiers. Moreover, it can be carried out in auto-
matic way using only existing tools. On the other side, it
has the disadvantage that the new names of the identifi-
ers do not carry all the information required by our
renaming technique and, thus, the code resulting from
the decompilation may be more difficult to be
understood.

4.2. ADAM: a tool for good renaming

The good renaming technique can be fully imple-
mented by developing an application which operates at
bytecode level and redefines the identifiers exactly as
required by our technique. To this purpose, it is possible
to use a large variety of bytecode transformation
libraries such as Javassist (Chiba and Nishizawa,
2003), JikesBT (Laffra et al., 2000), JOIE (Cohen et
al., 1998), and BCEL (Dahm et al., 2003).

The tool we developed, ADAM (Another Decompila-
tion Assistant Methodology), can be used as a decom-
piler pre-processor so as to redefine the identifiers of a
set of Java classes before these are decompiled. The
amount of information that the new identifiers will carry
can be parameterized. Thus, for example, the tool can be
configured so as to not report the access level of field
variables when renaming them or so as to use abbrevia-
tions when describing the category of each renamed
entity (e.g., f in place of field). The transformation
implemented by our tool takes place in several steps:

(1) The set of classes to be renamed are loaded in mem-
ory using the JikesBT library.
(2) An internal graph-based representation of the enti-
ties of the loaded classes and of their relationships
is built.

(3) The set of loaded classes is traversed and the entities
defined in each class are redefined according to the
strategy defined in Section 4.

(4) The original set of obfuscated Java classes is replaced
with the set of transformed Java classes.

Notice that the transformation of an obfuscated byte-
code performed by ADAM is completely automatic and
does not requires any human intervention.

From a technical point of view, identifiers are
renamed using the functions provided with the JikesBT
library. These functions allow to browse, per category,
all the entities defined in a Java class and to rename their
identifiers. References to renamed entities will be auto-
matically updated. Moreover, we explicitly preserved
overriding relationships by renaming at the same time
both overriding and overridden methods using the same
identifier.
5. Experiments with good renaming

In this section, we present some experiments concern-
ing the application of our approach in the decompila-
tion of Java bytecodes obfuscated using the advanced
malicious renaming techniques presented in Section
3.2. For each of the malicious renaming techniques,
we considered a simple Java program that has been
compiled and then obfuscated using that technique.
Then, we successfully applied our renaming technique
by using our tool to pre-process obfuscated bytecode
and Jad to decompile it. We remark here that in all
the cases we considered, the proper decompilation of
the obfuscated codes has been possible in an automatic
way.

Furthermore, we experimented also the partial imple-
mentation of our technique by properly using existing
tools to decompile obfuscated code. This has been done
by pre-processing the obfuscated classes using the
renaming capabilities of several obfuscators (i.e.,
JShrink, KlassMaster, ProGuard) and then decompiling
the outcoming classes using the SourceAgain decom-
piler. The results of these experimentation show that this
approach is able to contrast all the preventive obfusca-
tion techniques we considered as the decompilation
was always successful. On the other hand, the amount
of information encoded in the outcoming source code
was lesser than the one required by our technique thus
affecting the overall understandability of the code.

We now show the results of our experiments with the
application of our technique on Java programs obfus-
cated using the techniques presented in Section 3.2.
The code of all these experiments, including the original

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 67
source codes, the obfuscated bytecodes and the source
codes decompiled by using ADAM and Jad, is included
in the ADAM software distribution.

5.1. Overcoming obfuscation by overusing identifiers

The rationale of the obfuscation technique by overus-
ing identifiers is to use the same identifier to label entities
of different types existing in a program. The expected
effect is that the resulting bytecode, once decompiled,
will be difficult to understand because of the redundancy
of the identifiers.

An example of this technique is shown in Fig. 1. We
have chosen, to this end, a simple Java class used to
determine if two integers are relatively prime. The obfus-
cated code, whose corresponding source code is shown
in the same figure, uses only the identifiers a, b, and c

to label the class, the methods of the class, and the fields
of the class.

In Fig. 2, we show the resulting code produced by the
application of the ADAM tool to the obfuscated class
and the subsequent decompilation using Jad. The result
is compared to the code obtained from the partial imple-
mentation of good renaming relying on KlassMaster as
obfuscator tool and SourceAgain as decompiler tool.
Fig. 1. A Java class that determines if two numbers are relatively prime. The
been obtained by obfuscating the original code with the obfuscation techniq
Even if in both cases the resulting deobfuscated code
does not have any ambiguity in the naming of identifi-
ers, the information provided by the code resulting from
the application of our technique allow a better compre-
hension of the class behaviour.

5.2. Overcoming obfuscation by overloading unrelated

methods

The technique of overloading several unrelated meth-
ods works by renaming all the methods of a class using a
single identifier. The expectation is that whatever method
was executed in the original source code by means of a
widening conversion, the source obtained by decompil-
ing the obfuscated code could erroneously execute a dif-
ferent method having the same name.

An example of the application of this technique is
reported in Fig. 3. The class A defines the methods f,
X and Y, with the method f executing the method X.
In the obfuscated code, both the methods X and Y are
renamed to a.

As a consequence of the decompilation of this code,
the original method execution found in f becomes
ambiguous since it could refer to either one of the
two methods named a. The Java compiler solves this
first version presents the original source code. The second version has
ue of overusing identifiers.

Fig. 2. The results of the decompilation of the obfuscated Java class that determines if two numbers are relatively prime. The first version has been
obtained by pre-processing the obfuscated bytecode with our tool and then decompiling it with the Jad decompiler. The second version has been
obtained by renaming the identifiers of the class using the KlassMaster obfuscator and then decompiling the output bytecode with the SourceAgain
decompiler.

Fig. 3. An example of obfuscation by overloading unrelated methods. The original source code defines a class A with three unrelated methods. In the
obfuscated code, all the methods of A are renamed to a. This implies that, in the decompiled code, the method formerly named f will erroneously
invoke the method formerly named Y. The deobfuscated code, obtained by applying our technique by means of the ADAM tool, solves this
ambiguity by renaming with distinct identifiers all the methods of A.

68 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
ambiguity by choosing the method whose arguments�
types are nearest to the ones provided as input to the
method invocation. In our case, this rule implies the exe-
cution of the method formerly named as Y thus chang-
ing the behavior of the original program.
In Fig. 3 we show the result of the application of the
good renaming to the obfuscated code. In this case, all
the methods in the bytecode are renamed, by means of
our tool, using distinct identifiers before being decom-
piled. The original method execution will refer, now,

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 69
to a method that has a unique identifier (metho-
d_2_ret_void) and thus no ambiguity may arise when
the code is decompiled. We obtained a similar result by
using an obfuscator tool, instead of our renaming tool,
to partially implement our renaming technique.

A similar approach can be used to contrast obfusca-
tion based on the renaming of unrelated field variables.
This technique renames with the same identifier some of
the field variables defined in classes that are related by
some inheritance relationship. The decompilation of
the obfuscated program will return a source code where
field variables are erroneously overridden in their sub-
classes.

By using the ADAM tool, all the field variables that
do not have an explicit overriding relationship in the
obfuscated bytecode are renamed using distinct identifi-
ers and, thus, no ambiguity may arise when the code is
decompiled.

5.3. Overcoming obfuscation by illegal identifiers

The technique of obfuscation by illegal identifiers
works by replacing the identifiers of a Java bytecode
with new ones that are illegal with respect to the Java
language specification.

In order to experiment with this technique, we assem-
bled the bytecode of a simple Java class (see Fig. 4) con-
taining several illegal identifiers: the identifiers we have
included to this end are the same tested in Chan and
Yang (2004). Then, we successfully renamed illegal iden-
tifiers by using our tool. We obtained a similar result by
using an obfuscator tool to replace the illegal identifiers
with legal ones, as required by the partial implementa-
tion of our technique.
Fig. 4. An example of obfuscation by using illegal identifiers. The obfuscate
deobfuscated code, obtained by using our renaming tool, replaces illegal ide
5.4. Overcoming obfuscation by nested types renaming

The technique of obfuscation by nested type renam-
ing requires to rename any nested type using the name
of its enclosing type. Since such a condition is not
allowed by the Java language, the decompilation of
the obfuscated code will return an incorrect source code.

The effects of this technique can be invalidated by
renaming all the unrelated types in the obfuscated code
using distinct identifiers: this guarantees that no nested
type can have the same name of its enclosing type. In
Fig. 5 we present the example of a simple Java class M
containing a nested type N. In the obfuscated bytecode
both the enclosing type and the inner type have the
name M; hence, their decompilation returns an incorrect
source code. We were able to obtain the correct source
code by using our tool and, then, using an ordinary
decompiler for the source code translation. We obtained
a similar result by using, as required by the partial
implementation of our technique, an obfuscator in place
of our renaming tool to rename the identifiers of the
obfuscated program.

5.5. Overcoming obfuscation by overriding static methods

The obfuscation by overriding static methods works
by renaming, wherever possible, the static methods of
a class (respectively, instance methods) using the name
of instance methods (respectively, static methods)
defined in one of their superclasses and having the same
number and types of formal parameters.

A naive decompilation of the outcoming code pro-
duces Java classes where either static methods are
overridden by instance methods or vice-versa; both these
d Java class defines several field variables using illegal identifiers. The
ntifiers with legal ones.

Fig. 5. An example of obfuscation by renaming nested types. The original source code defines two classes, with the second being an inner class of the
first. In the obfuscated code, the inner class is renamed so as to have the same name of the container class. The deobfuscated code, obtained by using
the ADAM renaming tool, solves this ambiguity by renaming with different identifiers both classes.

Fig. 6. An example of obfuscation by overriding static methods. The original source code defines two classes, with the first being the parent of the
second. In the obfuscated code, the instance method of the child class is renamed so as to match the signature of the static method defined in the
parent class. The deobfuscated code, obtained by means of our renaming tool, solves this ambiguity by renaming with different identifiers both
methods.

70 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
two cases are not allowed by the Java language speci-
fication.

In Fig. 6 we present the example of two Java classes,
X and Y, with X being the parent of Y. These classes are
obfuscated by renaming with the same identifier m both
the instance method defined in Y and the static method
defined in X. The decompilation of the obfuscated code
returns an illegal source code where the instance method
m, formerly named n, overrides the static method m. The
application of our technique solves this ambiguity by
renaming the methods of X and of Y with different iden-
tifiers. Thus, the resulting code could be safely decom-
piled using a standard decompiler. The same result can
be achieved by renaming the identifiers of the obfus-
cated bytecode using an obfuscator tool.
5.6. Overcoming obfuscation by combined identifier

renaming techniques

The advanced malicious renaming techniques
described in Section 3.2 can be combined together and
applied to a set of Java classes in order to improve the
obscurity degree of the outcoming code and strengthen
its resilience to decompilation. Such a combination is
straightforward since the renaming strategy implemented
by each of these techniques applies to a distinct kind of
identifiers. In Fig. 7 we present as an example the obfusca-
tion of two Java classes, A and C using all these techniques
at the same time. The class A defines an inner class B and
three instance methods. The class C derives from the class
A and defines three member fields and a static method.

Fig. 7. An example of obfuscation by combining all the advanced malicious renaming techniques described in Section 3.2. The original source code
defines three classes: A, B, and C. In the obfuscated code, the entities of these three classes have been renamed according to all the different malicious
renaming strategies we considered. The processing performed by ADAM solves the potential ambiguities existing in this code by renaming with
different identifiers all the unrelated entities.

S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72 71
The resulting obfuscated code uses two legal identi-
fiers, a and b, to rename all the identifiers of classes
and methods existing in the obfuscation scope. In
details, the obfuscation by overloading unrelated
methods (see Section 3.2.2) is done by renaming both
the original methods X and Y of A to a. Obfuscation
by nested type renaming (see Section 3.2.4) is obtained
by renaming both the original class A and its inner
class B to a. Obfuscation by overriding static methods
(see Section 3.2.5) is achieved by renaming the static
method g, defined in the original class C, to a so as to
make it override the non-static method a defined in
its parent class. Finally, obfuscation by using illegal
identifiers (see Section 3.2.3) is obtained by renaming
the fields members of the original c class using illegal
identifiers.

The application of our technique solves all the poten-
tial ambiguities existing in the obfuscated code by
renaming all unrelated entities using distinct legal iden-
tifiers.
6. Conclusions

Obfuscation techniques based on the renaming of
identifiers are among the most used ones. They are all
based on the notion that, by properly renaming the iden-
tifiers of a target program, a decompiler could find it dif-
ficult to decompile the obfuscated program or it could
generate a source program that is either difficult to under-
stand or it is incorrect.

Indeed, all these techniques share one significant
advantage: the original names of the identifiers of the
obfuscated code are irremediably lost. This implies that
crackers will have more difficulties in understanding the
behavior of the program, as they will lack of this impor-
tant information.

Nevertheless, the other effects claimed by these tech-
niques are debatable. We showed that they can be coun-
tered by properly renaming again the identifiers of an
obfuscated program before its decompilation is issued.
This has been confirmed by the simple renaming

72 S. Cimato et al. / The Journal of Systems and Software 78 (2005) 60–72
technique we developed to this end. This technique over-
comes the effects of several advanced obfuscation tech-
niques based on malicious renaming. We developed a
tool for implementing our technique to rename the iden-
tifiers of a set of obfuscated classes. The experimentations
we conducted have shown that, by using such a tool, it is
possible to contrast the advanced obfuscation techniques
based on the malicious renaming of the identifiers.
Acknowledgments

We would like to acknowledge the anonymous
reviewers for their valuable suggestions and comments.

The work described in this paper has been supported
in part by the European Commission through the
IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects
only the author�s views, is provided as is and no guaran-
tee or warranty is given that the information is fit for
any particular purpose. The user thereof uses the infor-
mation at its sole risk and liability.
References

Ahpah Software, 2004. Sourceagain. Available from <http://www.
ahpah.com/product.html>.

Chan, J.-T., Yang, W., 2004. Advanced obfuscation techniques for
java byte-code. Journal of Systems and Software 71 (1–2), 1–10.

Chiba, S., Nishizawa, M., 2003. An easy-to-use toolkit for efficient
java byte-code translators. In: Proceedings of the Second Interna-
tional Conference on Generative Programming and Component
Engineering. Springer-Verlag, New York, Inc., pp. 364–376.

Cohen, G., Chase, J., Kaminsky, D., 1998. Automatic program
transformation with JOIE. In: 1998 USENIX Annual Technical
Symposium. pp. 167–178, Available from <citeseer.ist.psu.edu/
cohen98automatic.html>.
Collberg, C., Thomborson, C., Low, D., July 1997. A taxonomy
of obfuscating transformations. Technical Report 148, Department
of Computer Science, University of Auckland. Available from
<citeseer.ist.psu.edu/collberg97taxonomy.html>.

Collberg, C., Thomborson, C., Low, D., 1998. Manufacturing cheap,
resilient, and stealthy opaque constructs. In: Proceedings of 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL�98). Springer-Verlag, New York, Inc., pp.
184–196.

Collberg, C.S., Thomborson, C., 2002. Watermarking, tamper-proof-
ing, and obfuscation—tools for software protection. IEEE Trans-
actions on Software Engineering 28 (8), 735–746.

Dahm, M., van Zyl, J., Haase, E., 2003. Byte code engineering library.
Available from <http://jakarta.apache.org/bcel/>.

de Roo, A., van den Oord, L., 2003. Stealthy obfuscation techniques:
mislead-ing the pirates. Tech. Rep., Department of Computer
Science, University of Twente.

Eastridge Technology, 2004. Jshrink. Available from <http://www.
e-t.com/jshrink.html>.

Gosling, J., Joy, B., Steele, G., Bracha, G., 2000. The Java Language
Specification, second ed. Addison-Wesley.

Helseth Digital Systems Inc., 2001. Jobfuscator. Available from
<http://www.helseth.com/HJO.htm>.

Hoenicke, J., 2002. Java optimize and decompile environment.
Available from <http://jode.sourceforge.net/>.

Laffra, C., Lorch, D., Streeter, D., Tip, F., Field, J., 2000. Jikes byte-
code toolkit. Available from <http://www.alphaworks.ibm.com/
tech/jikesbt>.

Lafortune, E., 2004. Proguard. Available from <http://proguard.
sourceforge.net/>.

McAfee Research, 2003. Java binary enhancement tool. Available
from <http://opensource.nailabs.com/jbet/>.

Miecznikowski, J., Hendren, L., 2001. Decompiling java using
staged encapsu-lation. In: Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE�01). IEEE Computer
Society, pp. 368–374.

Miecznikowski, J., Hendren, L., 2002. Decompiling java bytecode:
problems, traps and pitfalls. In: Compiler Construction, 11th
International Conference, vol. 2304 of Lecture Notes in Computer
Science. Springer-Verlag, New York, Inc., pp. 111–127.

Zelix Pty Ltd, 2004. Klassmaster. Available from <http://www.zelix.
com/klassmaster/>.

http://www.ahpah.com/product.html
http://www.ahpah.com/product.html
http://citeseer.ist.psu.edu/cohen98automatic.html
http://citeseer.ist.psu.edu/cohen98automatic.html
http://citeseer.ist.psu.edu/collberg97taxonomy.html
http://jakarta.apache.org/bcel/
http://www.e-t.com/jshrink.html
http://www.e-t.com/jshrink.html
http://www.helseth.com/HJO.htm
http://jode.sourceforge.net/
http://www.alphaworks.ibm.com/tech/jikesbt
http://www.alphaworks.ibm.com/tech/jikesbt
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://opensource.nailabs.com/jbet/
http://www.zelix.com/klassmaster/
http://www.zelix.com/klassmaster/

	Overcoming the obfuscation of Java programs by identifier renaming
	Introduction
	Obfuscation techniques
	Our contribution
	Organization

	Java decompilers and obfuscators
	Obfuscating a Java program by malicious identifiers renaming
	Which identifiers can be renamed?
	Advanced malicious renaming techniques
	Overusing identifiers
	Overloading unrelated methods
	Introducing illegal identifiers
	Renaming nested types
	Overriding static methods

	Good renaming for contrasting malicious renaming
	Implementing (partially) good renaming with existing tools
	ADAM: a tool for good renaming

	Experiments with good renaming
	Overcoming obfuscation by overusing identifiers
	Overcoming obfuscation by overloading unrelated methods
	Overcoming obfuscation by illegal identifiers
	Overcoming obfuscation by nested types renaming
	Overcoming obfuscation by overriding static methods
	Overcoming obfuscation by combined identifier renaming techniques

	Conclusions
	Acknowledgments
	References

