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Digital signatures have been proposed by several researchers as a way of preventing execution of

malicious code. In this paper, we propose a general architecture for performing the signature

verification as part of the kernel execution process. The proposed architecture does not require

any changein theinterpretersused to execute code and it can accommodate any executable format.

We also report on our implementation for the Linux operating system that focuses on ELF and

script executables. Experimental results show that our solution is of potential interest as virtually
no slowdown is experienced in the execution.
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1. INTRODUCTION

External intrusion is one of the most serious threats to the
security of asystemthat isconnected to anetwork. Typically,
an attacker exploits a bug of a network daemon to obtain
superuser privileges in the form of a shell session owned
by root.

Once this has been accomplished, the attacker has
completecontrol of thesystemand accesstoall thedatastored
on the machine. Obvioudly, if for some reason the machine
is rebooted, the attacker has to start again. Moreover,
the legitimate administrator of the system could detect the
ongoing intrusion, kill the shell session and terminate the
intrusion. If the software bug that allowed the intrusion has
been discovered, the system administrator can install a new
version of the network daemon and thus the attacker cannot
repeat the same attack on the machine; instead, he or she has
to find another weak daemon or exploit a weakness of the
new version of the same daemon (which, unfortunately, most
of thetimesis easy to do). Werefer to thisform of attack as
aweak intrusion attack.

A more serious threat comes from an attacker that, once
root privileges have been gained, tries to colonize the
system; i.e. the attacker tries to keep control of the machine
across reboots. We refer to this kind of attack as a strong
intrusion attack. One way of doing this is to install new
malicious code and/or modifying existing executables. This
has two main goals. First of all, every time the legitimate
system administrator executes the modified executables the
attacker regains control of the machine in the sense that
the malicious code is executed again. Second, the attacker
modifies tools used by the administrator in order to hide the

ongoing activity. For example, the i f confi g command
could be replaced by its corresponding malicious version,
which hides the promiscuous mode of a network card used
to sniff passwords and a fake | s command could hide
new executable files installed in a directory. Using these
techniques an attack could become resistant to reboots and
attack detection strategies.

In this work, we address the problem of strong intrusion
attacks and present a security architecture that prevents the
installation of malicious code that can be executed across
reboots. Thus, as a consequence, an attacker cannot use
the techniques described above to keep control of a machine
permanently. We stress that our work does not address the
genera problem of buggy software (e.g. daemons that are
subject to buffer overflow attacks) or, in general, the problem
of system intrusion. Our architecture does not guarantee that
an attacker cannot obtain root privileges but only that, once
the attack has been successful, the administrator can detect
it. In other words, we reduce the strong form of intrusion to
the weak one.

In Section 2, we present some of the techniques used by
the intruders for their malicious purposes. In Section 3,
we describe the most interesting proposed architectures
(only some of them are currently implemented) to protect
servers.  In Section 4, we propose our approach against
strong intrusion attacks. We have implemented the proposed
infrastructure and in Section 5 we show details of our
implementation; in particular, in Section 5.5 we illustrate
the management of a cache that has an important role to
make our solution practical. In Section 6, we propose
two solutions for a possible attack to our architecture. In
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Section 7, we discuss some open issues about the execution
of application in a UNIX-like system, and their implication
on our architecture. Finaly, in Section 8, we conclude the
paper by re-emphasizing the features of our approach and by
pointing out some open questions.

2. TECHNIQUESFOR INTRUSION

In this section, we describe the main techniques used by
intruders in order to gain and maintain the control of a
machine. We will stress the potential threat passed by each
technique so that we can later contrast it with the benefits of
our architecture.

2.1. Rootkits and code modification

A rootkit is a subset of common system commands and
daemons that have been corrupted in order to perform
malicious operations, hide their effects, and possibly set up
some ‘back-doors’. Once an intruder obtains the access to
avictim machine, he or sheinstalls the kit. Since malicious
executabl e files take the place of the widely used commands
(e.g. UNIX commands like | s, ps, etc.), execution of
maliciouscodeisperformed by legitimate users of the system
including the superuser. Weillustrate the following scenario
asan example. Anintruder installsanetwork sniffer [1] (e.g.
t cpdunp can be used for thispurpose) that periodically logs
the network traffic. In order to prevent the detection of hisor
her maliciousactivity, theintruder replacesthecommandsl| s
and ps with their respective corrupted counterparts, which
avoid the visualization of the sniffer’s log files, and hide the
sniffer’s process. Moreover, the intruder can also instal a
malicious version of thei f conf i g command, in order to
hide the network interfacesthat have been set in promiscuous
mode by the sniffer.

It is also technically possible to inoculate ‘ parasite code’
into executabl esof some binary format (without re-compiling
them), taking advantage of certain propertiesof their memory
image. In such a way, an intruder could even modify
applications that he or she cannot replace. However, this
technique is cumbersome, inefficient and it strongly depends
ontheoperating system, the hardware architecture, the binary
format and the memory layout of the target executables.

Moreover, many UNIX distributions include severa
scripts (written in several interpreted languages like Perl,
Python and so on) that automatically take care of set-up and
configuration procedures of the operating system. Malicious
modifications to these scripts could invalidate software re-
installations or upgrades avoiding the removal of malicious
code or misconfiguring the system, thus guaranteeing
backdoors and vulnerabilities for future intrusions.

These attacks cannot be detected easily and they can be
so invasive that recoveries often require the re-install ation of
the operating system from scratch.

2.2. Installation of untrusted software

Another threat to system integrity is the download and
installation of untrusted software. Many packages are

currently distributed over the network already in binary
format with no integrity check information, thus there is
no guarantee that the application has not been tampered.
Actually adigest of each file that can be downloaded is also
published so that the user can check the integrity of the file.
However, the corruption can affect thedigest aswell and even
if a secure and authenticated channel is used (e.g. by using
the TLS [2] protocol), the corruption of the files cannot be
detected. Inthese cases, it isvery difficult to realize what the
installed application really does.

2.3. Codeinjection via buffer overflows

Buffer overflow [3] is probably one of the most serious
software vulnerabilities. Some applications (e.g. daemons
that provide network services) do not take much care (or do
not take careat all) about the bounds of dataareasduring their
execution. Thus, it could happen that by providing anetwork
daemon with an amount of input datathat is greater than the
one assumed by its designer, some areas of the processimage
that are contiguousto the 1/0 buffer could be overwritten. In
this case, process data, behavior and even execution flow can
be altered. Attackers can take advantage of this weakness
by inserting malicious code into the process image, and then
by starting its execution. These attacks (and their related
defenses) have been studied following different approaches.
We invite the reader to consult [4] and [5] for details. As
mentioned above, the prevention of buffer-overflow attacks
isout of the scope of thiswork.

2.4. Run-timekerné corruption

Several UNIX-like systems allow to load into memory,
on demand, some sections of the kernel a run time.
These sections are named |oadable kernel modules (LKMs).
Usually, the modules provide new features to the system as
filesystems, device drivers and so on. Unfortunately, thereis
no way to prevent an intruder, who has gained root privileges,
from pushing malicious codeinto the kernel using aloadable
module. Asisshownin[6], an LKM could accessand modify
any kernel data structures, even the system call table. Thus,
for example, theintruder could redirect some process system
callstoitsown table and, in such away, he might modify the
behavior of the processes (even the verification tool s) without
modifying them.

Moreover, the devices that represent the memory of the
system (e.g. Linux's / dev/ knem), allow the processes
in user-space (executed with root privileges) to perform
read/write operations on the memory and can be used to
writemaliciouscodedirectly tothememory, or stealing secret
data and encryption keys. An example of this attack can be
foundin[7].

We point out that no verification strategy can be used
successfully if the kernel is not trusted. Thus, we make the
following assumptions:

(i) The kernel boots in a secure state (see Section 4.1).
(ii) The LKMs support is disabled.
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(iii) Write operationsto/ dev/ knemlike devicesare not
allowed.

3. RELATED WORK

In this section, we briefly discuss the most used solutionsto
prevent the execution of malicious code.

Database of known malicious code segment traditional
approach employed to detect malicious code is the one
followed by theusual virusdetectorslike someof theproducts
from McAfee[8] and Symantec[9]. Thesetoolsareprovided
with adatabase contai ning characteristic code-segmentsfrom
many known viruses. The user can configure the antivirus
to run periodically, and then the tool simply searches for
possible occurrences of the segmentsinto somefiles. Several
drawbacks of this approach are easily identified. First of
all, running the antivirus significantly affects the machine
performances; second, the database of segments has to be
upgraded constantly, and moreover, it is aways possible that
at any time, the detector will not recognize avirusthat has not
been yet (or will never be) covered by the antivirus provider.

Tripwire. Tripwire [10, 11] is one of the most widely
employed tools for the prevention of unauthorized modifi-
cation of files. Tripwire's approach comprisesin storing in
a secure database, a digest of each file currently present in
the file-system. Periodically, an agent computes the digests
of each filein thefile-system and checksit against the digest
stored in the secure database. If amismatch isfound an alert
message i s sent to the system administrator. The main weak-
ness of this approach is that malicious code activities are
allowed between two executions of the agent. If the agent
checks the file-system very often, then the performance of
the system could be heavily affected.

File-system-based approachA different approach moves
the task of checking the integrity of files and executables to
the file-system layer. This can be achieved in two ways.
The most obvious solution is to store the executables on
a read-only support (e.g. a CD-ROM or a DVD). Indeed,
several Linux distributions provide a live file-system on a
read-only support that can be used asarescue system. Inthis
case, the system administrator first installsand configuresthe
system and then he connects the system to the network. The
main drawback of this approach isthat software upgrading is
particularly cumbersome.

In a more sophisticated approach, each file is digitally
signed and the signature is checked by the file-system
layer each time the file is opened or read. Different
implementations of this concept (or of some of itsvariations)
exist (the Transparent Cryptographic File-System [12], the
Read Only Self-Certifying File-System [13] and the SUNDR
filesystem [14]), but we believe that the file-system approach
suffers due to some fundamental drawbacks that make it
unsuitable for our setting. Indeed, we would like to make
it possible for software developers and distributors to sign
their distributions so that system administrators can verify

the source of the software they install. If signature checking
occurs at the file-system level, the format of the signed files
must take into account the file-system that would eventually
host them and should take care of their verification. This
implies that software distributors and system administrators
must agree upon acommon file-system to handlethebinaries.
Worst till, even if acommon file-system is agreed upon then
it must be the only file-system used on the system. Indeed,
since executables are only verified at the file-system layer,
potentially malicious executablesthat live on adifferent file-
system will be executed without any check.

Integrity verification based on reflectionAn interesting
approach, outlined by Spinellis [15], consists of allowing
softwareto ‘ answer to some questionsabout itself’ in order to
realize possible unauthorized modifications. More precisely,
software to be verified is assumed to run on aremote device
(the client) with some expected environmental parameters
like the processor status, assumptions about the content of
the device's unused memory and predictions about processor
performance on known sequences of instructions. A trusted
entity, called server, periodicaly asks the client for the
cryptographic hash of some randomly chosen intervals of
memory and a summary of the processor status. Under
some assumptions and according to the knowledge over
the client environment, the server can realize whether the
client has been tampered with. Unfortunately, a ‘general-
purpose’ scenario (as could be a UNIX server connected to
the Internet) does not satisfy all assumptions stated in [15]
and making assumptions or predictions about the behavior
of the monitored software and the host system can be really
difficult, especialy if the set of clients is heterogeneous.
Another approach to verify that honest software is being
executed is given by Lie et al. [16]. This work proposes
an architecture that provides an idealized model of the
execution of a given application. This model is compared
with an actual model that comes from the execution of the
monitored software, and that includes* adversary’ operations.
Whenever the actual model (i.e. the real program) does any
transition that makes it inconsistent with theideal model, the
architecture guesses that the machine is under attack.
Moreover, we suggest the reader looks at [17] in order to
have more details on the devel opment of trusted software.

4. VERIFYING EXECUTABLESAT RUN TIME

In this paper, we follow the approach of adding digital
signatures (see [18] for more details) to executables and
verifying the signature as part of the execution process (and
not at the file-system level) as depicted in Figure 1.

The main advantage of using digital signatures is quite
evident. Executables can be signed off-line, i.e. when the
system is not connected to the network and is under the
complete control of the legitimate software issuer. Only in
this state (which we call secure mode) does the system have
accesstothe privatekey. Oncethe’ signature process’ of new
executablesends, the system can be switchedin normal mode,
i.e. re-connected to the network. Asit followstrivially from
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FIGURE 1. Verification at run time of executables.

the properties of asymmetric cryptography, the knowledge of
the private key is not necessary to verify the signature. Thus,
systemsin normal mode do not need to accessthe private key.
Moreover, in order to be protected, the private key could be
stored on an external memory device (e.g. asmart card), and
made available to the system only when it isin secure mode.

The idea of signing executables in order to be able to
authenticate an executable before it is executed is contained
in [19] as part of a comprehensive theory of authentication
in distributed settings. Based on the theory outlined in [19],
[20] describes the implementation of a secure authentication
system for the Taos operating system. There, inaway similar
to Kerberos[21], an authentication agent (one for each node
of the network) handles the checking of all credentials (from
processes wanting to access a printer to users seeking access
to a file) and applications access the local agent through
a well-defined interface. In [20], the authors describe the

implementation of the authentication system for Echo, a
distributed file-system extensively used within Taos. Our
approach follows the same line of thought and, motivated
by the need of combating intrusion detection, focuses on the
authentication of executables. Thisallowsustodispensewith
the need of an authenticating agent and the need to re-write
applications in order to interface with the agent. Aswe will
explainlater, our approach callsfor aminimal modification of
the operating system and does not affect existing and legacy
applications. The idea of signing executables has also been
applied to Java classes and Java archives [22, 23] in a PKIX
scenario [24]. However, the approach is only limited to the
Javavirtual machine.

Our approach instead follows the lead of van Doorn
et al. [25], who proposed a mechanism to sign and verify
Executable and Linking Format (ELF) binaries [26, 27] for
the Linux operating system. The approach of [25] is very
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close to ours and in the rest of this section we present the
architecture of [25] and stress some pointswhich we consider
as the weaknesses of their approach.

Signatures of ELF binaries are computed using the MD5
hash function and the RSA digital signature scheme [28]. A
signatureisadded to an EL F executable by storingitin anew
ELF segment.

When an executable is loaded, the ELF format manager
extracts the signature from the file and verifies each
referenced segment.  If the verification fails then the
execution is aborted.

The kernel verifies the signature of text segments and
provides a new system call: veri fy that should be caled
by user-spaceinterpreters(e.g.| d. so, sh)inorder to verify
dynamically loaded objects and script files. This choice,
however, implies that every interpreter should be modified
in order to request signature verification. Moreover, as
pointed out in [25], this approach increases the number
of points where the signature verification takes place, and
does not cover all those scripts that are given to interpreters
as input files (this problem is not solved by our solution
either).

Thearchitecture presented in [25] featuresacachein order
to avoid the verification of signatures at each execution.
Each file-cache entry contains the pathname of the cached
file and the result of the last verification. When the system
executes a cached file, it checks the related cache entry. If
that entry is still valid (i.e. the file has not been modified
since the last verification), the kernel will not verify the file
signature again. On the other hand, the kernel traces each
open invocation and, if the subject of thecall isacached file
then the corresponding entry is invalidated. Unfortunately,
since it is not possible to trace accesses to files stored in
remote file-systems, only files on local volumes can be
cached.

Before introducing our approach, we summarize some of
the aspects of the work of van Doorn et al. [25]:

(i) the kernel directly verifies the ELF binaries that are
loaded by the exec system call;

(ii) executable scripts and dynamic segments of ELF
binaries are verified in user-space by their respective
interpreters; and

(iii) in order to verify its executable files, each interpreter
hastoinvokethever i f y systemcall. Inother words,
dl interpreters(e.g. | d. so, thePerl interpreter) have
to be modified in order to verify and run signed
executable files.

4.1. Our approach

In our approach we follow the lead of [25] but we propose
a new and more flexible architecture. Indeed, we look
at the execution process at the kernel level and modify
it to introduce signature verification in a manner that is
independent of the format. More precisely, all verification
steps are performed inside the kernel by the handler of the
executableformat. The user space interpreters of the various

formats only perform the tasks they have been designed for.
This has several advantages.

(i) We can fit any executable format that is known to the
kernel into our architecture.
(it) All verification stepsareperformed at thekernel level.
(iii) Interpreters need not be modified.

Thus, our approach is not limited to one executable format
(e.g. ELF) and does not need to modify the user space
interpreters of the various formats. Moreover, we have to
remark that our approach failsin two notable cases: the first
case happenswhen the executabl e codeinside a shared object
is dynamically loaded by invoking the function dl open
of the | i bc library; the second case happens when an
interpreter executes code that is not handled by the kernel.

To validate our approach we also discuss the implemen-
tation of the architecture for the Linux operating system. In
Section 5.7, we describe the implementation issues we had
to address.

We emphasize two important assumptions on which we
based our work.

(i) Attheend of system bootstrap, the system is assumed
to be sane. The AEGIS [29] project proposes the
design of a secure bootstrap system with a high
assurance bootstrap process in which the integrity
of the kernel loaded at boot time is guaranteed.
In [30], an improvement to AEGIS called SAEGIS
has been proposed to protect users from malicious
administrators supporting a large set of operating
systems. We assume that our infrastructure lies on a
secure boot system like AEGIS and such that asystem
takescare of collecting (during thebootstrap) al public
keys required to verify all signed executable files.

(if) All types of executable files of any format have to
be signed before they are installed on the system.
The entity that distributes the package uses its private
key to sign all files that contain executable code and
each signature is appended to the corresponding file.
This approach perfectly fits the software distribution
scenario. Consider a magjor Linux distribution (e.g.
SuSE, RedHat, Debian, Mandrake) with its pair of
public/private RSA keys. When a new release of the
distribution is available, all executablefiles are signed
using the private key and then the signed executable
files along with the public key are released. Each
time the execution of an executable is requested, the
signature is checked by using the trusted public keys.

Since different formats of executable files are structured
and parsed in different ways, we provide a signing tool and
a verification procedure for each executable format. For
example, in order to alow the signature of scripts, we provide
the utility scri pt si gn to be used to sign a script and the
API functionver i f y for verifying signatures. We point out
that, as discussed in Section 5, our ver i fy, unlike the one
in [25] is not called by the user-space script interpreter (e.g.
shell, Perl) which, consequently, need not be modified since
our veri fy isinvoked by the kernel handler.
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Moreover, our proposed architecture satisfiesthefollowing
requirements.

(i) Integrity of executablefilesisverified at runtime. This
property guarantees that no untrusted executables is
executed by the system unless it is currently under
a successful attack. As we pointed out in the
Introduction section, we do not aim to make intrusions
impossible, but only to limit intrusions to transient
ones.

(ii) Signed executables are completely compliant with
non-verifying handlers (i.e. it must be possible to
execute a signed executable even on a system that
does not feature signature verification). This property
guarantees that executables can be signed by the
developers, and then used both on systems that
feature signature verification and on systems that
do not. Otherwise, developers should be forced to
release two versions of the same software which is
inconvenient.

(iii) Integrity verification is under the sole responsibility of
the kernel. In thisway, we keep the verification phase
inside atrusted zone and, moreover, we shall no longer
need to modify user-spaceinterpretersinorder to allow
them to verify the scripts.

(iv) Thereis no need to have any private key in memory
when the system is connected to the network and thus
potentially vulnerable to attacks. This property is
crucia otherwise developers would have to distribute
the private key along with the software. Moreover, if
the private key was present on the system an attacker
would be able to get it and sign his own malicious
code that would then be considered trusted by the
system. For the two reasons discussed above, we need
to use digital signatures and it is not possible to use
authentication algorithms that need the private key for
verification.

(v) Impact on usersand administratorsisminimal. Thisis
ageneral requirement for all security architectures as
otherwise users will not cooperate and administrators
will be reluctant to adopt the architecture. We observe
that our proposal is completely transparent to users
and only requires administrators to manage the list
of trusted public keys that are used to verify the
signatures.

4.2. Implementation strategy

When afile is executed, the kernel loads it in memory and
reads the magic number from thefile. This number specifies
the format of the invoked executable.

Using the magic number, the kernel looks for the
appropriate handler, and (if available) executesit.

The handler verifies the integrity of the current file. If
dynamic parts (e.g. shared objects) are present, they are
verified before they are merged in the process image.

We discuss, as an example, what happens when a signed
script is executed. On the basis of the script’s magic number

van Doorn ef al. This paper
user runs the bar shell script
the kernel loader searches
for the script handler
script handler
verifies bar

the kernel loads, verifies and runs:
(a modified) /bin/sh the standard /bin/sh
/bin/sh loads and /bin/sh loads bar
verifies bar
/bin/sh executes bar

FIGURE 2. Executing signed script bar in the two architectures.

(i.e. the sequence ‘#!" at the beginning of thefile), the kernel
executes the script handler that extracts the pathname of the
interpreter and then runs it providing, as a command-line
argument, the invoked script file. The interpreter might be,
for example, an ELF binary and so it will be independently
verified by its own handler. In our approach, the verification
of ascript fileis performed by the kernel script handler that
accomplishes it by invoking the veri fy procedure of the
format. In Figure 2, we describe the steps of the verification
of ashell script in our architecture and in the one proposed
by van Doorn et al. [25].

The main difference is that in our architecture the
verification is performed by the format handler within the
kernel. Instead in the architecture of van Doorn et al. [25]
the verification is performed by theinterpreter (i.e. sh inthis
case) that must be modified.

Working at the kernel level alows us to provide a catch-
all solution for executable formats (provided that they are
understood by the kernel) with the two notable exceptions
discussed previoudly. Instead in the approach of [25], it is
necessary to modify one-by-one all the interpreters in order
to add verification capabilities. This is a gigantic task as
there are several interpreters to be modified (e.g. | d. so for
ELF, shell interpreters and interpreters for script languages
like Perl) and each is avery complex object.

The execution of dynamic librariesis accomplished in the
same way: the kernel handler extracts pathnames of each
dynamic library used by the application, then it verifies each
library. If all verifications succeed, the process execution
is allowed (this procedure can be expensive and thus we
make the verification process more efficient using a caching
mechanism).

In Figure 3, we compare the verification steps for ELF
binaries performed by our scheme with the one of van Doorn
et al. [25]. Note that in our scheme the verification step for
both executables and libraries is performed by our handler
and then the normal execution continueswhileinvanDoorn’'s
scheme the verification process is performed by both the
kernel that verifies the executable and a modified | d. so
that verifies the referenced dynamic libraries.

As we can see, in our architecture, the signature
verification is aways performed by the kernel, thus
interpreters need no modifications.
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van Doorn et al.

This paper

user runs the foo ELF binary

the kernel loader searches
for the ELF handler

ELF handler verifies foo

ELF handler loads, verifies
and runs (a modified) 1d.so

ELF handler extracts pathnames

of dynamic parts of foo
(including 1ld.so) and
verifies them

1ld.so extracts pathnames
of dynamic parts of foo
and verifies them

foo is executed

FIGURE 3. Executing signed ELFf 0o in the two architectures.

ELF header

Program Header table

Segment 1

Segment 2

Segment n

Section header table
optional

ELF header

Program Header table

Segment 1

Segment 2

Segment n

Section header table

— keyidentifier entry

signature entry

L keyidentifier section

signature section

FIGURE 4. The format of unsigned and signed ELF files.

5. IMPLEMENTATION FOR LINUX

In this section, we discuss some aspects of our implemen-
tation for the Linux operating system. The goa of our
experimental work was to provide an implementation for
the case of ELF binaries and scripts as a proof of con-
cept. Obvioudly, our implementation can be easily accom-
modated with other executable formats (e.g. COFF, a.out).
Our implementation can be divided in two parts. First, we
modified the Linux kernel for the two formats in order to
add the verification capabilities. Second, we developed the
utilities(W f si gnandscri pt si gn) to add signaturesto
theexecutables. Our prototypefollowing theimplementation
choicesof [25] usesthe RSAREF [31] library and the PKCS7
[32] format for computing and encoding digital signatures.

5.1. TheELF format

The ELF [26, 27] format was developed to provide a binary
interface that is operating system independent. Three types

of ELF files have been identified:

(i) relocatable filesthat can be linked to have an
executable or a shared object file (these are the . o
files);

(ii) shared object fileshat can be used by the dynamic
linker to create a process image (these are the . so
files);

(iii) executable fileshat hold code and data suitable for
the execution.

An ELFfile starts with the EL F header, which is followed
by the program header table, the segments and the optional
section header table (see Figure 4).

The ELF header describes the organization of the file
and its fields, specifies the offsets of the program header
table and of the section header table, the size of an entry
of each header table and the number of entries in each
header table. The program header table has the information
needed to locate the segments of the file that contain data
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struct linux_binfmt {
struct linux_binfmt *next;
long *use_count;

int (*load_binary) (struct linux_binprm *, struct pt_regs *);

int (*lcad_shlib) (int fd);

int (*core_dump) (long signr, struct pt_regs *);

};

FIGURE 5. Thel i nux_bi nf nt structure.

required to create a process image. The program header
has an entry for each segment that specifies, among other
information, the location and the type of the segment. The
segment type specifies the purpose of the segment and how
it can be used by the loader. For the aim of this brief
overview, we are interested in load, dynamic and interpreter
segments. Load segmentsare mapped to the processmemory
image. They include text of executable files, data and so
on. Dynamic segments include references to other ELF
files that will be loaded into the process image; additional
ELF files could be loaded at run time by using either
the usel i b system call or the dl open library function.
The interpreter segment (it appears only once) contains the
reference to an interpreter, which is a program that alows
ELF executable files to load shared objects dynamically at
run time. The operating system retrieves the interpreter
and merges it with the process image. Since the interpreter
is loaded into a new process image, it is executed in
user-space.

On the one hand, the section header table has the
information required to locate the sections of the file that
are used for linking. The section header table has an
entry for each section that specifies the offset, the size of
the section and the type of section. The program header
table is required for executable and shared object files and
is optional for relocatable files. On the other hand, the
section header table is required for relocatable objects and
is optional for executables and shared objects. Moreover, by
inspecting executabl efilesgenerated usingthegc ¢ compiler,
we noticed that executabl e files always have a section header
which is always found at the end of the file.

5.2. Theprototype

Execution of processes is probably the main feature of an
operating system. In the Linux system, this feature is
performed by the execve system call.

The Linux kernel has the ability of executing files of
different binary formats [33]. Actually, the adjective binary
is misleading as some binary formats are not binary (e.g.
scripts are text files). Each binary format is associated with
amagic number that is found in the first few bytes of afile.
For example, scripts have magic number equal to ‘#!".

We crucially rely upon on a feature of the Linux kernel
that alows the registering of new handlers for binary
formats. A binary format is registered by executing the
regi ster_bi nfnt procedure passing as argument the

[ i nux_bi nfm struct (see[26] and [33] for details) filled
with pointers to the functions that are going to handle the
format.

Although it is possible to register a new binary format at
run time by providing animplementation in aloadable kernel
module, we strongly discourage this practice (for details, see
Section 5.2 on the security issues regarding loadable kernel
modules) and we suggest stetically linking this feature into
the kernel.

The Linux kernel mantans a linked list of
['i nux_bi nfnt structures, one structure for each
binary format understood by the kernel. Each structure con-
tains, among other fields (see Figure 5), pointersto functions
called | oad_bi nary, | oad_shl i b and core_dunp.
The function | oad_bi nary is used to load and execute
the binary file, while the function| oad_shl i b isinvoked
to load dynamic libraries. The third function cor e_dunp
isinvoked in case the execution aborts and an image of the
processisto be created. The execution of afileis performed
by the do_execve function that can be found in the file
f s/ exec. ¢ of theLinux kernel source tree.

The work of do_execve is very smple: on input
the pathname of an executable, the arguments and the
environment in which the file is to be executed, the function
do_execve scans the list format. For each format found
do_execve invokesthel oad_bi nar y function until one
isfound that is able to run the executable.

We concentrated on the ELF format for binary files
and on the kernel script handler. In order to have a
manageable experimental framework where signed and
unsigned executables can coexist, we introduced two new
executableformat handlers: the Worl dwide L oadable Format
(WLF) to be used instead of the ELF handler, and the
Signed Scripts (SSCRIPT) handler for our signed scripts.
It is understood that all our experiments could have been
conducted by extending the original formats but then the
whole set of executables present on the system would have
to be signed.

For example, we now take a brief look at how the
Linux kernel executes scripts. All the scripts start with
sequence ‘#! ', followed by the pathname of the interpreter
to be used. When the user runs an executable script, he
issues a command line that contains the script name as first
argument followed by a (possibly empty) list of arguments.
The kernel gets the user's command line and searches the
file indicated as first argument for the magic nhumber and
then it invokes the script handler. The handler extracts the
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interpreter namefrom thefile and re-buildsthe commandline
by adding at the beginning the pathname of the interpreter
that becomes the first argument of the new command line.
For example, suppose that the user typed the line scri pt
ar g1, andsupposethatscri pt isaBourneshell script, then
the resulting command lineis/ bi n/ sh scri pt argl.
Eventually, the kernel recursively executesthe newly created
command line.

In order to experiment with verifying handlers, we provide
a suite of simple tools to sign executables and to generate
keys. Thew f si gn application makes a WLF file from an
ELF executable or a shared library file. Thescri ptsi gn
works analogoudly with the script files. Thew f genkey
application randomly generatesapair of keysand storesthem
in the selected media

5.3. Signing and verifying WLF files

Our technique to sign ELF files is quite similar to the one
proposed in [25]. We areinterested only in the formatting of
an ELFfile from an execution point of view and thuswe only
consider the segments of an ELF file and not the sections.

When an ELF file has to be signed, thew f si gn utility
(that has been provided with the proper key pair) computes
a digest (using the MD5) of each file segment, and then
computes a digital signature of their concatenation. The
identifier of the public key (its MD5 representation) and
the computed signature are stored in two new ELF sections:
the identifier section and the signature
secti on. We will refer to the resulting signed executable
as aWLF file. In more detail, thewl f si gn tool extracts
the ELF header and fills an El f 32_Ehdr structure. We
only set three fields for the newly added sections: the field
sh_t ype carrying information about the type of the section
to SHT_NULL to denote a section to be ignored, the field
sh_of f set that will point to the offset at which the section
starts and the field sh_si ze that will contain the length of
the section in bytes. The Section Header Table of the ELF
file is extended by Wl f si gn with two new entries: the
identifier entry pointing to the identifier section that contains
the hash of the public key and the signature entry pointing to
the signature section that contains the digital signature. The
signature is encoded in the PKCS7 [32] format. The digital
signature is computed simply by computing digests of each
file segment, and then the signature algorithm (RSA, in our
case) on the concatenation of the digestsisrun. Our signing
tool can append adigital signatureto any ELFfile, including
dynamic libraries represented by shared object files (i.e. the
ones with extension . so). Besideswl f si gn that actually
computes the signature, we have implemented the following
utilities for the management of signed ELF files:

(i) W fread: this tool takes as input the name of
a signed ELF file and outputs the corresponding
signature, signer identifier and the referred shared
objects.

(ii) W f so: thistool takesasinput asigned ELF file and
outputs all shared objects required for the execution
of thefile.

(iii) Wl fveri fy: thistool takes as input the name of a
file in which a public key is encoded and the name
of a signed ELF file, verifies in the signed ELF file
the signer identifier and the signature with respect
to the given public key and outputs a message based
on the result of the verification.

5.3.1. The WLF handler

Aswe stated in Section 4, in order to preserve the generality
of our system, we chose not to modify thel d. so interpreter
and thus we have developed a handler for WLF executabl es.

The handler for the WLF binary format specifies a new
| oad_bi nary functionandanew | oad_shl i b function
and uses the same cor e_dunp function asELF.

Thel oad_bi nary function for WLF checks if the file
has the correct magic number (a WLF magic number has
been defined), then it asks the cache management module
for the i sTrust ed attribute. If i sTrusted is true
then the verification steps can be skipped else the signature
is verified and in case of success the cache management
module isinvoked in order to set thei sTr ust ed attribute.
The verification of the signature is performed by searching
for the segments that contain the digital signature and the
key identifier. Then for each shared object referred to in
a Dynam ¢ segment of the executable file the following
procedure is executed:

(i) acached copy of the shared object is searched for by
using the cache management module; if it is already
in cache then the procedure successfully ends;

(ii) for each shared object referred to in the Dynani ¢
segment insidethe current shared object the procedure
isrecursively executed; if theprocedurefailsfor oneof
the referred shared objects then the current procedure
fails too; and

(i) the signature verification process of the shared object
is performed; if the verification fails the procedure
fails, otherwise the procedure ends with success.

The procedure described above might enter into adeadl ock
if two shared objects have an entry inthe Dy nani ¢ segment
that refers each to the other. We have fixed this problem
by using a stack that stores all shared objects referred to
during the recursion. When a shared object is in the stack
its verification is not performed.

Then the | oad_bi nary of the WLF handler loads the
shared object interpreter specified by the | NTERP segment
(typicaly, | d. so) and checks recursively the executable.

We now point out a potential security vulnerability of the
Linux kernel.

5.3.2. Choosing dynamic libraries at run time

Besides the shared libraries specified in the executable, the
Linux kernel alows a process to dynamically load a shared
library during the execution. One way of doing this is to
invoke the usel i b system call specifying the path of the
shared library to be included. The usel i b system call in
turnsinvokesthe function| oad_shl i b for the handler for
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the specific format of the shared library. If the shared library
is a WLF library then the verification of the signature is
performed. In particular, the WLF | oad_shl i b function
is called and we added the verification at the beginning of
this function.

A second way involves the use of the C-library function
dl open. Thisfunction usesthel d. so interpreter to load
the library which is then directly memory-mapped. In this
way, our checking of signatures is bypassed and malicious
code could be executed. We stress that most of the work of
loading a shared object by dl open is done at the user level
and thus escapes the checking of the kernel as opposed to
usel i b, which guarantees that the loading is performed by
the kernel. At the same time, we observe that the dl open
mechanism is the one mostly used by applications needing
shared libraries and thus it is an important open problem to
extend our architecture to deal also with dl open. One easy
way would be to patch | d. so but we would like to see a
more general approach.

Asis clear from the discussion above, in our architecture
the verification of the binaries is performed at the
operating system level. This has the advantage of making
our approach completely transparent to the application
developer.

ExaMPLE. We now give an example of how to create and
install a signed executable, starting from a standard Linux
distribution. We stress that this example is given only for
experimental purposes since the goal of our architecture is
the realization of trusted Linux distribution that has to be
installed from scratch along with a static kernel. Instead
our example explains how to add one signed executable to
an existing Linux system and is to be considered only for
didactic purposes.

Firgt, it is necessary to generate the RSA key pair and for
this purpose, we run the command Wl f genkey asfollows:

#->w f genkey W ftest 1024 sdfj dhsfdj shfdsjk

by passing on the command line the length of the key and
some random datato be used as seed for randomization. The
output of thiscommand isafilewl ft est. sbk that holds
the RSA private key and afilewl ft est . pbk that holds
the corresponding RSA public key. Both keysare encoded in
PEM format and thusthe generated fil escan beinspected with
standard commandsasnor e, | ess, cat. Thenextstep
is the creation of a device that works on a key repository.
This can be accomplished by the following command:

#- >mknod /dev/w fkeyrepository ¢ 101 0

The values 101 and O correspond to the major and minor
number of a device whose management is performed by our
key-handler module. Even though we suggest using a static
kernel containing our modules, in our experimental setting
we insert at run time our modules in the standard modular
kernel. The key-handler module has to be inserted in the
kernel by the superuser asfollows:

#- > nsnod W f _bkm nodul e. o

The tool put key can be used by the superuser to add a
previously generated RSA public key to the key repository
asfollows:

#- >put key /dev/w fkeyrepository w ftest. pbk

For the sake of the examplewe only signthel s executable.
Toallow co-existence of signed andunsigned | s executables
we make a copy of | s to be signed.

#->cp /bin/ls /binfwfls

The same has to be performed for the shared objects
required for the execution of / bi n/ wl f 1 s; in particular,
the references in the executable / bi n/ Wl f I s have to be
changed so that they specify the trusted shared objects. We
have embedded this featurein thewl f si gn tool that could
be run as follows:

#->W fsign wftest.sbk wftest.pbk /bin/wifls

Thefilew ft est . sbk isused to compute and append the
signature while the filewl f t est . pbk is used to compute
and append the key identifier.

The signed / bi n/ Wl f| s ELF file can now be verified
and inspected by running the following commands:

#->W fverify wiftest.pbk /bin/wfls
That’'s a W.F file!
The signature is good.
#->wM fread /bin/wfls
That's a WF file!
Signer ldentifier (PEM:
St zF6yj n77QCVr UPOt f di g==
Digital Signature (PEM:
gbDnz pNQxpl nHeaFoRj O&48ZaDf KUbt KI pHmM
AyBj P+/ 7Y+7LVM v3Lj a/ M
j Xf YIypBKj +ulWK7wt 7i BXr Qul CynvHRIOhi |
5VM2gAQ3B4H RwKzuOn b
996CqJV/ Ru6KSW gi Nh7z+7j af wdksoMy9j K7
HuXi 87JNX879v XHQ=
Shared object ==> w fterntap. so. 2
Shared object ==> wifc.so0.6

In particular, W fread outputs the shared objects
referenced to by / bin/w fls, which in our case are
w fterncap.so.2 and W fc. so. 6, sincew fsign
changes the first three characters of the name of each shared
object (typicadly ‘lib’) to ‘wlf’. Thus, we require signed
shared objectsto bein the directory / W f :

#->cp /lib/libc.so.6 /Wf/wfc.so.6
#->cp /1ib/libterncap.so. 2
/W f/w fternctap. so. 2

The shared objects have to be signed preserving the ELF
magic number sincethey are managed by the standard shared
object interpreter | d. so that supports only the ELF magic
number and we do not want to modify the interpreter.

#->W fsign w ftest.sbk w ftest. pbk
/wf/w fterncap.so.2 -ELF

#->W fsign W ftest.sbk w ftest. pbk
IWf/wfc.so.6 -ELF
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We now check for other shared objects that could be
recursively referenced:

#->wso /bin/wWfls

Shared Library: w fterntap.so.2

Shared Library: wfc.so.6

Shared Library: wflinux.so.2 NOT FOUND

The tool says that the shared object interpreter
W flinux.so.2 has not been found. Thus, we fix
this with the following commands:

#->cp /lib/ld-linux.so.2 /W f/w flinux.so.2
#->wW fsign wftest.sbk w ftest. pbk
/W f/wW flinux.so.2 -ELF

For the execution of asigned ELFfileit is necessary to insert
in the kernel the corresponding handler:

#->insmod W f.o

The verification of signed ELF files can be traced
by monitoring /var/ | og/ nessages. Before the
execution of /bin/w fls the environment variable
LD LI BRARY_PATH must include the directory / w f .
Finaly, the signed | s command can be successfully
executed:

#->/bin/Wfls

5.4. Signing and verifying script files

A script file is atext file that contains instructions that are
executed by an interpreter. In the implementation of our
prototype, we provide a tool that extends a script file with
adigital signature formatted according to PKCS7 [32]. The
PK CS suite of standards specifies data and message formats
for various cryptographic primitives and protocols. The
PKCS7 deals with digital signatures and digital envel opes.

The signature is then codified in PEM [34] (a popular
standard for encoding a binary string into a printable form)
and is added at the end of the file. The code appended
to the original file is not executed by the script interpreter
because we add it as a comment for script interpreters. The
script handler performs the verification phase before running
the script interpreter that is referred into the script (i.e. the
command line that follows the magic number ‘#!").

The scri pt si gn application changes the script magic
number to ‘#@ and adds, at the end of the script file,
a comment containing the identifier of the signer and the
signature encoded in PEM format.

The SSCRIPT handler takes care of executing signed
scripts whose magic number is the sequence ‘#@. The
command line parsing process is the same as in the usual
scripts but in the last step, the SSCRIPT handler verifies the
signature of the script before running the new command line.
Itisclear that during the new execution cycle, the interpreter
will be verified too.

5.5. Cache management

The execution of the verification steps each time that the
execution of afile is requested could have a severe impact

on the performance of the system. Repeated verification of
the same executable, within brief periods, can be avoided if
there is a guarantee that the file has not been changed since
the previous verification. To do so, the file should be kept
‘safe’ after it has been validated.

Our implementation of this idea is quite simple. Each
executable, once it is successfully validated, is copied in a
memory cache. Since the cache is assumed to be a ‘safe
place’, cached files need not be verified again when they are
invoked, provided that they could be read from the cache
itself. To do so, we bind each cache entry (i.e. each copy of
a verified executable) to a device on the file-system. Each
access to a cached file (including the ones by the kernel) is
redirected to the corresponding device instead of the inode
of the origina file. Each cached file is actually stored in
kernel memory and thus can only be updated by the kernel
(see discussion on the assumptionsin Section 2.4). Themain
advantage of this caching mechanism is that it covers both
local and remote files, although it is quite expensive in terms
of memory usage.

Inorder to integrate such amechanismin theinfrastructure
discussed above we follow the following strategy:

e when the execution process of an executablefile begins,
the cache is checked;

e if the file is aready in the cache then the execution
process continues using the cached file with the
i sTrust ed attribute set to O;

o dsethefileisinsertedinthecacheandthentheexecution
continues using the cached file.

We have designed and implemented a kernel module that
manages the cache and provides the f et ch function that
other kernel modules can usein order to get the pathname of
a cached file from the pathname of an executable file. The
f et ch function inserts afilein the cacheif it is not already
there.

We modified the do_execve function (see the file
exec. ¢ in the directory f s of the Linux kernel sources)
which drives the execution of filesin the Linux kernel in the
following way. We add a call to the f et ch function which
returns the pathname corresponding to the cached version
of the file to be executed. Next, do_execve cals the
search_bi nary_format function to identify the right
handler for the format. The format handler should then
verify the integrity of the cached file and start the execution.
The cache-management module attaches to each file a hit,
caled i sTrust ed, that is set to 1 if the file has been
already verified successfully. Thusifi sTr ust ed = 1, the
handler can skip the verification and proceed directly with
the execution.

In Figure 6, we illustrate the different states that compose
the execution phase of afilein our architecture.

5.6. Key management

Key management is an important component of our
architecture. We do not need to handle any secret key as
executables are assumed to be signed off-line by software
distributors. However, public keys are needed in order
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FIGURE 6. The execution of afilein our architecture.

to verify signatures. The key management subsystem is
crucial for the security of the system becauseif the adversary
manages to add his or her own keys permanently to the list
of trusted keys, then malicious code can be inserted and will
never be eradicated. The management of public keys hasto
take into account two points. First, executables signed by
different providers (e.g. with different private keys) could be
present on the system. Second, public keys might be stored
on different supports (e.g. smart cards, CD-ROM).

We take alook at atypical scenario as an example. Our
system runsthe‘FOO' Linux distribution whose executables
aresigned with the private key of FOO, Inc. Thiscorporation
distributes its software products with the appropriate public
key, stored on a smart card. Furthermore, our system
administrator has also installed software produced by BAR
Corp. (which distributesits public keys on a CD-ROM) and
moreover, some self-produced tools. Thus, our system needs
to manage a list of public keys. It should be able to choose
the correct public key for verifying a signature.

Now, we will show how our architecture addresses the
needs raised by this common scenario.

To allow maximum flexibility, we have abstracted the
functionality of the key management into a different kernel
module. Inthisway, different key management schemes can
be implemented without affecting the handlers. Each key
pair is provided with a key-id that identifies it. The key-
id is included with the signature and is used by the format

handler in order to ask the key management for the proper
public key. Public keys have to be loaded into the kernel
memory at bootstrap. In our prototype, we wrote two simple
key management modul es that |oaded the keys either from a
file, aread-only floppy disk or a CD-ROM.

Our system can also employ a hierarchical approach to
key management similar to the one of X509 [24]. Instead of
having one public key for each software provider we have
a few trusted keys. Each software provider will have its
key signed by a trusted entity (which acts as a certification
authority) and then each executable will contain theidentifier
of the signer of the public key and the signed public key
(similar to an X509 certificate).

5.7. Experimental results

The proposed architecture has been implemented providing
tools for the generation of private and public keys, for the
signatureof ELF and script files, for listing the shared objects
referenced by ELF files and for pushing public keys to a
device. Modulesfor thekernel 2.4.17 havebeenimplemented
for the run-time integrity check of ELF binaries and shell
script files, for the key management and for the cache
management.

Our software uses the RSAREF library [31] that provides
the required implementations of cryptographic primitives.
We have chosen only RSA keys for our implementation
because the signature verification is faster as we can choose
low public exponents.

Experimental results show that run-time integrity check
of executable code can be performed with reasonable
performances and thus our architecture and implementation
are apractical mechanism to combat permanent attacks.

We performed two kinds of test: one to measure the
performance of the system and one to assess its robustness.
The table in Figure 7 shows the results of performance
measurement of running some of the largest general purpose
Linux executables. As we can see, the loading of signed
executables takes twice the time needed for loading the
unsigned ones. The slowdown depends on both the size of
the files and the number of dynamic objects that have to be
loaded together with the main program. For example, the
slowdown incurred by r pmis the smallest as r pmhas no
shared objects.

Anyway, we believe that the overhead shown is decidedly
reasonable asit only affectsthe start of the execution process
of an executable and is amortized over longer executions
of the commands:. the table refers to very short executions
where only the version number of the program is requested.
Moreover, such overheads should be considered as upper
bounds, since measurements have been carried out without
using the cache.

The second kind of test focuses on the robustness of the
implementation. We set-up and signed all executables of an
Apache Web Server. We also wrote and signed some cgi
both in script languages (whose interpreter was al so signed),
and in C. The server neither crashed nor failed to answer any

query.
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elf binary size | cmdline | time | sig. size | sig. time | dyn.
/bin/bash 519964 | —version | 0.020 520125 0.040 4
/usr/bin/perl | 708188 | —version | 0.020 708349 0.050 6
/bin/rpm 1580104 | —version | 0.040 | 1580264 0.050 0
/usr/bin/gdb | 1779900 | —version | (0.030 | 1780061 0.090 3

FIGURE 7. Performance of signed ELF executable files. Execution times are in seconds and have been measured on a VMWare virtual
machine built on top of a Pentium IV 1.7 GHz with 256 MB RAM and kernel 2.4.17.

6. THE OLD-VERSION ATTACK

We now discuss a possible attack to our architecture.
Suppose that an adversary discovers some weaknesses
of some executables that are installed (and thus signed).
The adversary may keep one copy of the old signed
executables.  Whenever the administrator of the victim
machine upgrades that software, the adversary could replace
the new executables with the old ones, which still have a
valid signature, and that still successfully passtheverification
phase. In order to makethiskind of attack ineffective, which
we call the old-version attack, we propose two different
schemes. Thefirst oneis based on the use of file revocation
lists and requires a read-only support that is able to store
a few megabytes (a smart-card cannot be used while a
CD-ROM can) while the second one is based on some
more trusted information maintained in the file-system that
must be updated by using a private key (the system must
be disconnected from the network when such a task is
performed) each time new files are installed in the system.

Note that this problem in its generality cannot be handled
by a simple key revocation mechanism. Consider the
example of a Linux distribution. It is thinkable, though
impractical, that each version of the distribution is signed
with a different key. Thus each time a new version is
installed the key of the old version is revoked using standard
key revocation schemes. Instead, we can consider the case
in which specific packages (i.e. those that have security
problems) are upgraded.

6.1. Filerevocation lists

The old-version attack is similar to the case of a digital
certificate whose corresponding private key has been
discovered and thus the certificate must be revoked. Thelist
of revoked certificates is then released by atrusted authority
that appends a digital signature to thelist. Each time a party
receives a digital certificate, the verification phase involves
the checking of the certificate with respect to the list of
revoked certificates.

We can introduce in our architecture the same mechanism
illustrated above by adding to therepository of publickeysthe
corresponding file revocation lists released by the software
distributors. In order to avoid the execution of revoked
files, each format handler should first check the file with
respect to the files revocation lists and then proceed with the
verification steps. The check can be performed efficiently in
the following way.

e A seria number can be added to each file that contains
executable code.

e The list of revoked files can be implemented with a
datastructurethat guaranteesefficient lookups(e.g. hash
table).

When arevoked file is installed on the system and someone
tries to execute it, the appropriate handler extracts from the
file the serial number and performs a lookup with the data
structure that holds the revoked files. Only in the case
where the file is not revoked the verification task proceeds.
If the intruder tries to change the serial humber in order to
pass the previous test then the signature is not valid any
more and the execution will be forbidden by the signature
verification step.

6.2. Theversiontree

In this solution, we need to store someinformation in the root
directory and in each directory in which signed executables
and shared objectsareplaced. Thissolutionhasbeeninspired
by [14] athough our scheme is considerably simpler.

First, we describe new information we have to store in
the file-system and into the file signature. A signed segment
that contains the file version string (that could be a serial
number, the hash of the whole file, etc.) is added to each
executable. We place a special file called directory version
record in each directory which contains executables or shared
objects (e.g. / bin, /usr/1ib and every other directory
in$PATH, $LD _PATHor reportedintothel d. so. conf
file). Thisrecord containsacopy of version stringsof al files
contained by the directory, and adirectory version string that
is the hash of its list of file version strings. The directory
version record is signed. All the directory version records
are reported into a root version record that is formed like
a directory version record, thus we also have aroot version
string. A copy of theroot version string isstored in the public
key repository (the smart card, the ROM BIOS, etc.). The
root version record is signed. Figure 8 shows the layout of
this structure.

Inorder toinstall anew package, the administrator follows
the usual scheme we introduced in Section 4, then he or she
extracts the file version strings from new executables and
updates: thedirectory version record, the root version record
andtheroot version string onthekey repository. Notethat the
administrator has to sign each structure he or she modifies,
and he or she does that when the system isin secure mode so
private keys are not exposed.
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KEY REPOSITORY

ROOT
VERSION RECORD

100t version string

‘ dirl version string

‘ dir2 version string

! 100t version string ‘

DIR1
VERSION RECORD

DIRZ2
VERSION RECORD

‘ filel version string }._

N - -
| file2 version string ‘

_! file3 version string ‘

‘ dirl version string !

! dir2 version string ‘

/dirl /file2 J

/dirl /filel

‘ file2 version string "

[ - -
| filel version string ‘

/dir2/file3

‘ file3 version string |

FIGURE 8. Thetree of version records.

At boot, thekernel loadstheroot versionrecord and verifies
the integrity of the root version string. Each time the kernel
runs an executable, it first loads the related directory version
record and verifies both the signature and the validity of
the directory version string. Finally, the kernel loads the
executable, verifies its signature and the file version string.
If everything works, the kernel runs the invoked application.
Otherwise, if an error occurs at any phase, the execution fails
(e.g. if any record is missing, or a version string mismatch
occurs at any level).

Since the number of directories in the $PATH and
$LD_PATHisusualy small, and the related directory record
never changes while the system is working in normal mode,
all record files can be easily cached. Moreover, once an
executabl e has been cached, no more verifications are needed
until its entry expires. So, this scheme does not heavily
affect the system performances, although it lengthens the
installation process.

7. ABOUT EXECUTABLE HANDLING

The user’s perception of executables, inaUNIX-like system,
actually wraps different objects. Binariesand scripts are just
invoked in the same way but the system handles them quite
differently and, moreover, many differencesexist also among
execution processes of different binary formats. Even the
same binary format can be handled differently according to
the design of the program. For this reason, the design of a

general mechanism of verification at run-time of executables
isanon-trivial task and probably it is not currently possible.
We think that in a ‘pure’ model, integrity verification is
simply a phase of execution. Thus, first, an entity that
performstheverification hasto be always present and second,
verification that has to be performed on anything is handled
as an ‘executable’.

The approach proposed in [25] is a workable solution
but breaks that model. Introducing the veri fy() system
call implies that developers can choose not to verify and,
moreover, delegating verification to user-space interpreters,
like | d. so or bash, implies that ‘sometime’ the system
does not provide any verification.

Ontheother hand, the Linux operating system implements
the exec chain of the different executable format handlers
by means of a sort of object-oriented interface, quite
complete and general, but the execution chain of some
kinds of executables breaks that model. This is the
case of loading ELF dynamic objects by means of the
dl open() library function, that bypasses the kernel
handler and, thus, the verification step. Currently, the
dl open()/dl cl ose() suite of functions is the most
employed way of managing dynamic parts of executables
in many UNIX-like systemswith respect to operating system
interfacesliketheusel i b() system call in Linux.

A possible way to achieve a solution that is closer to the
‘pure model’ is to develop a standard kernel interface for
loading dynamic objects, on top of which the dl open()
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interface could be reemodeled. Currently, the dl open()

function loads the target dynamic object into the memory
by means of an mmap() system call that does not involve
the ELF handler. Introducing a new system call, essentially
a dedicated version of mmap() that loads executable code
into the memory, under the control of the EL F format handler,
could be agood solution in order to alow our model to catch
this execution case, saving portability.

Scripts open aseriousissue. |nsome way, script files have
been considered as executables for ‘historical’ reasons, but
actually, they should be considered as data files while script
language interpreters are simple user-level applications.
Handling execution of scripts and binaries in the same way
is in some cases impossible. Consider, as an example, the
sour ce command of thet csh interpreter.2 For the shell,
invokingsour ce islikea‘dynamic codeloading’, but from
the kernel point of view, this operation appears simply as a
user-level application that opens afile, hence, involving the
kernel in this operation, within the ‘pure model’, is clearly
impossible.

Currently both [25] and our architecture cover this point
with an ad hocsolution. Theissueis still open.

8. CONCLUSIONS

We have presented a solution for run-time integrity check
of executable code. Our architecture can be used for any
type of executable file format provided that a tool for the
signature and a kernel handler are available. A format inde-
pendent cache management mechanism has been designed
and implemented to improve the performance of the system.
We provided a proof of concept implementation for ELF
and script files.

Our approach is suitable for workstations that provide
servicesto end users and not for the devel opment of applica-
tions. Infact, the simple compilation of a program generates
an executable file that can become trusted only if the author
signsit and its public key isin thelist of trusted public keys.

Experimental resultsshow that our solutionisvery efficient
but other issues need to be addressed in order to protect a
workstation from attacks based on malicious code.

Attacks to our infrastructure are possible by changing the
kernel during its execution; however, such attacks are not
as easy as the installation of a root-kit and can only have a
temporary success.

Next we point out two drawbacks of our approach and
leave them as open questions. First, we observe that scripts
that are invoked by passing the name of the file as a
command line argument to the interpreter are not verified
at all. Our architecture only guarantees that the interpreter
is verified. One solution, as suggested by [25], is to modify

1The mmap() system call maps files or devices into memory, allowing
the user to state the starting address and several access permissions (e.g.
read, write, execution) of the target memory buffer.

2Thesour ce command asksthe shell to parse and execute the sequence
of commands contained in agiven file. Note that the file is not necessarily
an executable, and that when sour ce isinvoked, the shell does not create
anew process.

all interpreters, thus losing the universality of the approach.
Moreover, we believe that it is not an easy task to modify
complex objects like the Perl interpreter and thus a better
solution to thisproblemisneeded. A second weakness of our
architecture concerns dynamic libraries. In our architecture,
dynamic libraries that are specified at linking time (and thus
are referenced in the executable) are verified.
A preliminary version of thiswork appeared in [35].
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