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Abstract. Visual cryptography schemes allow the encoding of a secret image into n shares which are dis-
tributed to the participants. The shares are such that only qualified subsets of participants can “visu-
ally” recover the secret image. Usually the secret image consist of black and white pixels. In colored
threshold visual cryptography schemes the secret image is composed of pixels taken from a given set of
c colors. The pixels expansion and the contrast of a scheme are two measures of the goodness of the
scheme.

In this paper, we study c-color (k,n)-threshold visual cryptography schemes and provide a charac-
terization of contrast-optimal schemes. More specifically we prove that there exists a contrast-optimal
scheme that is a member of a special set of schemes, which we call canonical schemes, and that satisfy
strong symmetry properties.

Then we use canonical schemes to provide a constructive proof of optimality, with respect to the
pixel expansion, of c-color (n,n)-threshold visual cryptography schemes.

Finally, we provide constructions of c-color (2,n)-threshold schemes whose pixels expansion improves
on previously proposed schemes.
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AMS Classification: 94A60

1. Introduction

A visual cryptography scheme for a set P of n participants is a method to encode
a secret image into n shadow images in the form of transparencies, called shares,
where each participant in P receives one share. Certain subsets of participants,
called qualified sets, can “visually” recover the secret image, but other subsets of
participants, called forbidden sets, have no information on the secret image. A
“visual” recovery for a set X ⊆P consists of stacking the shares (transparencies)
given to the participants in X. The participants in a qualified set X will be able
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to see the secret image without any knowledge of cryptography and without per-
forming any cryptographic computation. Forbidden sets of participants will have
no information on the secret image.

This cryptographic paradigm was introduced by Naor and Shamir [6]. They ana-
lyzed the case of (k, n)-threshold visual cryptography schemes, in which a black
and white secret image is visible if and only if any k transparencies are stacked
together.

In order to implement a visual cryptography scheme, each pixel of the secret
image is subdivided into a certain number m of subpixels. Hence, there is a loss of
resolution proportional to m. The pixel expansion m is the most important mea-
sure of the goodness of a scheme. Obviously, schemes with smaller pixel expan-
sion are better. Optimal schemes are those that have the minimum pixel expansion.
Another important measure for the goodness of a scheme is the contrast, which is
a measure of the quality of the reconstructed image.

The work of Naor and Shamir has sparkled the “visual cryptography” research
vein, and a substantial amount of work has followed [6]. Most of the work done
focused on black and white visual cryptography, where the secret image to be
shared is composed of black and white pixels. Paper [2] is a recent work on black
and white visual cryptography where the reader can find more references.

In this paper, we are concerned with colored visual cryptography. Verheul and
Van Tilborg [7] were the first to consider colored visual cryptography, where the
pixels in the secret image are taken from a given set of c colors. Their model
assumes that, when superimposing pixels of different colors, one sees a special
black color. This artificial property can be simulated by subdividing each pixel into
c subpixels. Hence, in the model of [7] there is an additional loss of resolution of
a factor of c. The construction provided in [7] yields (k, n)-threshold schemes.

In [3] constructions of (n, n)-threshold colored visual cryptography schemes have
been provided. These schemes use the same model of [7] and improve the pixel
expansion of the (n, n)-threshold scheme of [7], at least for the value of n for which
a comparison is possible (the pixel expansion of the schemes in [7] is not explicitly
computed for all values of n).

In [8] constructions for (k, n)-threshold colored visual cryptography schemes
have been considered using a slightly different model: in order to avoid the addi-
tional loss of resolution due to the implementation of the artificial property
described above, it is required that schemes be implemented in such a way that pix-
els of different colors are never superimposed.

For the case k =n, the constructions of [8] improve on those of [3,7]. For other
values of k, there are cases where the constructions of [8] have a better pixel expan-
sion than those of [7] and also cases where the vice versa is true (we refer the
reader to [8] for a comparison).

In this paper, we construct schemes where pixels of different colors are never
superimposed. We provide a constructive proof of optimality for (n, n)-threshold
schemes, that is, our proof establishes a lower bound on the pixel expansion and
at the same time it gives schemes that achieve the lower bound. It turns out that
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these schemes are the same as the (n, n)-threshold schemes of [8], though they are
obtained with different techniques.

We also provide a characterization of (k, n)-threshold schemes with optimal con-
trast. More specifically we prove that there exists a scheme with optimal contrast
that belongs to a particular class of schemes. Schemes of such a class will be called
canonical schemes and they satisfy strong symmetry properties.

Finally, we provide new constructions of (2, n)-threshold schemes that improve
on the pixel expansion of both [7] and [8].

2. The Model

2.1. Definition of (k,n)-threshold colored schemes

A secret image, consisting of colored pixels, has to be shared among a set P=
{1, . . . , n} of participants. A trusted party, which is called the dealer and is not
a participant, knows the secret image. The dealer has to distribute shares to the
n participants in the form of printed transparencies. The subsets of P consisting
of at least k participants are called qualified sets. Participants in a qualified sub-
set have to be able to “visually” recover the secret image, by stacking together
their shares (transparencies) and holding the stacked set of transparencies to the
light. All other subsets, that is, those which have less than k participants, are called
forbidden sets. Participants in a forbidden set have not to be able to get any infor-
mation on the secret image from their shares (neither by stacking together the
transparencies nor by any other computation). Schemes where the forbidden and
qualified sets are defined as above are called (k, n)-threshold schemes. Sometimes
more general access structures are used, however, in this paper we are concerned
only with (k, n)-threshold schemes.

From now on, we concentrate on how to deal with just one pixel of the image.
In order to share the whole image, it is enough to repeat the sharing process for
each pixel of the image.

Each secret pixel is divided into m subpixels. This implies a loss of resolution:
the pixels of the reconstructed image will be m times bigger compared to the ones
of the original image. A share is a “version” of the secret pixel consisting of a par-
ticular assignment of colors to the m subpixels.

Each pixel (either in the original image or in the shares) has one of c colors
which we denote by {0,1, . . . , c−1}. We assume that there is a special black color
that we denote with the symbol �. So, the complete set of colors is {�,0,1, . . . , c−
1}. We remark that we still have only c colors in the original image; the special
black color is needed to cover up the noise introduced in the reconstructed image
in order to not reveal information to forbidden sets of participants.

In the model proposed in [7], it is assumed that the subpixels have the following
property: when two subpixels, of color i and color j , are put on top of each other
and held to the light, one sees color i if i = j , otherwise, i.e., if i �= j , one sees �.

Clearly, this is not what happens in reality, but it is possible to “simulate”
such a behavior by dividing each subpixel into c (sub)subpixels and representing
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a subpixel of color i by coloring with color � each of the c (sub)subpixels except
for the ith one which is colored with color i (see [7] for more details).

Encoding pixels as explained above the special property holds. However, this tech-
nique has two drawbacks: it requires a further loss of resolution and when all the
superimposed pixels are of color i, we only see one (sub)subpixel of color i (which
is a fraction of 1/c of the whole subpixel), while all the other (sub)subpixels are �.

In order to avoid these problems, one can design schemes where the shares are
such that pixels of different colors are never superimposed. That is pixels of a
superposition are either equal to some color i or they are equal to the special
black color �. Hence, we assume a model that does not allow the superposition
of pixels with different colors, except for the case where one of the colors is the
special black color �. This model is used also in [8].

The “generalized” or operator, defined in [7], takes two pixels of colors i and
j and returns i if i = j , and � if one of the colors is �. We denote this opera-
tor with gor. The gor operator is easily extended to (column) vectors of colors: it
returns i if all the color of the vector are i otherwise it returns �. We also extend
it to matrices: given a matrix M the gor(M) is the (row) vector with elements in
{�,0,1, . . . , c−1} obtained by letting entry i be the gor of column i of M. We also
use a generalized Hamming weight wi(�) for a vector of colors �, which gives the
number of colors in � that are equal to color i. Notice that w�(�) returns the
number of components equal to the special � color.

Given a matrix M and a set X of natural numbers, which represent participants,
we denote by M|X the matrix consisting of only the rows of M corresponding to
the integers in X, if they exists in M. For example, assuming that M has at least
6 rows, if X={2,3,6}, then M|X is the submatrix of M, consisting of the second,
the third and the sixth row of M.

Next we provide the definition of a colored visual cryptography scheme.

Definition 2.1 [7]. Consider a set of c colors {0,1, . . . , c − 1} and let h and � be
integers such that 0 ≤ � < h ≤ m. A c-color (k, n)-threshold visual cryptography
scheme for a set of n participants, consists of c collections (multisets) of n × m

matrices C0, . . .Cc−1, whose elements are colors or �, satisfying:

1. Given a qualified set X, |X|≥k, for any M ∈Ci , it holds that wi (gor(M|X)) ≥h

and wj (gor(M|X)) ≤� for any j �= i.

2. Given a forbidden set X, |X| < k, the c collections of |X| × m matrices, Di ,

i =0,1, . . . , c−1, consisting of M|X for each M ∈Ci , are equal.

To share a secret pixel of color i, the dealer randomly chooses one of the matri-
ces in Ci and distributes row j to participant j . Thus, the chosen matrix defines
the m subpixels in each of the n transparencies.

Since matrices of Ci are used to share pixels of color i we say that i is the pri-
mary color for Ci , while any other color i′ �= i is a secondary color for Ci .
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Property 1 of Definition 2.1 is called the contrast property because it guaran-
tees that the secret image will be reconstructed for a qualified set of participants.
Property 2 is called the security property because it guarantees that a forbidden
set of participants has no information has no information on the secret image. An
alternative definition for the contrast property is the one that guarantees the recon-
struction only for qualified sets X whose cardinality is exactly k:

1′ Given a qualified set X, |X|=k, for any M ∈Ci , it holds that wi (gor(M|X)) ≥ h

and wj (gor(M|X)) ≤ � for any j �= i.

This is without loss of generality since a qualified set of participants consisting of
more than k members can anyway reconstruct the image by simply using only k

shares and leaving out the remaining ones. When proving lower bounds, however
the two definitions are not equivalent: a lower bound proved using definition 1′
holds also in a model that uses definition 1 while the opposite is not true. Our
lower bounds hold in the model that uses definition 1′.

2.2. Base Matrices

Given a matrix B we denote by C(B) the set of matrices obtained by permut-
ing in all possible ways the columns of B. In most schemes, the c collections Ci

are obtained by fixing c matrices Bi and letting Ci =C(Bi). The matrices Bi are
called the “base matrices”. Base matrices constitute an efficient representation of
the scheme. Indeed, the dealer has to store only the base matrices and in order to
randomly choose a matrix from C(Bi) he has to randomly choose a permutation
of the columns of the base matrix Bi .

Notice that the security property for a base matrices scheme is equivalent to:
Given a forbidden set X, the matrices Bi |X, for i =0,1, . . . , c−1 are the same up
to a permutation of the columns.

2.3. Efficiency of Schemes

The goodness of a scheme is measured in terms of two parameters:

m : Pixel expansion. The number of subpixels used to represent each pixel of the
original image measures the loss of resolution from the original image to the
reconstructed one. One would like to have m as small as possible.

α : Contrast. The contrast is defined as (h−�)/m and is a measure of the quality
of the reconstructed image. One would like α to be as big as possible. (In an
ideal, but impossible, reconstruction one would have α =1, that is h=m and
�=0.)

Given a scheme S we denote with m(S) the pixel expansion of S, with h(S),
and �(S) the thresholds h and � of S and with α(S) the contrast of S.
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3. Contrast-optimal (k,n) Schemes

In this section, we are interested in (k, n)-threshold schemes with optimal (that
is, maximal) contrast. We will characterize contrast-optimal schemes and give
a linear program whose solution provides a scheme with optimal contrast.
Contrast-optimal schemes will be instrumental in providing the proof of the lower
bound on the pixel expansion in Section 4.

In order to find the optimal contrast we identify a subset of all the (k, n)-
threshold schemes; schemes belonging to such subset will be called canonical
schemes. We prove that there exists a canonical scheme with optimal contrast.
Hence, in order to find the optimal contrast, it suffices to find the canonical
scheme having the maximal contrast among the canonical schemes.

We start by providing a sequence of lemmas showing that there exist schemes
with optimal contrast whose base matrices satisfy strong symmetry properties.
Such a sequences of lemmas will culminate with Lemma 3.5, which characterizes
the canonical schemes. We start with a simple lemma which is a trivial generaliza-
tion of a result proved in Section 2.1 of [1].

Lemma 3.1. Let S be a c-color (k, n)-threshold scheme. There exists a c-color (k, n)-
threshold scheme S′, such that:

1. the c collections of S′ have the same size;

2. α(S)=α(S′);

3. m(S)=m(S′).

We omit the proof since the same proof of [1] for black and white schemes
works for colored schemes with a trivial generalization. The next lemma shows
that, given a scheme it is always possible to find a base matrices scheme with the
same contrast. Given two matrices A and B with the same number of rows, we
write A◦B to denote the concatenation of the two matrices.

Lemma 3.2. Let S be a c-color (k, n)-threshold scheme. There exists a c-color (k, n)-
threshold schemes S′, such that:

1. S′ is a base matrices scheme;

2. α(S)=α(S′).

Proof. By Lemma 3.1 we can assume, without loss of generality, that the collections
of matrices of S have the same cardinality, say z. Let C0 ={C0

1 ,C0
2 , . . . ,C0

z },C1 =
{C1

1 ,C1
2 , . . . ,C1

z }, . . . ,Cc−1 = {Cc−1
1 ,Cc−1

2 , . . . ,Cc−1
z } be the collections of matrices

of scheme S. Construct a new scheme S′ having the following base matrices:
Bi =Ci

1 ◦Ci
2 ◦ · · · ◦Ci

z, for each i =0,1, . . . , c−1. That is, the base matrix for color i

is obtained by concatenating all the matrices of the collection Ci .
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Scheme S′ satisfies the contrast property. Indeed, let X be a qualified set of par-
ticipants. By definition, for each matrix C ∈Ci we have that wi(gor(C|X)) � h(S).
Hence wi(gor(Bi |X)) � h′ where h′ =z ·h(S). By definition, for each matrix C ∈Ci

we have that wj(gor(M|X)) � �(S). Hence wj(gor(Bi)|X)) � �′ where �′ =z ·�(S).

Scheme S′ satisfies the security property. Indeed, let X be a forbidden set of partici-
pants. We have that Di ={Ci

0|X, . . . ,Ci
z|X} is the same for all i =0,1, . . . , c−1. Hence

matrices B0|X,B1|X, . . . ,Bc−1|X are the same up to a permutation of the columns.
Finally we have that

α(S′)= h(S′)−�(S′)
m(S′)

= z ·h(S)− z ·�(S)

z ·m(S)
=α(S).

The next lemma shows that given a scheme S with contrast α(S) it is always
possible to find a scheme with the same contrast and with the property that the
multiplicity of columns in the base matrices does not depend neither on the color
nor on the position of the � color in the columns.

Before giving the lemma we introduce some notation useful to describe formally
the above property. We denote by �n(w, i, j), with n,w, i, j ∈N, where 0 � w � n

and i is an integer whose binary representation has exactly w digits equal to 1,
the column vector of size n constructed as follows: consider the binary vector cor-
responding to the binary representation of i, with the least significant bit on the
first element of the column; then substitute each 1 with j and each 0 with �. In
the rest of the paper we will omit n since it is given by the context; so we write
�(w, i, j) instead of �n(w, i, j).

Let n = 5; the columns �(2,17,3),�(1,8,0),�(5,31,0), and �(0,0, j) are
shown in the following.
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Given a matrix M and a column �(w, i, j), we define µM(�(w, i, j)) as the
number of times that �(w, i, j) appears in M, i.e., the multiplicity of �(w, i, j) in
M. For brevity we also use µM(w, i, j)=µM(�(w, i, j)).

Define In
w as the set of binary numbers with n digits, w of which are

1. For example, we have that I 4
0 = {0}, I 4

1 = {1,2,4,8}, I 4
2 = {3,5,6,9,10,12},

I 4
3 ={7,11,13,14}, I 4

4 ={15}. Notice that, given n and w, it is possible to construct
column �(w, i, j), for some j , only when i ∈ In

w.

We are now ready to present the lemma.

Lemma 3.3. Let S be a c-color (k, n)-threshold scheme. There exists a c-color
(k, n)-threshold scheme S′, such that:



318 CIMATO ET AL.

1. S′ is a scheme with base matrices B0,B1, . . . ,Bc−1;

2. α(S)=α(S′);

3. For any fixed weight w and colors j and j ′, we have that µBj
(w, i, j ′) is constant

with respect to i ∈ In
w.

Proof. By Lemma 3.2 we can assume, without loss of generality, that scheme S
is a base matrices scheme. Let C0,C1, . . . ,Cc−1, be the base matrices of scheme
S. Let σ1, σ2, . . . , σn! be all the possible permutations of the set {1,2, . . . , n}.
Let C

j
σz be the matrix Cj with the rows permuted according to the permu-

tation σz. Construct a new scheme S′ having the following base matrices:
Bj =C

j
σ1 ◦C

j
σ2 ◦ · · · ◦C

j
σn! , for each j =0,1, . . . , c−1.

Let us first prove that scheme S′ satisfies the contrast property. Let X be a qual-
ified set of participants and let X′ be the set of integers such that C

j
σz |X =Cj |X′.

Since σz is a permutation, also X′ is a qualified set of participants. By definition,
matrix Cj satisfies wj(gor(Cj |X′)) � h(S). Hence, for any z, matrix C

j
σz satisfies

wj(gor(Cj
σz |x)) � h(S). Thus we have that wj(gor(Bj

X)) � h′ where h′ =n! ·h(S).

Similarly, we have that wj ′(gor(BX)) � �′ where �′ =n! ·�(S), for any j ′ �= j. Thus
the contrast property is satisfied.

Scheme S′ satisfies the security property. Indeed, let X be a forbidden set of
participants. Let j ′ and j ′′ be two colors. We have that Bj ′ |X = C

j ′
σ1 |X ◦ C

j ′
σ2 |X ◦

· · · ◦ C
j ′
σn! |X and Bj ′′ |X = C

j ′′
σ1 |X ◦ C

j ′′
σ2 |X ◦ · · · ◦ C

j ′′
σn! |X. For the security property of

S, for all z=1,2, . . . , n!, matrices C
j ′
σz |X and C

j ′′
σz |X are the same up to a permu-

tation of the columns. Hence, Bj ′ |X and Bj ′′ |X, for any j ′, j ′′, are the same up to
a permutation of the columns. Thus, the security property holds also for S′.

The two schemes have the same contrast, indeed we have that

α(S′)= h′ −�′

m′ = n! ·h(S)−n! ·�(S)

n! ·m(S)
=α(S).

It remains to prove property 3. Fix j,0 � j � c − 1, and thus a base matrix
Bj of the new scheme S′ and a base matrix Cj of the initial scheme S. Fix a
weight w. The following reasoning is valid for any column of weight w of matrix
Cj . Let φ be a column of Cj , whose weight is w and let i ∈Iw and j ′ be such that
φ =�(w, i, j ′). By construction, Bj contains exactly n! columns that derive from
φ, one for each permutation. Of these columns, exactly, w! · (n−w)! are equal to
�(w, i′, j ′) for each i′ ∈ Iw. Hence, for each column φ in Cj there will be in Bj

exactly w! · (n − w)! columns equal to �(w, i′, j ′) for each i′ ∈ Iw. Thus, fixed an
ı̄ ∈ Iw we have that

µBj

(w, ı̄, j ′)=|Iw| ·w! · (n−w!)=
(

n

w

)
·w! · (n−w!)

which is constant with respect to ı̄.
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The next lemma tells us that given a scheme, if we permute the colors we obtain
a new scheme for the permuted set of colors. For the sake of simplicity we give the
lemma only for base matrices schemes1, but it holds for any scheme.

Lemma 3.4. Let S be a c-color (k, n)-threshold scheme with base matrices
C0,C1, . . . ,Cc−1. Let σ be a permutation of the colors. Let S̄ be the scheme whose
base matrices are C̄0, C̄1, . . . ,Cc̄−1, where C̄σ(j) is obtained by letting C̄σ (j)(ı̄, ̄ )

be equal to σ(C(ı̄, ̄ )), for any possible row ı̄ and column ̄ . Scheme S̄ is a c-color
(k, n)-threshold scheme. Moreover, m(S)=m(S′), h(S)=h(S′) and �(S)=�(S′).

Proof. Trivial: we just renamed the colors.

Finally, the next lemma shows that given a scheme S with contrast α(S) it is
always possible to find a scheme with the same contrast and with the property that
the multiplicity of columns in the base matrices depends only on whether the color
is primary or secondary. Recall that, for a base matrix Cj , color j is the primary
color and any other color j ′ �= j is a secondary color.

Lemma 3.5. Let S be a c-color (k, n)-threshold scheme. There exists a c-color
(k, n)-threshold scheme S′, such that:

1. S′ is a scheme with base matrices B0,B1, . . . ,Bc−1;

2. α(S)=α(S′);

3. For any fixed weight w, we have that µCj
(w, i, j) is constant with respect to any

i ∈ In
w and any color j ;

4. For any fixed weight w, we have that µCj
(w, i, j ′) is constant with respect to any

i ∈ In
w and any colors j, j ′ such that j �= j ′.

Proof. By Lemma 3.3 we can assume, without loss of generality, that scheme S
is a base matrices scheme such that, in any base matrix, for any fixed w,j, j ′, we
have that µCj

(w, i, j ′) is constant with respect to i.
Let C0,C1, . . . ,Cc−1, be the base matrices of scheme S. Let σ1, σ2, . . . , σc! be

all the possible permutations of the set {0,1, . . . , c−1}. Let C
j
σz be the matrix Cj

obtained by permuting the colors according to the permutation σz. Construct a
new scheme S′ having the following base matrices:

Bj =C
σ−1

1 (j)
σ1 ◦C

σ−1
2 (j)

σ2 ◦ · · · ◦C
σ−1

c! (j)
σc! , for each j =0,1, . . . , c−1.

Observe that by Lemma 3.4, matrix C
σ−1

z (j)
σz is a base matrix for color i for a

scheme having h=h(S), �= �(S) and m=m(S). Using this observation, we can
prove that scheme S′ satisfies the contrast property. Indeed, for any qualified set
of participants X, we have that:
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Figure 1. Example used in the proof of Lemma 3.5.

1. wj(gor(Bj |X)) � h′ where h′ = c! · h(S), because each matrix C
σ−1

z (j)
σz satisfies,

by definition, wj(gor(Cσ
−1(j)
z

σz |X)) � h(S);

2. For j ′ �= j,wj ′(gor(B|X)) ≤ �′ where �′ = c! · �(S) because each matrix C
σ−1

1 (j ′)
σj

satisfies, by definition, wj ′(gor(Cσ
−1(j ′)
z

σz |X))≤�(S).

Scheme S′ satisfies the security property. Indeed, let X be a forbidden set of
participants. Let j ′ and j ′′ be two colors. We have that Bj ′ |X = C

j ′
σ1 |X ◦ C

j ′
σ2 |X ◦

· · · ◦ C
j ′
σc! |X and Bj ′′ |X = C

j ′′
σ1 |X ◦ C

j ′′
σ2 |X ◦ · · · ◦ C

j ′′
σc! |X. For the security property of

S, for all z=1,2, . . . , c!, matrices C
j ′
σz |X and C

j ′′
σz |X are the same up to permuta-

tion of the columns. Hence matrices Bj ′ |X and Bj ′′ |X, for any j ′ and j ′′, are the
same up to a permutation of the columns. Thus the security property holds also
for S′.

We have that

α(S′)= h(S′)−�(S′)
m(S′)

= c! ·h(S)− c! ·�(S)

c! ·m(S)
=α(S′).

To complete the proof, we need to prove properties 3 and 4. These properties
derive from the construction. To help the reader understand the argument we will
refer to Figure 1, where a schematic construction of B0 for the case of c = 3 is
shown.
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We are interested in computing µBj
(w, i, k). In the following, for the sake of

simplicity, we assume that j =0, but the reasoning is valid for any j .

Recall that B0 = C
σ−1

1 (0)
σ1 ◦ C

σ−1
2 (0)

σ2 ◦ · · · ◦ C
σ−1

c! (0)
σc! . Observe that in the construc-

tion of B0 we use (c − 1)! times each of the base matrices C0,C1, . . . ,Cc−1, and
every time we use base matrix Cj ′

, the primary color j ′ is mapped to color (j
which is) 0. In Figure 1, we use each matrix C0,C1 and C2 exactly 2 times each
since c = 3; for example, in permutations σ5 and σ6 we use matrix C2 since for
these permutations color 2 is mapped to 0.

µB0
(w, i,0)=

(c−1)!︷ ︸︸ ︷
µC0

(w, i,0)+· · ·+µC0
(w, i,0)

+· · ·+
(c−1)!︷ ︸︸ ︷

µCc−1
(w, i, c−1)+· · ·+µCc−1

(w, i, c−1)

This number does not depend on 0, i.e., does not depend on j , hence it is the same for
any Bj . This proves Property 3. Property 4 follows from the observation that the (c−1)!
times that we use a particular base matrix Cj ′

(mapping the primary color j ′ to 0), all
other colors are mapped to each other in all possible ways. In the example of Figure 1,
we have only 2 other colors that are mapped in the 2 possible ways. For example, for
matrix C0 and permutations σ1 and σ2, the primary color 0 is mapped to 0; in σ1 color
1 is mapped to color 1 and color 2 is mapped to color 2 while in σ2 color 1 is mapped
to color 2 and color 2 is mapped to color 1. The dotted arrows in Figure 1 show this
mapping (the mapping is shown for C0 and for C2).

Hence, we have that

µB0
(w, i,1)= (c−1)! · (µC0

(w, i,1)+µC0
(w, i,2)+· · ·+µC0

(w, i, c−1))

+(c−1)! · (µC1
(w, i,0)+µC1

(w, i,2)+· · ·+µC1
(w, i, c−1))

+· · ·
+(c−1)! · (µCc−1

(w, i,0)+µCc−1
(w, i,1)+· · ·+µCc−1

(w, i, c−2))

However, if we compute µB0
(w, i,2) it will be the same as µB0

(w, i,1), and this
is equal to µB0

(w, i, j ′) for any color j ′ �=0. Hence we have Property 4.

We refer to schemes satisfying Lemma 3.5 as canonical schemes. When finding a con-
trast optimal scheme we can restrict our attention only to canonical schemes: Indeed
Lemma 3.5 guarantees that there exists a canonical scheme with optimal contrast.

Given the symmetry properties of a canonical scheme, in such a scheme there is
no distinction among two secondary colors in the sense that if in a base matrix for
primary color j there is a column for a secondary color j1, then the base matrix
also has the same column for any other secondary color j2. Formally, we have
that µBj

(w, i, j1)=µBj
(w, i, j2) for any j1, j2 �= j. Moreover, we also have that the

position of the black color � is irrelevant in the sense that we have µBj
(w, i, j ′)=

µBj
(w, i′, j ′) for any i, i′ ∈ Iw. Finally we have that all these properties are valid
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for any base matrix. It is also true that the number of columns of the same
weight for the primary color is the same in all base matrices, that is µBj

(w, i, j)=
µBj ′

(w, i, j ′), for any j and j ′. Hence, to characterize a canonical scheme, we give
the following definition.

Definition 3.6. In a canonical scheme we define the multiplicities µ(p,w) and
µ(s,w) as follows:

• µ(p,w) is the number of columns having exactly w entries equal to the pri-
mary color, in any arbitrary but fixed positions, and the remaining ones equal
to �; Formally, µ(p,w)=µBj

(w, i, j), for any i, j . This is well defined because
of Property 3 of Lemma 3.5.

• µ(s,w) is the number of columns having exactly w entries equal to the second-
ary color, in any arbitrary but fixed positions, and the remaining ones equal
to �; Formally, µ(s,w)=µBj

(w, i, j ′), for any i, j, j ′ such that j ′ �=j. This is well
defined because of Property 4 of Lemma 3.5.

In order to find the canonical scheme with optimal contrast, we will formulate a
linear programming problem. The next lemma provides the objective function and
the constraints used in this formulation.

Lemma 3.7. A set of integers {µ(p, r),µ(s, r)|r = 0,1, . . . , n} is the set of multiplic-
ities of a c-color (k, n)-threshold scheme with pixel expansion m and contrast α if
and only if the following properties are satisfied:

1.
∑n

r=0 µ(p, r)

(
n

r

)
+ (c−1)

∑n
r=0 ·µ(s, r)

(
n

r

)
=m

2.
∑n−q+q ′

r=q

(
n−q

r −q ′
)

(µ(p, r) − µ(s, r)) = 0 for any q, q ′ such that

1 � q ′ � q � k −1

3.
∑n−k

r=0

(
n−k

r

)
(µ(p, k + r)−µ(s, k + r))=α ·m

Proof. We start by assuming that {µ(p, r),µ(s, r)|r =0,1, . . . , n} are the multiplic-
ities of a c-color (k, n)-threshold scheme with pixel expansion m and contrast α

and we prove that Properties 1–3 are true.
The pixel expansion m is given by the number of columns in any base matrix.

Fix a base matrix; the number of columns containing the primary color is∑n
r=0 µ(p, r)

(
n

r

)
, while for each of the secondary colors the number of columns

in the base matrix is
∑n

r=0 ·µ(s, r)
(

n

r

)
. Hence Property 1 holds.

Next, we prove Property 2. Let C0,C1, . . . ,Cc−1 be the base matrices of the
scheme. Fix a color j and consider a column φq of size q, where 1 � q � k − 1
consisting of entries of color j and �. Let q ′ =wj(φ

q), that is the Hamming weight
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of φq with respect to color j . Fix q rows of matrices C0,C1, . . . ,Cc−1. For the
sake of simplicity, consider the first q rows, but the reasoning is valid for any
q rows. Let X be the set of integers corresponding to these rows, that is X =
{1,2, . . . , q}. For j ′ = j the multiplicity of φq in Cj |X, is

∑n−q+q ′
r=q

(
n−q

r −q′
)
µ(p, r).

Indeed, in a column of weight r in Cj , r −q ′ entries of color j can be placed in
the last n − q rows in

(
n−q

r −q′
)

ways. Similarly, for j ′ �= j , the multiplicity of φq in

Cj ′ |X is
∑n−q+q ′

r=q

(
n−q

r −q′
)
µ(s, r).

To satisfy the security property, the above quantities must be equal, and thus
Property 2 holds.

Now, we prove Property 3. Let X be a qualified set of participants. Fix a color
i and consider the matrix M =Ci |X, where Ci is the base matrix for color i. The
gor(M) contains

n−k∑
r=0

(
n−k

r

)
µ(p, k + r)

pixels of the primary color i and

n−k∑
r=0

(
n−k

r

)
µ(s, k + r)

pixels of any secondary color j .
By the contrast property it must hold that

n−k∑
r=0

(
n−k

r

)
(µ(p, k + r)−µ(s, k + r))=α ·m.

Now assume that Properties 1–3 are true. We have to prove that {µ(x, r)|x =“p”,
“s” and r = 0,1, . . . , n} are the multiplicities of a c-color (k, n)-threshold scheme
with pixel expansion m and contrast α. By property 1, we have that the pixel
expansion is m. By Property 2, we have that the security property is satisfied and
by Property 3 we have that the contrast property is satisfied and that the contrast
is α.

Using Lemma 3.7 we can formulate the problem of finding the optimal contrast
of a canonical c-color (k, n)-threshold scheme in terms of a linear programming
problem. We define the following variables: xi = µ(p, i)/m and yi = µ(s, i)/m for
i =0,1, . . . , n. Properties 1–3 of Lemma 3.7 give the following linear programming
problem.
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Maximize:

α =
n−k∑
r=0

(
n−k

r

)
(xk+r −yk+r )

Subject to:
n∑

r=0
xr

(
n

r

)
+

n∑
r=0

(c−1) ·yr

(
n

r

)
=1

n−q+q ′∑
r=q ′

(
n−q

r −q ′
)

(xr −yr)=0 for any q, q ′ such that

1≤q ′ ≤q ≤k −1

Notice that since the coefficients of the above linear programming problem are
rational numbers (actually, they are integers), the values of the xi ’s and the yi ’s of
an optimal solution are also rational numbers. Hence, given an optimal solution
to the above linear programming problem, it is always possible to find a suitable
m in order to get the µ’s and thus a scheme with optimal contrast.

Example 3.8. The following linear programming problem is for the 3-color (3,4)-
threshold canonical scheme with optimal contrast.

Maximize:

α =x3 +x4 −y3 −y4

Subject to:

x0 +4x1 +6x2 +4x3 +x4 +2y0 +8y1 +12y2 +8y3 +2y4 =1

x1 +3x2 +3x3 +x4 −y1 −3y2 −3y3 −y4 =0

x1 +2x2 +x3 −y1 −2y2 −y3 =0

x2 +2x3 +x4 −y2 −2y3 −y4 =0

The solution to the above linear programming problem gives x1 = y3 = 1/14,
x4 =2/14, all other variables equal to 0 and α = 1/14. Setting m = 14 we obtain
µ(p,4)=2,µ(p,1)=1,µ(s,3)=1 and the remaining µ’s equal to 0. The base matri-
ces of the corresponding 3-color (3,4)-threshold canonical scheme are:

C0 =




0 0 1 1 1 � 2 2 2 � � � � 0
0 0 1 1 � 1 2 2 � 2 � � 0 �

0 0 1 � 1 1 2 � 2 2 � 0 � �

0 0 � 1 1 1 � 2 2 2 0 � � �




C1 =




1 1 0 0 0 � 2 2 2 � � � � 1
1 1 0 0 � 0 2 2 � 2 � � 1 �

1 1 0 � 0 0 2 � 2 2 � 1 � �

1 1 � 0 0 0 � 2 2 2 1 � � �






OPTIMAL COLORED THRESHOLD VISUAL CRYPTOGRAPHY SCHEMES 325

Table 1. Optimal contrast values α obtained resolving the linear programming problem given above.

n

3 4 5 6 7 8

k α m α m α m α m α m α m

2 1/7 7(8) 2/15 15(11) 1/8 24(14) 3/25 50(17) 2/17 85(18) 16/133 133(20)

3 1/10 10(10) 1/14 14(18) 1/8 18(24) 1/20 60(30) 4/87 87(36) 5/119 119(42)

4 – – 1/23 23(23) 1/42 42(45) 1/50 100(72) 3/190 190(105) 2/145 435(144)

5 – – – – 1/46 46(46) 1/84 84(90) 1/132 132(144) 1/152 304(210)

6 – – – – – – 1/95 95(95) 1/206 206(210) 2/579 579(384)

7 – – – – – – – – 1/190 190(190) 1/412 412(420)

8 – – – – – – – – – – 1/511 511(511)

The corresponding pixel expansion m are compared with the pixel expansion [8], which is
reported in parentheses.

C2 =




2 2 0 0 0 � 1 1 1 � � � � 2
2 2 0 0 � 0 1 1 � 1 � � 2 �

2 2 0 � 0 0 1 � 1 1 � 2 � �

2 2 � 0 0 0 � 1 1 1 2 � � �




Table 1 shows the optimal contrast values α and the corresponding values for
the pixel expansion m obtained as solutions to the above linear programming
problem, for the cases k = 2, . . . ,7 and k � n � 8 and c = 3. It is worth to notice
that, in some cases (reported in boldface in Table 1), the canonical schemes have
better pixel expansion than the schemes proposed in [8], which in turn improved
on the ones in [7].

4. Contrast-optimal (n,n)-Threshold Schemes and Optimal Pixel Expansion

In this section, we deal with the case k = n, for any n ≥ 2. We first compute
the optimal contrast and then use this result to prove a lower bound on the
pixel expansion. The arguments used in the proof provide also a construction of
schemes that achieve the lower bound on the pixel expansion. It turns out that
these schemes are the same as the ones of [8]. Hence, we also prove that the
schemes of [8] are optimal with respect to the pixel expansion.

The next lemma provides crucial properties of contrast-optimal schemes.
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Figure 2. Submatrices Ri
j .

Lemma 4.1. For a canonical c-color (n, n)-threshold scheme S with optimal contrast,
the following properties hold for i =0,1, . . . , 	n/2
:

1. µ(s, n−2i)=0,
2. µ(s, n−2i −1)=µ(p,n)

3. µ(p,n−2i −1)=0
4. µ(p,n−2i −2)=µ(p,n). Moreover µ(p,n)=h(S).

Proof. Let C0, . . . ,Cn−1 be the base matrices of scheme S and let h = h(S).
Assume that n is even and refer to Figure 2 part a; the figure provides an alterna-
tive way of looking at all the equations specified in Properties 1–4 of the lemma.
Notice that for n odd the only thing that changes is the last equation in the
sequence (see Figure 2 part b), but the reasoning is exactly the same, so we will
only consider the case n even.

Let us first look at the equations on the dotted path in the figure; we have labeled
these equations E0, . . . ,En−1. We proceed by induction on the equation subscript
number. The base case is equation E0. Equation E0 is µ(p,n)=h and this is true
because each column consisting of n elements equal to the primary color recon-
structs a pixel of the primary color for a qualified set of participants. Now assume
that equation Ei is true, we need to prove that equation Ei+1 is true. There are two
possible cases: one is that equation Ei is in the left column, and the other is that
equation Ei is in the right column (the reasoning however is the same). Let us con-
sider the case when the equation is on the left column. This means that equation Ei

is µ(p,n− i)=h and equation Ei+1 is µ(s, n− i −1)=h. By the inductive hypothesis
we assume that µ(p,n− i)=h. We need to prove that µ(s, n− i −1)=h. This is true
by the security property. Indeed consider a color j1. Since µ(p,n− i)=h>0, matrix
Cj1 contains h copies of column �(n− i, z, j1), for any z∈In−1. Fix one such column
φ (the reasoning applies to any column). A forbidden set must not be able to dis-
tinguish matrix Cj1 from another matrix Cj2 , for j2 �= j1. This means that in Cj2 we
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need to have all the columns that we can obtain by not considering one element equal
to j1 of φ, that is by substituting one element of φ with the special color �. The col-
umns so obtained consists of n− i −1 elements equal to j1 and the remaining ones
equal to �. There are µ(p,n − i) such columns, hence µ(s, n − i − 1) = µ(p,n − i)

and thus µ(s, n − i − 1) = h. The case when equation Ei is in the right column is
symmetric (exchange p with s) and thus the proof is similar.

It remains to prove the equations of Figure 2 that are labeled with Z0, . . . ,Zn−1.
For any i = 0, . . . , n − 1 equation Zi can be proved from equation Ei by using
the following general argument: if a column is present in all base matrices, then
it can be deleted from all base matrices obtaining a scheme with a better contrast.
So, let us assume that equation Ei is true, we need to prove that equation Zi is
true. Again, we need to consider the two cases, one, where Ei is in the left col-
umn and the other where Ei is in the right column. Let us consider the case, when
Ei is in the right column. Equation Ei is µ(s, n− i)=h. Assume by contradiction
that µ(p,n− i)= r, with r >0. This means that any base matrix has columns with
weight n− i both for the primary color and for the secondary colors, which implies
that these columns are present in all base matrices. The are min {r, h} such col-
umns that can be deleted from all base matrices obtaining a scheme with a better
contrast, which is impossible since the scheme we have started with, has optimal
contrast. Hence it must be µ(p,n− i)=0. The case when Ei is in the left column
is symmetric and thus the proof is similar.

We are now able to compute the optimal contrast. In such a computation we
will use the following equality. For any n≥2,

n−1∑
s=0

(−1)s
(

n

n− s

)
= (−1)n−1 (1)

The above equality is derived from the following well known equality ([4], page
165), which holds for any integers, r, z, with r >z:

z∑
s=0

(
r

s

)
(−1)s = (−1)z

(
r −1

z

)
.

For z=n−1 and r =n, and using
(

n

k

)
=
(

n

n−k

)
the above equality becomes (1).

Lemma 4.2. The optimal contrast of a c-color (n, n)-threshold scheme is

αopt =
{

1
c·2n−1−1

, if n is even
1

c·2n−1−c+1
, if n is odd

Proof. Let S be a canonical c-color (n, n)-threshold scheme with optimal con-
trast. Let mαopt = m(S), hopt = h(S), �opt = �(S), and αopt = α(S).
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By definition we have that αopt = (hopt − �opt)/(mαopt). By Lemma 4.1 we have
that �opt =0 and since by definition we have hopt =µ(p,n), it follows that

αopt = µ(p,n)

mαopt

. (2)

Next we compute mαopt and then we plug in the obtained value in the preceding
equation in order to get the theorem.

By definition of the µ’s we have that

mαopt =
n∑

z=1

(µ(p, z)+ (c−1)µ(s, z))

(
n

z

)

Using Lemma 4.1, we can rewrite mαopt as

mαopt =µ(p,n)

[(
n

n

)
+ (c−1)

(
n

n−1

)
+
(

n

n−2

)
+ (c−1)

(
n

n−3

)

+· · ·+ (c−1)(n−1)mod 2
(

n

1

)]
(3)

Next, we distinguish the two possible cases: n even and n odd. The proofs are
similar but a few details change so for the sake of an easy reading we provide the
two cases separately.

Case n even. We have that:

n/2−1∑
j=0

(
n

2j +1

)
=2n−1 (4)

Indeed, using the known equality
(

n

k

)= ( n−1
k

)+ ( n−1
k −1

)
we have that:

n/2−1∑
j=0

(
n

2j +1

)
=

n/2−1∑
j=0

[(
n−1
2j +1

)
+
(

n−1
2j

)]

=
n−1∑
j=0

(
n−1

j

)
=2n−1

Since n is even, Equation (3) can be written as

mαopt =µ(p,n)

((
n

n

)
+ c

(
n

n−1

)
−
(

n

n−1

)
+
(

n

n−2

)
+· · ·+

(
n

2

)
+ c

(
n

1

)
−
(

n

1

))

=µ(p,n)

(
n−1∑
s=0

(−1)s

(
n

n− s

)
+ c

n/2−1∑
s=0

(
n

n− (2s +1)

))

By using (1) we have
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mαopt =µ(p,n)


(−1)n−1 + c ·

n/2−1∑
s=0

(
n

n− (2s +1)

)


By using (4) we have that

mαopt =µ(p,n)(−1+ c2n−1)

By plugging in the above value of mαopt in Equation (2) we have the Lemma for
the case of n even.

Case n odd. We have that

n−1
2 −1∑
j=0

(
n

2j +1

)
=2n−1 −1 (5)

Indeed, using the known equality
(

n

k

)= ( n−1
k

)+ ( n−1
k −1

)
we have that:

n−1
2 −1∑
j=0

(
n

2j +1

)
=

n−1
2 −1∑
j=0

[(
n−1
2j +1

)
+
(

n−1
2j

)]

=
n−2∑
j=0

(
n−1

j

)
=2n−1 −1

Since n is odd, equation (3) can be written as

mαopt =µ(p,n)

((
n

n

)
+ c

(
n

n−1

)
−
(

n

n−1

)
+
(

n

n−2

)
+· · ·+ c

(
n

2

)
−
(

n

2

)
+
(

n

1

))

=µ(p,n)




n−1∑
s=0

(−1)s

(
n

n− s

)
+ c

n−1
2 −1∑
s=0

(
n

n− (2s +1)

)


By using (1) we have

mαopt =µ(p,n)


(−1)n−1 + c ·

n−1
2 −1∑
s=0

(
n

n− (2s +1)

)

By using (5) we have

mαopt =µ(p,n)(1+ c(2n−1 −1))

By plugging in the above value of mαopt in Equation (2) we have the Lemma for
the case of n odd.

Finally, we are able to provide a lower bound on the pixel expansion.
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Theorem 4.3. The pixel expansion of a c-color (n, n)-threshold scheme, for any c,
n � 2, is lower bounded by

m �
{

c ·2n−1 −1, if n is even

c ·2n−1 − c+1, if n is odd

Proof. Let αopt be the contrast of a contrast-optimal c-color (n, n)-threshold
scheme. Since for any c-color (n, n)-threshold scheme with contrast α, it holds that
α � 1/m and α � αopt, we have that m � 1/αopt. The lemma follows from Lemma
4.2.

Lemma 4.1 gives also a construction method for c-color (n, n)-threshold schemes.
Indeed, once we have fixed an arbitrary value for µ(p,n), Lemma 4.1 gives the val-
ues for all other multiplicities of the scheme. In order to get the best pixel expan-
sion we choose µ(p,n)=1. For such a choice, we can give the following construc-
tion of a c-color (n, n)-threshold. Such a scheme has optimal pixel expansion.

Construction 4.4. The base matrices of a c-color (n, n)-threshold scheme with opti-
mal pixel expansion can be constructed as follows. Fix any color i; base matrix Ci

consists of the following columns:

1. for r =0,1, . . . , �n/2�−1 include the
(

n

2r

)
columns having 2r entries equal to �

and the remaining ones of color i;

2. for any color j �= i, for r =0,1, . . . , �n−1
2 �−1 include the

(
n

2r −1

)
columns having

2r −1 entries equal to � and the remaining ones of color j ;

Example 4.5. For c = 3 and n = 4 the base matrices of the scheme obtained with
Construction 4.4 are provided below. For such a scheme m=23 and α =1/23.

C0 =




0 1 1 1 � 2 2 2 � � 0 0 � 0 � � � � 1 � � � 2
0 1 1 � 1 2 2 � 2 � 0 � 0 � 0 � � 1 � � � 2 �

0 1 � 1 1 2 � 2 2 0 � 0 � � 0 � 1 � � � 2 � �

0 � 1 1 1 � 2 2 2 0 � � 0 0 � 1 � � � 2 � � �




C1 =




1 0 0 0 � 2 2 2 � � 1 1 � 1 � � � � 0 � � � 2
1 0 0 � 0 2 2 � 2 � 1 � 1 � 1 � � 0 � � � 2 �

1 0 � 0 0 2 � 2 2 1 � 1 � � 1 � 0 � � � 2 � �

1 � 0 0 0 � 2 2 2 1 � � 1 1 � 0 � � � 2 � � �




C2 =




2 0 0 0 � 1 1 1 � � 2 2 � 2 � � � � 0 � � � 1
2 0 0 � 0 1 1 � 1 � 2 � 2 � 2 � � 0 � � � 1 �

2 0 � 0 0 1 � 1 1 2 � 2 � � 2 � 0 � � � 1 � �

2 � 0 0 0 � 1 1 1 2 � � 2 2 � 0 � � � 1 � � �
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5. Construction of (2,n) Threshold Schemes

In this section, we describe a new technique to construct c-color (2, n)-threshold
schemes. The pixel expansion of our schemes is better than that of the schemes in
[7,8].

Let us start by making some considerations on the structure of the base matri-
ces Ci, i =0,1, . . . , c−1, describing a (2, n)-threshold schemes. In any base matrix
Ci we can identify c portions (submatrices), each corresponding to color j , for
j =0,1, . . . , i, . . . , c−1, and consisting of all the columns that contain color j and
possibly �, i.e., columns equal to �(w, i′, j) for some weight w, and i′ ∈ In

w. Let
us denote those submatrices by Ri

j . Figure 3 provides a schematic representation
of such submatrices.

The construction we propose relies on the observation that the rows of the sub-
matrices Ri

j , j �= i, of Ci represent a Sperner family. A Sperner family S F over
a ground set G is a family S F= {A1, . . . ,At } of subsets of G such that Aj is
not a subset of Ai for i �= j (for more information see [5]). Let G = {g1, . . . , gmj

}
be a ground set of mj elements. Each row r, r = 1,2, . . . , n, of Ri

j represents the
subset Ar = {gq |Ri

j (r, q) = j} of G. To satisfy the security property, any two rows
of Ri

j must contain the patterns
[

j

�

]
and

[
�

j

]
and thus the subsets Ar constitute a

Sperner family over the ground set G. Therefore, the rows of Ri
j correspond to a

Sperner family and thus we can construct the matrices Ri
j starting from Sperner

families.
Next we provide a construction for (2, n)-threshold schemes, for n≥2.

Construction 5.1. Let b be an integer 1 � b � n, and let s = min{s′ :
(

S′
b

) ≥
n,1 ≤ s′ ≤ n}. Let G = {g1, . . . , gs} be a ground set of cardinality s. Let S F =
{A1, . . . ,A( S

b

)} be the Sperner family whose elements are all the subsets of G of

size b. Let B1, . . . ,Bn be any n elements of S F.
For each i =0,1, . . . , c−1, the constructions of the base matrices Ci are:

• Ri
i consists of b columns with all i’s, i.e., columns equal to �(n,2n −1, i), and

• Ri
j has, for r =1, . . . , n and q =1, . . . , s

Figure 3. Equations of Lemma 4.1.
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Ri
j (r, q)=

{
j, ifgq ∈Br

�, otherwise

Theorem 5.2. Construction 5.1 gives a c-color (2, n)-threshold scheme with pixel
expansion m=b+ (c−1) · s

Proof. Let us fix the parameter b and construct the matrices C0,C1, . . . ,Cc−1

according to Construction 5.1.
Let us first prove that the obtained scheme statisfies the contrast property.

Indeed any base matrix Ci has b columns with all entries of color i. Then,
for any qualified set X, |X| ≥ 2, consisting of at least two rows of Ci , it holds
that wi(gor(Ci |X)) = b. For the same X, and for any j �= i, it holds that
wj(gor(Ci |X))≤ b − 1). Indeed, the rows in Ri

j |X have b entries of color j . Since
they represent a Sperner family, any two rows of Ri

j |X must contain the patterns[
j

�

]
and

[
�

j

]
and thus wj(gor(Ci |X))≤b−1. Thus, the contrast property is satisfied

for h=b and �=b−1.
Let us now prove that the scheme S satisfies the security property. For such

a scheme, a forbidden set consists of at most a row of a base matrix Ci . By
construction, for each color i, each row of Ci , consists of b entries of color
j , j =0,1, . . . , i, . . . , c−1 and the remaining ones of color �. Hence they are
the same up to a permutation of the columns and thus the security property
holds.

Example 5.3. Let us construct a 3-color, (2,6)-threshold scheme. Let b = 2, then
s =4. The scheme obtained with Construction 5.1 has pixel expansion m=2+2 ·4=
10 and the base matrices are shown below.

C0 =




0 0 1 � 1 � 2 � 2 �

0 0 1 1 � � 2 2 � �

0 0 � 1 1 � � 2 2 �

0 0 � � 1 1 � � 2 2
0 0 1 � � 1 2 � � 2
0 0 � 1 � 1 � 2 � 2




C1 =




1 1 0 � 0 � 2 � 2 �

1 1 0 0 � � 2 2 � �

1 1 � 0 0 � � 2 2 �

1 1 � � 0 0 � � 2 2
1 1 0 � � 0 2 � � 2
1 1 � 0 � 0 � 2 � 2
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C2 =




2 2 0 � 0 � 1 � 1 �

2 2 0 0 � � 1 1 � �

2 2 � 0 0 � � 1 1 �

2 2 � � 0 0 � � 1 1
2 2 0 � � 0 1 � � 1
2 2 � 0 � 0 � 1 � 1




Clearly, the pixel expansion of a scheme obtained with Construction 5.1 depends
on the choice of b. As a particular case, it is worth to notice that fixing the param-
eter b=1 we obtain a family of c-color (2, n)-threshold schemes, with pixel expan-
sion m=(c−1) ·n+1. In this case, each base matrix Ci has a very simple structure:
Ri

i will have one column with all entries of color i, while for any color j, j �= i,
each Ri

j consists of the identity matrix containing color j on the diagonal and �

elsewhere.
Construction 5.1 provides a family of schemes, one for each possible choice of

b,1 ≤ b ≤ n. Once fixed a value for b, the pixel expansion of the corresponding
scheme is m=b+ (c−1)s where s =min{s′ :

(
s′
b

)≥n,1≤ s′ ≤n}.
Since we are interested in optimizing the pixel expansion we can choose the

value b that minimizes the resulting pixel expansion m. Table 2 shows the values
of such b, together with the corresponding s and the pixel expansion m, for c=3
and n≤ 200. Table 3 shows the values of the best pixel expansion m obtained by
varying b in Construction 5.1 for n = 2, . . . ,8 participants and c = 3,4,5 colors.

Table 2. Best values of parameters b and s, and corresponding pixel expansion m.

n b s m

2 1 2 5
3 1 3 7
4 1 4 9
5 2 4 10
6 2 4 10

7–10 2 5 12
11–15 2 6 14
16–20 3 6 15

21 2 7 16
22–35 3 7 17
36–56 3 8 19
57–70 4 8 20
71–84 3 9 21

85–126 4 9 22
127–200 4 10 24
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Table 3. Pixel expansion comparison of our construction with [8] and [7].

c=3 c=4 c=5

n Our [8] [7] Our [8] [7] Our [8] [7]

2 5 5 9 7 7 12 9 9 15
3 7 8 12 10 11 12 13 14 15
4 9 11 15 13 15 15 17 19 15
5 10 14 21 14 19 21 18 24 21
6 10 17 21 14 23 21 18 29 21
7 12 18 24 17 25 24 22 32 24
8 12 20 27 17 28 27 22 36 27

Moreover the table contains a comparison with the pixel expansion of the schemes
proposed in [8,7].

6. Conclusions

We have presented a characterization of contrast-optimal c-color (k, n)-threshold
visual cryptography schemes. We have identified a special class of schemes, called
canonical, that satisfy strong simmetry property. We proved that there exists a
canonical scheme achieving optimal contrast. Then we used canonical schemes to
provide a constructive proof of optimality, with respect to the pixel expansion,
of c-color (n, n)-threshold visual cryptography schemes. Finally, we provided con-
structions of c-color (2, n)-threshold schemes whose pixel expansion improves on
previously proposed schemes.

Several questions remain open. It would be interesting to find optimal (k, n)-
threshold schemes for k <n. Perhaps a first step in this direction would be to find
optimal schemes for the case k =2. Another interesting direction of research is the
exploration of new models which more realistically describe the superposition of
different colors. Most of the research done (including the one presented in this
paper) does not use the real properties of color superposition; it would be inter-
esting to explore new models that appropriately describe such properties of colors.

Notes

1. In this paper, we need this lemma only for base matrices schemes.
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