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Digital signatures have been proposed by several researchers as a way of preventing execution of
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1. INTRODUCTION

External intrusion is one of the most serious threats to the
security of a system that is connected to a network. Typically,
an attacker exploits a bug of a network daemon to obtain
superuser privileges in the form of a shell session owned
by root.

Once this has been accomplished, the attacker has
complete control of the system and access to all the data stored
on the machine. Obviously, if for some reason the machine
is rebooted, the attacker has to start again. Moreover,
the legitimate administrator of the system could detect the
ongoing intrusion, kill the shell session and terminate the
intrusion. If the software bug that allowed the intrusion has
been discovered, the system administrator can install a new
version of the network daemon and thus the attacker cannot
repeat the same attack on the machine; instead, he or she has
to find another weak daemon or exploit a weakness of the
new version of the same daemon (which, unfortunately, most
of the times is easy to do). We refer to this form of attack as
a weak intrusion attack.

A more serious threat comes from an attacker that, once
root privileges have been gained, tries to colonize the
system; i.e. the attacker tries to keep control of the machine
across reboots. We refer to this kind of attack as a strong
intrusion attack. One way of doing this is to install new
malicious code and/or modifying existing executables. This
has two main goals. First of all, every time the legitimate
system administrator executes the modified executables the
attacker regains control of the machine in the sense that
the malicious code is executed again. Second, the attacker
modifies tools used by the administrator in order to hide the

ongoing activity. For example, the ifconfig command
could be replaced by its corresponding malicious version,
which hides the promiscuous mode of a network card used
to sniff passwords and a fake ls command could hide
new executable files installed in a directory. Using these
techniques an attack could become resistant to reboots and
attack detection strategies.

In this work, we address the problem of strong intrusion
attacks and present a security architecture that prevents the
installation of malicious code that can be executed across
reboots. Thus, as a consequence, an attacker cannot use
the techniques described above to keep control of a machine
permanently. We stress that our work does not address the
general problem of buggy software (e.g. daemons that are
subject to buffer overflow attacks) or, in general, the problem
of system intrusion. Our architecture does not guarantee that
an attacker cannot obtain root privileges but only that, once
the attack has been successful, the administrator can detect
it. In other words, we reduce the strong form of intrusion to
the weak one.

In Section 2, we present some of the techniques used by
the intruders for their malicious purposes. In Section 3,
we describe the most interesting proposed architectures
(only some of them are currently implemented) to protect
servers. In Section 4, we propose our approach against
strong intrusion attacks. We have implemented the proposed
infrastructure and in Section 5 we show details of our
implementation; in particular, in Section 5.5 we illustrate
the management of a cache that has an important role to
make our solution practical. In Section 6, we propose
two solutions for a possible attack to our architecture. In
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Section 7, we discuss some open issues about the execution
of application in a UNIX-like system, and their implication
on our architecture. Finally, in Section 8, we conclude the
paper by re-emphasizing the features of our approach and by
pointing out some open questions.

2. TECHNIQUES FOR INTRUSION

In this section, we describe the main techniques used by
intruders in order to gain and maintain the control of a
machine. We will stress the potential threat passed by each
technique so that we can later contrast it with the benefits of
our architecture.

2.1. Rootkits and code modification

A rootkit is a subset of common system commands and
daemons that have been corrupted in order to perform
malicious operations, hide their effects, and possibly set up
some ‘back-doors’. Once an intruder obtains the access to
a victim machine, he or she installs the kit. Since malicious
executable files take the place of the widely used commands
(e.g. UNIX commands like ls, ps, etc.), execution of
malicious code is performed by legitimate users of the system
including the superuser. We illustrate the following scenario
as an example. An intruder installs a network sniffer [1] (e.g.
tcpdump can be used for this purpose) that periodically logs
the network traffic. In order to prevent the detection of his or
her malicious activity, the intruder replaces the commandsls
and ps with their respective corrupted counterparts, which
avoid the visualization of the sniffer’s log files, and hide the
sniffer’s process. Moreover, the intruder can also install a
malicious version of the ifconfig command, in order to
hide the network interfaces that have been set in promiscuous
mode by the sniffer.

It is also technically possible to inoculate ‘parasite code’
into executables of some binary format (without re-compiling
them), taking advantage of certain properties of their memory
image. In such a way, an intruder could even modify
applications that he or she cannot replace. However, this
technique is cumbersome, inefficient and it strongly depends
on the operating system, the hardware architecture, the binary
format and the memory layout of the target executables.

Moreover, many UNIX distributions include several
scripts (written in several interpreted languages like Perl,
Python and so on) that automatically take care of set-up and
configuration procedures of the operating system. Malicious
modifications to these scripts could invalidate software re-
installations or upgrades avoiding the removal of malicious
code or misconfiguring the system, thus guaranteeing
backdoors and vulnerabilities for future intrusions.

These attacks cannot be detected easily and they can be
so invasive that recoveries often require the re-installation of
the operating system from scratch.

2.2. Installation of untrusted software

Another threat to system integrity is the download and
installation of untrusted software. Many packages are

currently distributed over the network already in binary
format with no integrity check information, thus there is
no guarantee that the application has not been tampered.
Actually a digest of each file that can be downloaded is also
published so that the user can check the integrity of the file.
However, the corruption can affect the digest as well and even
if a secure and authenticated channel is used (e.g. by using
the TLS [2] protocol), the corruption of the files cannot be
detected. In these cases, it is very difficult to realize what the
installed application really does.

2.3. Code injection via buffer overflows

Buffer overflow [3] is probably one of the most serious
software vulnerabilities. Some applications (e.g. daemons
that provide network services) do not take much care (or do
not take care at all) about the bounds of data areas during their
execution. Thus, it could happen that by providing a network
daemon with an amount of input data that is greater than the
one assumed by its designer, some areas of the process image
that are contiguous to the I/O buffer could be overwritten. In
this case, process data, behavior and even execution flow can
be altered. Attackers can take advantage of this weakness
by inserting malicious code into the process image, and then
by starting its execution. These attacks (and their related
defenses) have been studied following different approaches.
We invite the reader to consult [4] and [5] for details. As
mentioned above, the prevention of buffer-overflow attacks
is out of the scope of this work.

2.4. Run-time kernel corruption

Several UNIX-like systems allow to load into memory,
on demand, some sections of the kernel at run time.
These sections are named loadable kernel modules (LKMs).
Usually, the modules provide new features to the system as
filesystems, device drivers and so on. Unfortunately, there is
no way to prevent an intruder, who has gained root privileges,
from pushing malicious code into the kernel using a loadable
module. As is shown in [6], an LKM could access and modify
any kernel data structures, even the system call table. Thus,
for example, the intruder could redirect some process system
calls to its own table and, in such a way, he might modify the
behavior of the processes (even the verification tools) without
modifying them.

Moreover, the devices that represent the memory of the
system (e.g. Linux’s /dev/kmem), allow the processes
in user-space (executed with root privileges) to perform
read/write operations on the memory and can be used to
write malicious code directly to the memory, or stealing secret
data and encryption keys. An example of this attack can be
found in [7].

We point out that no verification strategy can be used
successfully if the kernel is not trusted. Thus, we make the
following assumptions:

(i) The kernel boots in a secure state (see Section 4.1).
(ii) The LKMs support is disabled.
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(iii) Write operations to /dev/kmem-like devices are not
allowed.

3. RELATED WORK

In this section, we briefly discuss the most used solutions to
prevent the execution of malicious code.

Database of known malicious code segments.A traditional
approach employed to detect malicious code is the one
followed by the usual virus detectors like some of the products
from McAfee [8] and Symantec [9]. These tools are provided
with a database containing characteristic code-segments from
many known viruses. The user can configure the antivirus
to run periodically, and then the tool simply searches for
possible occurrences of the segments into some files. Several
drawbacks of this approach are easily identified. First of
all, running the antivirus significantly affects the machine
performances; second, the database of segments has to be
upgraded constantly, and moreover, it is always possible that
at any time, the detector will not recognize a virus that has not
been yet (or will never be) covered by the antivirus provider.

Tripwire. Tripwire [10, 11] is one of the most widely
employed tools for the prevention of unauthorized modifi-
cation of files. Tripwire’s approach comprises in storing in
a secure database, a digest of each file currently present in
the file-system. Periodically, an agent computes the digests
of each file in the file-system and checks it against the digest
stored in the secure database. If a mismatch is found an alert
message is sent to the system administrator. The main weak-
ness of this approach is that malicious code activities are
allowed between two executions of the agent. If the agent
checks the file-system very often, then the performance of
the system could be heavily affected.

File-system-based approach.A different approach moves
the task of checking the integrity of files and executables to
the file-system layer. This can be achieved in two ways.
The most obvious solution is to store the executables on
a read-only support (e.g. a CD-ROM or a DVD). Indeed,
several Linux distributions provide a live file-system on a
read-only support that can be used as a rescue system. In this
case, the system administrator first installs and configures the
system and then he connects the system to the network. The
main drawback of this approach is that software upgrading is
particularly cumbersome.

In a more sophisticated approach, each file is digitally
signed and the signature is checked by the file-system
layer each time the file is opened or read. Different
implementations of this concept (or of some of its variations)
exist (the Transparent Cryptographic File-System [12], the
Read Only Self-Certifying File-System [13] and the SUNDR
filesystem [14]), but we believe that the file-system approach
suffers due to some fundamental drawbacks that make it
unsuitable for our setting. Indeed, we would like to make
it possible for software developers and distributors to sign
their distributions so that system administrators can verify

the source of the software they install. If signature checking
occurs at the file-system level, the format of the signed files
must take into account the file-system that would eventually
host them and should take care of their verification. This
implies that software distributors and system administrators
must agree upon a common file-system to handle the binaries.
Worst still, even if a common file-system is agreed upon then
it must be the only file-system used on the system. Indeed,
since executables are only verified at the file-system layer,
potentially malicious executables that live on a different file-
system will be executed without any check.

Integrity verification based on reflection.An interesting
approach, outlined by Spinellis [15], consists of allowing
software to ‘answer to some questions about itself’ in order to
realize possible unauthorized modifications. More precisely,
software to be verified is assumed to run on a remote device
(the client) with some expected environmental parameters
like the processor status, assumptions about the content of
the device’s unused memory and predictions about processor
performance on known sequences of instructions. A trusted
entity, called server, periodically asks the client for the
cryptographic hash of some randomly chosen intervals of
memory and a summary of the processor status. Under
some assumptions and according to the knowledge over
the client environment, the server can realize whether the
client has been tampered with. Unfortunately, a ‘general-
purpose’ scenario (as could be a UNIX server connected to
the Internet) does not satisfy all assumptions stated in [15]
and making assumptions or predictions about the behavior
of the monitored software and the host system can be really
difficult, especially if the set of clients is heterogeneous.

Another approach to verify that honest software is being
executed is given by Lie et al. [16]. This work proposes
an architecture that provides an idealized model of the
execution of a given application. This model is compared
with an actual model that comes from the execution of the
monitored software, and that includes ‘adversary’ operations.
Whenever the actual model (i.e. the real program) does any
transition that makes it inconsistent with the ideal model, the
architecture guesses that the machine is under attack.

Moreover, we suggest the reader looks at [17] in order to
have more details on the development of trusted software.

4. VERIFYING EXECUTABLES AT RUN TIME

In this paper, we follow the approach of adding digital
signatures (see [18] for more details) to executables and
verifying the signature as part of the execution process (and
not at the file-system level) as depicted in Figure 1.

The main advantage of using digital signatures is quite
evident. Executables can be signed off-line, i.e. when the
system is not connected to the network and is under the
complete control of the legitimate software issuer. Only in
this state (which we call secure mode) does the system have
access to the private key. Once the ‘signature process’ of new
executables ends, the system can be switched in normal mode,
i.e. re-connected to the network. As it follows trivially from
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FIGURE 1. Verification at run time of executables.

the properties of asymmetric cryptography, the knowledge of
the private key is not necessary to verify the signature. Thus,
systems in normal mode do not need to access the private key.
Moreover, in order to be protected, the private key could be
stored on an external memory device (e.g. a smart card), and
made available to the system only when it is in secure mode.

The idea of signing executables in order to be able to
authenticate an executable before it is executed is contained
in [19] as part of a comprehensive theory of authentication
in distributed settings. Based on the theory outlined in [19],
[20] describes the implementation of a secure authentication
system for the Taos operating system. There, in a way similar
to Kerberos [21], an authentication agent (one for each node
of the network) handles the checking of all credentials (from
processes wanting to access a printer to users seeking access
to a file) and applications access the local agent through
a well-defined interface. In [20], the authors describe the

implementation of the authentication system for Echo, a
distributed file-system extensively used within Taos. Our
approach follows the same line of thought and, motivated
by the need of combating intrusion detection, focuses on the
authentication of executables. This allows us to dispense with
the need of an authenticating agent and the need to re-write
applications in order to interface with the agent. As we will
explain later, our approach calls for a minimal modification of
the operating system and does not affect existing and legacy
applications. The idea of signing executables has also been
applied to Java classes and Java archives [22, 23] in a PKIX
scenario [24]. However, the approach is only limited to the
Java virtual machine.

Our approach instead follows the lead of van Doorn
et al. [25], who proposed a mechanism to sign and verify
Executable and Linking Format (ELF) binaries [26, 27] for
the Linux operating system. The approach of [25] is very
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close to ours and in the rest of this section we present the
architecture of [25] and stress some points which we consider
as the weaknesses of their approach.

Signatures of ELF binaries are computed using the MD5
hash function and the RSA digital signature scheme [28]. A
signature is added to an ELF executable by storing it in a new
ELF segment.

When an executable is loaded, the ELF format manager
extracts the signature from the file and verifies each
referenced segment. If the verification fails then the
execution is aborted.

The kernel verifies the signature of text segments and
provides a new system call: verify that should be called
by user-space interpreters (e.g. ld.so, sh) in order to verify
dynamically loaded objects and script files. This choice,
however, implies that every interpreter should be modified
in order to request signature verification. Moreover, as
pointed out in [25], this approach increases the number
of points where the signature verification takes place, and
does not cover all those scripts that are given to interpreters
as input files (this problem is not solved by our solution
either).

The architecture presented in [25] features a cache in order
to avoid the verification of signatures at each execution.
Each file-cache entry contains the pathname of the cached
file and the result of the last verification. When the system
executes a cached file, it checks the related cache entry. If
that entry is still valid (i.e. the file has not been modified
since the last verification), the kernel will not verify the file
signature again. On the other hand, the kernel traces each
open invocation and, if the subject of the call is a cached file
then the corresponding entry is invalidated. Unfortunately,
since it is not possible to trace accesses to files stored in
remote file-systems, only files on local volumes can be
cached.

Before introducing our approach, we summarize some of
the aspects of the work of van Doorn et al. [25]:

(i) the kernel directly verifies the ELF binaries that are
loaded by the exec system call;

(ii) executable scripts and dynamic segments of ELF
binaries are verified in user-space by their respective
interpreters; and

(iii) in order to verify its executable files, each interpreter
has to invoke theverify system call. In other words,
all interpreters (e.g. ld.so, the Perl interpreter) have
to be modified in order to verify and run signed
executable files.

4.1. Our approach

In our approach we follow the lead of [25] but we propose
a new and more flexible architecture. Indeed, we look
at the execution process at the kernel level and modify
it to introduce signature verification in a manner that is
independent of the format. More precisely, all verification
steps are performed inside the kernel by the handler of the
executable format. The user space interpreters of the various

formats only perform the tasks they have been designed for.
This has several advantages.

(i) We can fit any executable format that is known to the
kernel into our architecture.

(ii) All verification steps are performed at the kernel level.
(iii) Interpreters need not be modified.

Thus, our approach is not limited to one executable format
(e.g. ELF) and does not need to modify the user space
interpreters of the various formats. Moreover, we have to
remark that our approach fails in two notable cases: the first
case happens when the executable code inside a shared object
is dynamically loaded by invoking the function dlopen
of the libc library; the second case happens when an
interpreter executes code that is not handled by the kernel.

To validate our approach we also discuss the implemen-
tation of the architecture for the Linux operating system. In
Section 5.7, we describe the implementation issues we had
to address.

We emphasize two important assumptions on which we
based our work.

(i) At the end of system bootstrap, the system is assumed
to be sane. The AEGIS [29] project proposes the
design of a secure bootstrap system with a high
assurance bootstrap process in which the integrity
of the kernel loaded at boot time is guaranteed.
In [30], an improvement to AEGIS called sAEGIS
has been proposed to protect users from malicious
administrators supporting a large set of operating
systems. We assume that our infrastructure lies on a
secure boot system like AEGIS and such that a system
takes care of collecting (during the bootstrap) all public
keys required to verify all signed executable files.

(ii) All types of executable files of any format have to
be signed before they are installed on the system.
The entity that distributes the package uses its private
key to sign all files that contain executable code and
each signature is appended to the corresponding file.
This approach perfectly fits the software distribution
scenario. Consider a major Linux distribution (e.g.
SuSE, RedHat, Debian, Mandrake) with its pair of
public/private RSA keys. When a new release of the
distribution is available, all executable files are signed
using the private key and then the signed executable
files along with the public key are released. Each
time the execution of an executable is requested, the
signature is checked by using the trusted public keys.

Since different formats of executable files are structured
and parsed in different ways, we provide a signing tool and
a verification procedure for each executable format. For
example, in order to allow the signature of scripts, we provide
the utility scriptsign to be used to sign a script and the
API function verify for verifying signatures. We point out
that, as discussed in Section 5, our verify, unlike the one
in [25] is not called by the user-space script interpreter (e.g.
shell, Perl) which, consequently, need not be modified since
our verify is invoked by the kernel handler.
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Moreover, our proposed architecture satisfies the following
requirements.

(i) Integrity of executable files is verified at run time. This
property guarantees that no untrusted executables is
executed by the system unless it is currently under
a successful attack. As we pointed out in the
Introduction section, we do not aim to make intrusions
impossible, but only to limit intrusions to transient
ones.

(ii) Signed executables are completely compliant with
non-verifying handlers (i.e. it must be possible to
execute a signed executable even on a system that
does not feature signature verification). This property
guarantees that executables can be signed by the
developers, and then used both on systems that
feature signature verification and on systems that
do not. Otherwise, developers should be forced to
release two versions of the same software which is
inconvenient.

(iii) Integrity verification is under the sole responsibility of
the kernel. In this way, we keep the verification phase
inside a trusted zone and, moreover, we shall no longer
need to modify user-space interpreters in order to allow
them to verify the scripts.

(iv) There is no need to have any private key in memory
when the system is connected to the network and thus
potentially vulnerable to attacks. This property is
crucial otherwise developers would have to distribute
the private key along with the software. Moreover, if
the private key was present on the system an attacker
would be able to get it and sign his own malicious
code that would then be considered trusted by the
system. For the two reasons discussed above, we need
to use digital signatures and it is not possible to use
authentication algorithms that need the private key for
verification.

(v) Impact on users and administrators is minimal. This is
a general requirement for all security architectures as
otherwise users will not cooperate and administrators
will be reluctant to adopt the architecture. We observe
that our proposal is completely transparent to users
and only requires administrators to manage the list
of trusted public keys that are used to verify the
signatures.

4.2. Implementation strategy

When a file is executed, the kernel loads it in memory and
reads the magic number from the file. This number specifies
the format of the invoked executable.

Using the magic number, the kernel looks for the
appropriate handler, and (if available) executes it.

The handler verifies the integrity of the current file. If
dynamic parts (e.g. shared objects) are present, they are
verified before they are merged in the process image.

We discuss, as an example, what happens when a signed
script is executed. On the basis of the script’s magic number

FIGURE 2. Executing signed script bar in the two architectures.

(i.e. the sequence ‘#!’ at the beginning of the file), the kernel
executes the script handler that extracts the pathname of the
interpreter and then runs it providing, as a command-line
argument, the invoked script file. The interpreter might be,
for example, an ELF binary and so it will be independently
verified by its own handler. In our approach, the verification
of a script file is performed by the kernel script handler that
accomplishes it by invoking the verify procedure of the
format. In Figure 2, we describe the steps of the verification
of a shell script in our architecture and in the one proposed
by van Doorn et al. [25].

The main difference is that in our architecture the
verification is performed by the format handler within the
kernel. Instead in the architecture of van Doorn et al. [25]
the verification is performed by the interpreter (i.e. sh in this
case) that must be modified.

Working at the kernel level allows us to provide a catch-
all solution for executable formats (provided that they are
understood by the kernel) with the two notable exceptions
discussed previously. Instead in the approach of [25], it is
necessary to modify one-by-one all the interpreters in order
to add verification capabilities. This is a gigantic task as
there are several interpreters to be modified (e.g. ld.so for
ELF, shell interpreters and interpreters for script languages
like Perl) and each is a very complex object.

The execution of dynamic libraries is accomplished in the
same way: the kernel handler extracts pathnames of each
dynamic library used by the application, then it verifies each
library. If all verifications succeed, the process execution
is allowed (this procedure can be expensive and thus we
make the verification process more efficient using a caching
mechanism).

In Figure 3, we compare the verification steps for ELF
binaries performed by our scheme with the one of van Doorn
et al. [25]. Note that in our scheme the verification step for
both executables and libraries is performed by our handler
and then the normal execution continues while in van Doorn’s
scheme the verification process is performed by both the
kernel that verifies the executable and a modified ld.so
that verifies the referenced dynamic libraries.

As we can see, in our architecture, the signature
verification is always performed by the kernel, thus
interpreters need no modifications.
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FIGURE 3. Executing signed ELF foo in the two architectures.
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FIGURE 4. The format of unsigned and signed ELF files.

5. IMPLEMENTATION FOR LINUX

In this section, we discuss some aspects of our implemen-
tation for the Linux operating system. The goal of our
experimental work was to provide an implementation for
the case of ELF binaries and scripts as a proof of con-
cept. Obviously, our implementation can be easily accom-
modated with other executable formats (e.g. COFF, a.out).
Our implementation can be divided in two parts. First, we
modified the Linux kernel for the two formats in order to
add the verification capabilities. Second, we developed the
utilities (wlfsign and scriptsign) to add signatures to
the executables. Our prototype following the implementation
choices of [25] uses the RSAREF [31] library and the PKCS7
[32] format for computing and encoding digital signatures.

5.1. The ELF format

The ELF [26, 27] format was developed to provide a binary
interface that is operating system independent. Three types

of ELF files have been identified:

(i) relocatable files that can be linked to have an
executable or a shared object file (these are the .o
files);

(ii) shared object filesthat can be used by the dynamic
linker to create a process image (these are the .so
files);

(iii) executable filesthat hold code and data suitable for
the execution.

An ELF file starts with the ELF header, which is followed
by the program header table, the segments and the optional
section header table (see Figure 4).

The ELF header describes the organization of the file
and its fields, specifies the offsets of the program header
table and of the section header table, the size of an entry
of each header table and the number of entries in each
header table. The program header table has the information
needed to locate the segments of the file that contain data
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FIGURE 5. The linux_binfmt structure.

required to create a process image. The program header
has an entry for each segment that specifies, among other
information, the location and the type of the segment. The
segment type specifies the purpose of the segment and how
it can be used by the loader. For the aim of this brief
overview, we are interested in load, dynamic and interpreter
segments. Load segments are mapped to the process memory
image. They include text of executable files, data and so
on. Dynamic segments include references to other ELF
files that will be loaded into the process image; additional
ELF files could be loaded at run time by using either
the uselib system call or the dlopen library function.
The interpreter segment (it appears only once) contains the
reference to an interpreter, which is a program that allows
ELF executable files to load shared objects dynamically at
run time. The operating system retrieves the interpreter
and merges it with the process image. Since the interpreter
is loaded into a new process image, it is executed in
user-space.

On the one hand, the section header table has the
information required to locate the sections of the file that
are used for linking. The section header table has an
entry for each section that specifies the offset, the size of
the section and the type of section. The program header
table is required for executable and shared object files and
is optional for relocatable files. On the other hand, the
section header table is required for relocatable objects and
is optional for executables and shared objects. Moreover, by
inspecting executable files generated using thegcc compiler,
we noticed that executable files always have a section header
which is always found at the end of the file.

5.2. The prototype

Execution of processes is probably the main feature of an
operating system. In the Linux system, this feature is
performed by the execve system call.

The Linux kernel has the ability of executing files of
different binary formats [33]. Actually, the adjective binary
is misleading as some binary formats are not binary (e.g.
scripts are text files). Each binary format is associated with
a magic number that is found in the first few bytes of a file.
For example, scripts have magic number equal to ‘#!’.

We crucially rely upon on a feature of the Linux kernel
that allows the registering of new handlers for binary
formats. A binary format is registered by executing the
register_binfmt procedure passing as argument the

linux_binfmt struct (see [26] and [33] for details) filled
with pointers to the functions that are going to handle the
format.

Although it is possible to register a new binary format at
run time by providing an implementation in a loadable kernel
module, we strongly discourage this practice (for details, see
Section 5.2 on the security issues regarding loadable kernel
modules) and we suggest statically linking this feature into
the kernel.

The Linux kernel maintains a linked list of
linux_binfmt structures, one structure for each
binary format understood by the kernel. Each structure con-
tains, among other fields (see Figure 5), pointers to functions
called load_binary, load_shlib and core_dump.
The function load_binary is used to load and execute
the binary file, while the function load_shlib is invoked
to load dynamic libraries. The third function core_dump
is invoked in case the execution aborts and an image of the
process is to be created. The execution of a file is performed
by the do_execve function that can be found in the file
fs/exec.c of the Linux kernel source tree.

The work of do_execve is very simple: on input
the pathname of an executable, the arguments and the
environment in which the file is to be executed, the function
do_execve scans the list format. For each format found
do_execve invokes the load_binary function until one
is found that is able to run the executable.

We concentrated on the ELF format for binary files
and on the kernel script handler. In order to have a
manageable experimental framework where signed and
unsigned executables can coexist, we introduced two new
executable format handlers: the Worldwide Loadable Format
(WLF) to be used instead of the ELF handler, and the
Signed Scripts (SSCRIPT) handler for our signed scripts.
It is understood that all our experiments could have been
conducted by extending the original formats but then the
whole set of executables present on the system would have
to be signed.

For example, we now take a brief look at how the
Linux kernel executes scripts. All the scripts start with
sequence ‘#!’, followed by the pathname of the interpreter
to be used. When the user runs an executable script, he
issues a command line that contains the script name as first
argument followed by a (possibly empty) list of arguments.
The kernel gets the user’s command line and searches the
file indicated as first argument for the magic number and
then it invokes the script handler. The handler extracts the

The Computer Journal, Vol. 47, No. 5, 2004



Run-Time Verification of Executables 519

interpreter name from the file and re-builds the command line
by adding at the beginning the pathname of the interpreter
that becomes the first argument of the new command line.
For example, suppose that the user typed the line script
arg1, and suppose thatscript is a Bourne shell script, then
the resulting command line is /bin/sh script arg1.
Eventually, the kernel recursively executes the newly created
command line.

In order to experiment with verifying handlers, we provide
a suite of simple tools to sign executables and to generate
keys. The wlfsign application makes a WLF file from an
ELF executable or a shared library file. The scriptsign
works analogously with the script files. The wlfgenkey
application randomly generates a pair of keys and stores them
in the selected media.

5.3. Signing and verifying WLF files

Our technique to sign ELF files is quite similar to the one
proposed in [25]. We are interested only in the formatting of
an ELF file from an execution point of view and thus we only
consider the segments of an ELF file and not the sections.

When an ELF file has to be signed, the wlfsign utility
(that has been provided with the proper key pair) computes
a digest (using the MD5) of each file segment, and then
computes a digital signature of their concatenation. The
identifier of the public key (its MD5 representation) and
the computed signature are stored in two new ELF sections:
the identifier section and the signature
section. We will refer to the resulting signed executable
as a WLF file. In more detail, the wlfsign tool extracts
the ELF header and fills an Elf32_Ehdr structure. We
only set three fields for the newly added sections: the field
sh_type carrying information about the type of the section
to SHT_NULL to denote a section to be ignored, the field
sh_offset that will point to the offset at which the section
starts and the field sh_size that will contain the length of
the section in bytes. The Section Header Table of the ELF
file is extended by wlfsign with two new entries: the
identifier entry pointing to the identifier section that contains
the hash of the public key and the signature entry pointing to
the signature section that contains the digital signature. The
signature is encoded in the PKCS7 [32] format. The digital
signature is computed simply by computing digests of each
file segment, and then the signature algorithm (RSA, in our
case) on the concatenation of the digests is run. Our signing
tool can append a digital signature to any ELF file, including
dynamic libraries represented by shared object files (i.e. the
ones with extension .so). Besides wlfsign that actually
computes the signature, we have implemented the following
utilities for the management of signed ELF files:

(i) wlfread: this tool takes as input the name of
a signed ELF file and outputs the corresponding
signature, signer identifier and the referred shared
objects.

(ii) wlfso: this tool takes as input a signed ELF file and
outputs all shared objects required for the execution
of the file.

(iii) wlfverify: this tool takes as input the name of a
file in which a public key is encoded and the name
of a signed ELF file, verifies in the signed ELF file
the signer identifier and the signature with respect
to the given public key and outputs a message based
on the result of the verification.

5.3.1. The WLF handler
As we stated in Section 4, in order to preserve the generality
of our system, we chose not to modify the ld.so interpreter
and thus we have developed a handler for WLF executables.

The handler for the WLF binary format specifies a new
load_binary function and a new load_shlib function
and uses the same core_dump function as ELF.

The load_binary function for WLF checks if the file
has the correct magic number (a WLF magic number has
been defined), then it asks the cache management module
for the isTrusted attribute. If isTrusted is true
then the verification steps can be skipped else the signature
is verified and in case of success the cache management
module is invoked in order to set the isTrusted attribute.
The verification of the signature is performed by searching
for the segments that contain the digital signature and the
key identifier. Then for each shared object referred to in
a Dynamic segment of the executable file the following
procedure is executed:

(i) a cached copy of the shared object is searched for by
using the cache management module; if it is already
in cache then the procedure successfully ends;

(ii) for each shared object referred to in the Dynamic
segment inside the current shared object the procedure
is recursively executed; if the procedure fails for one of
the referred shared objects then the current procedure
fails too; and

(iii) the signature verification process of the shared object
is performed; if the verification fails the procedure
fails, otherwise the procedure ends with success.

The procedure described above might enter into a deadlock
if two shared objects have an entry in the Dynamic segment
that refers each to the other. We have fixed this problem
by using a stack that stores all shared objects referred to
during the recursion. When a shared object is in the stack
its verification is not performed.

Then the load_binary of the WLF handler loads the
shared object interpreter specified by the INTERP segment
(typically, ld.so) and checks recursively the executable.

We now point out a potential security vulnerability of the
Linux kernel.

5.3.2. Choosing dynamic libraries at run time
Besides the shared libraries specified in the executable, the
Linux kernel allows a process to dynamically load a shared
library during the execution. One way of doing this is to
invoke the uselib system call specifying the path of the
shared library to be included. The uselib system call in
turns invokes the function load_shlib for the handler for
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the specific format of the shared library. If the shared library
is a WLF library then the verification of the signature is
performed. In particular, the WLF load_shlib function
is called and we added the verification at the beginning of
this function.

A second way involves the use of the C-library function
dlopen. This function uses the ld.so interpreter to load
the library which is then directly memory-mapped. In this
way, our checking of signatures is bypassed and malicious
code could be executed. We stress that most of the work of
loading a shared object by dlopen is done at the user level
and thus escapes the checking of the kernel as opposed to
uselib, which guarantees that the loading is performed by
the kernel. At the same time, we observe that the dlopen
mechanism is the one mostly used by applications needing
shared libraries and thus it is an important open problem to
extend our architecture to deal also with dlopen. One easy
way would be to patch ld.so but we would like to see a
more general approach.

As is clear from the discussion above, in our architecture
the verification of the binaries is performed at the
operating system level. This has the advantage of making
our approach completely transparent to the application
developer.

Example . We now give an example of how to create and
install a signed executable, starting from a standard Linux
distribution. We stress that this example is given only for
experimental purposes since the goal of our architecture is
the realization of trusted Linux distribution that has to be
installed from scratch along with a static kernel. Instead
our example explains how to add one signed executable to
an existing Linux system and is to be considered only for
didactic purposes.

First, it is necessary to generate the RSA key pair and for
this purpose, we run the command wlfgenkey as follows:

#->wlfgenkey wlftest 1024 sdfjdhsfdjshfdsjk

by passing on the command line the length of the key and
some random data to be used as seed for randomization. The
output of this command is a file wlftest.sbk that holds
the RSA private key and a file wlftest.pbk that holds
the corresponding RSA public key. Both keys are encoded in
PEM format and thus the generated files can be inspected with
standard commands as more, less, cat. The next step
is the creation of a device that works on a key repository.
This can be accomplished by the following command:

#->mknod /dev/wlfkeyrepository c 101 0

The values 101 and 0 correspond to the major and minor
number of a device whose management is performed by our
key-handler module. Even though we suggest using a static
kernel containing our modules, in our experimental setting
we insert at run time our modules in the standard modular
kernel. The key-handler module has to be inserted in the
kernel by the superuser as follows:

#->insmod wlf_bkm_module.o

The tool putkey can be used by the superuser to add a
previously generated RSA public key to the key repository
as follows:

#->putkey /dev/wlfkeyrepository wlftest.pbk

For the sake of the example we only sign the ls executable.
To allow co-existence of signed and unsigned ls executables
we make a copy of ls to be signed.

#->cp /bin/ls /bin/wlfls

The same has to be performed for the shared objects
required for the execution of /bin/wlfls; in particular,
the references in the executable /bin/wlfls have to be
changed so that they specify the trusted shared objects. We
have embedded this feature in the wlfsign tool that could
be run as follows:

#->wlfsign wlftest.sbk wlftest.pbk /bin/wlfls

The file wlftest.sbk is used to compute and append the
signature while the file wlftest.pbk is used to compute
and append the key identifier.

The signed /bin/wlfls ELF file can now be verified
and inspected by running the following commands:

#->wlfverify wlftest.pbk /bin/wlfls

That’s a WLF file!

The signature is good.

#->wlfread /bin/wlfls

That’s a WLF file!

Signer Identifier (PEM):

StzF6yjn77QCVrUP0tfdig==

Digital Signature (PEM):

gbDmQzpNQxplnHeaFoRjOG48ZaDfKUbtKIpHm

AyBjP+/7Y+7LVMIv3Lja/M

jXfYJypBKj+u1WK7wt7iBXrQulCynvHRJ0hil

5VM2gAQq3B4H/RwKzuOmlb

996CqJV/Ru6KSWzgiNh7z+7jafwdksoMg9jK7

HuXi87JNX879vXHQ=

Shared object ==> wlftermcap.so.2

Shared object ==> wlfc.so.6

In particular, wlfread outputs the shared objects
referenced to by /bin/wlfls, which in our case are
wlftermcap.so.2 and wlfc.so.6, since wlfsign
changes the first three characters of the name of each shared
object (typically ‘lib’) to ‘wlf’. Thus, we require signed
shared objects to be in the directory /wlf:

#->cp /lib/libc.so.6 /wlf/wlfc.so.6

#->cp /lib/libtermcap.so.2

/wlf/wlftermcap.so.2

The shared objects have to be signed preserving the ELF
magic number since they are managed by the standard shared
object interpreter ld.so that supports only the ELF magic
number and we do not want to modify the interpreter.

#->wlfsign wlftest.sbk wlftest.pbk

/wlf/wlftermcap.so.2 -ELF

#->wlfsign wlftest.sbk wlftest.pbk

/wlf/wlfc.so.6 -ELF
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We now check for other shared objects that could be
recursively referenced:

#->wso /bin/wlfls

Shared Library: wlftermcap.so.2

Shared Library: wlfc.so.6

Shared Library: wlflinux.so.2 NOT FOUND

The tool says that the shared object interpreter
wlflinux.so.2 has not been found. Thus, we fix
this with the following commands:

#->cp /lib/ld-linux.so.2 /wlf/wlflinux.so.2

#->wlfsign wlftest.sbk wlftest.pbk

/wlf/wlflinux.so.2 -ELF

For the execution of a signed ELF file it is necessary to insert
in the kernel the corresponding handler:

#->insmod wlf.o

The verification of signed ELF files can be traced
by monitoring /var/log/messages. Before the
execution of /bin/wlfls the environment variable
LD_LIBRARY_PATH must include the directory /wlf.
Finally, the signed ls command can be successfully
executed:

#->/bin/wlfls

5.4. Signing and verifying script files

A script file is a text file that contains instructions that are
executed by an interpreter. In the implementation of our
prototype, we provide a tool that extends a script file with
a digital signature formatted according to PKCS7 [32]. The
PKCS suite of standards specifies data and message formats
for various cryptographic primitives and protocols. The
PKCS7 deals with digital signatures and digital envelopes.

The signature is then codified in PEM [34] (a popular
standard for encoding a binary string into a printable form)
and is added at the end of the file. The code appended
to the original file is not executed by the script interpreter
because we add it as a comment for script interpreters. The
script handler performs the verification phase before running
the script interpreter that is referred into the script (i.e. the
command line that follows the magic number ‘#!’).

The scriptsign application changes the script magic
number to ‘#@’ and adds, at the end of the script file,
a comment containing the identifier of the signer and the
signature encoded in PEM format.

The SSCRIPT handler takes care of executing signed
scripts whose magic number is the sequence ‘#@’. The
command line parsing process is the same as in the usual
scripts but in the last step, the SSCRIPT handler verifies the
signature of the script before running the new command line.
It is clear that during the new execution cycle, the interpreter
will be verified too.

5.5. Cache management

The execution of the verification steps each time that the
execution of a file is requested could have a severe impact

on the performance of the system. Repeated verification of
the same executable, within brief periods, can be avoided if
there is a guarantee that the file has not been changed since
the previous verification. To do so, the file should be kept
‘safe’ after it has been validated.

Our implementation of this idea is quite simple. Each
executable, once it is successfully validated, is copied in a
memory cache. Since the cache is assumed to be a ‘safe
place’, cached files need not be verified again when they are
invoked, provided that they could be read from the cache
itself. To do so, we bind each cache entry (i.e. each copy of
a verified executable) to a device on the file-system. Each
access to a cached file (including the ones by the kernel) is
redirected to the corresponding device instead of the inode
of the original file. Each cached file is actually stored in
kernel memory and thus can only be updated by the kernel
(see discussion on the assumptions in Section 2.4). The main
advantage of this caching mechanism is that it covers both
local and remote files, although it is quite expensive in terms
of memory usage.

In order to integrate such a mechanism in the infrastructure
discussed above we follow the following strategy:

• when the execution process of an executable file begins,
the cache is checked;

• if the file is already in the cache then the execution
process continues using the cached file with the
isTrusted attribute set to 0;

• else the file is inserted in the cache and then the execution
continues using the cached file.

We have designed and implemented a kernel module that
manages the cache and provides the fetch function that
other kernel modules can use in order to get the pathname of
a cached file from the pathname of an executable file. The
fetch function inserts a file in the cache if it is not already
there.

We modified the do_execve function (see the file
exec.c in the directory fs of the Linux kernel sources)
which drives the execution of files in the Linux kernel in the
following way. We add a call to the fetch function which
returns the pathname corresponding to the cached version
of the file to be executed. Next, do_execve calls the
search_binary_format function to identify the right
handler for the format. The format handler should then
verify the integrity of the cached file and start the execution.
The cache-management module attaches to each file a bit,
called isTrusted, that is set to 1 if the file has been
already verified successfully. Thus if isTrusted = 1, the
handler can skip the verification and proceed directly with
the execution.

In Figure 6, we illustrate the different states that compose
the execution phase of a file in our architecture.

5.6. Key management

Key management is an important component of our
architecture. We do not need to handle any secret key as
executables are assumed to be signed off-line by software
distributors. However, public keys are needed in order
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FIGURE 6. The execution of a file in our architecture.

to verify signatures. The key management subsystem is
crucial for the security of the system because if the adversary
manages to add his or her own keys permanently to the list
of trusted keys, then malicious code can be inserted and will
never be eradicated. The management of public keys has to
take into account two points. First, executables signed by
different providers (e.g. with different private keys) could be
present on the system. Second, public keys might be stored
on different supports (e.g. smart cards, CD-ROM).

We take a look at a typical scenario as an example. Our
system runs the ‘FOO’ Linux distribution whose executables
are signed with the private key of FOO, Inc. This corporation
distributes its software products with the appropriate public
key, stored on a smart card. Furthermore, our system
administrator has also installed software produced by BAR
Corp. (which distributes its public keys on a CD-ROM) and
moreover, some self-produced tools. Thus, our system needs
to manage a list of public keys. It should be able to choose
the correct public key for verifying a signature.

Now, we will show how our architecture addresses the
needs raised by this common scenario.

To allow maximum flexibility, we have abstracted the
functionality of the key management into a different kernel
module. In this way, different key management schemes can
be implemented without affecting the handlers. Each key
pair is provided with a key-id that identifies it. The key-
id is included with the signature and is used by the format

handler in order to ask the key management for the proper
public key. Public keys have to be loaded into the kernel
memory at bootstrap. In our prototype, we wrote two simple
key management modules that loaded the keys either from a
file, a read-only floppy disk or a CD-ROM.

Our system can also employ a hierarchical approach to
key management similar to the one of X509 [24]. Instead of
having one public key for each software provider we have
a few trusted keys. Each software provider will have its
key signed by a trusted entity (which acts as a certification
authority) and then each executable will contain the identifier
of the signer of the public key and the signed public key
(similar to an X509 certificate).

5.7. Experimental results

The proposed architecture has been implemented providing
tools for the generation of private and public keys, for the
signature of ELF and script files, for listing the shared objects
referenced by ELF files and for pushing public keys to a
device. Modules for the kernel 2.4.17 have been implemented
for the run-time integrity check of ELF binaries and shell
script files, for the key management and for the cache
management.

Our software uses the RSAREF library [31] that provides
the required implementations of cryptographic primitives.
We have chosen only RSA keys for our implementation
because the signature verification is faster as we can choose
low public exponents.

Experimental results show that run-time integrity check
of executable code can be performed with reasonable
performances and thus our architecture and implementation
are a practical mechanism to combat permanent attacks.

We performed two kinds of test: one to measure the
performance of the system and one to assess its robustness.
The table in Figure 7 shows the results of performance
measurement of running some of the largest general purpose
Linux executables. As we can see, the loading of signed
executables takes twice the time needed for loading the
unsigned ones. The slowdown depends on both the size of
the files and the number of dynamic objects that have to be
loaded together with the main program. For example, the
slowdown incurred by rpm is the smallest as rpm has no
shared objects.

Anyway, we believe that the overhead shown is decidedly
reasonable as it only affects the start of the execution process
of an executable and is amortized over longer executions
of the commands: the table refers to very short executions
where only the version number of the program is requested.
Moreover, such overheads should be considered as upper
bounds, since measurements have been carried out without
using the cache.

The second kind of test focuses on the robustness of the
implementation. We set-up and signed all executables of an
Apache Web Server. We also wrote and signed some cgi
both in script languages (whose interpreter was also signed),
and in C. The server neither crashed nor failed to answer any
query.
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FIGURE 7. Performance of signed ELF executable files. Execution times are in seconds and have been measured on a VMWare virtual
machine built on top of a Pentium IV 1.7 GHz with 256 MB RAM and kernel 2.4.17.

6. THE OLD-VERSION ATTACK

We now discuss a possible attack to our architecture.
Suppose that an adversary discovers some weaknesses
of some executables that are installed (and thus signed).
The adversary may keep one copy of the old signed
executables. Whenever the administrator of the victim
machine upgrades that software, the adversary could replace
the new executables with the old ones, which still have a
valid signature, and that still successfully pass the verification
phase. In order to make this kind of attack ineffective, which
we call the old-version attack, we propose two different
schemes. The first one is based on the use of file revocation
lists and requires a read-only support that is able to store
a few megabytes (a smart-card cannot be used while a
CD-ROM can) while the second one is based on some
more trusted information maintained in the file-system that
must be updated by using a private key (the system must
be disconnected from the network when such a task is
performed) each time new files are installed in the system.

Note that this problem in its generality cannot be handled
by a simple key revocation mechanism. Consider the
example of a Linux distribution. It is thinkable, though
impractical, that each version of the distribution is signed
with a different key. Thus each time a new version is
installed the key of the old version is revoked using standard
key revocation schemes. Instead, we can consider the case
in which specific packages (i.e. those that have security
problems) are upgraded.

6.1. File revocation lists

The old-version attack is similar to the case of a digital
certificate whose corresponding private key has been
discovered and thus the certificate must be revoked. The list
of revoked certificates is then released by a trusted authority
that appends a digital signature to the list. Each time a party
receives a digital certificate, the verification phase involves
the checking of the certificate with respect to the list of
revoked certificates.

We can introduce in our architecture the same mechanism
illustrated above by adding to the repository of public keys the
corresponding file revocation lists released by the software
distributors. In order to avoid the execution of revoked
files, each format handler should first check the file with
respect to the files revocation lists and then proceed with the
verification steps. The check can be performed efficiently in
the following way.

• A serial number can be added to each file that contains
executable code.

• The list of revoked files can be implemented with a
data structure that guarantees efficient lookups (e.g. hash
table).

When a revoked file is installed on the system and someone
tries to execute it, the appropriate handler extracts from the
file the serial number and performs a lookup with the data
structure that holds the revoked files. Only in the case
where the file is not revoked the verification task proceeds.
If the intruder tries to change the serial number in order to
pass the previous test then the signature is not valid any
more and the execution will be forbidden by the signature
verification step.

6.2. The version tree

In this solution, we need to store some information in the root
directory and in each directory in which signed executables
and shared objects are placed. This solution has been inspired
by [14] although our scheme is considerably simpler.

First, we describe new information we have to store in
the file-system and into the file signature. A signed segment
that contains the file version string (that could be a serial
number, the hash of the whole file, etc.) is added to each
executable. We place a special file called directory version
record in each directory which contains executables or shared
objects (e.g. /bin, /usr/lib and every other directory
in $PATH, $LD_PATH or reported into the ld.so.conf
file). This record contains a copy of version strings of all files
contained by the directory, and a directory version string that
is the hash of its list of file version strings. The directory
version record is signed. All the directory version records
are reported into a root version record that is formed like
a directory version record, thus we also have a root version
string. A copy of the root version string is stored in the public
key repository (the smart card, the ROM BIOS, etc.). The
root version record is signed. Figure 8 shows the layout of
this structure.

In order to install a new package, the administrator follows
the usual scheme we introduced in Section 4, then he or she
extracts the file version strings from new executables and
updates: the directory version record, the root version record
and the root version string on the key repository. Note that the
administrator has to sign each structure he or she modifies,
and he or she does that when the system is in secure mode so
private keys are not exposed.
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FIGURE 8. The tree of version records.

At boot, the kernel loads the root version record and verifies
the integrity of the root version string. Each time the kernel
runs an executable, it first loads the related directory version
record and verifies both the signature and the validity of
the directory version string. Finally, the kernel loads the
executable, verifies its signature and the file version string.
If everything works, the kernel runs the invoked application.
Otherwise, if an error occurs at any phase, the execution fails
(e.g. if any record is missing, or a version string mismatch
occurs at any level).

Since the number of directories in the $PATH and
$LD_PATH is usually small, and the related directory record
never changes while the system is working in normal mode,
all record files can be easily cached. Moreover, once an
executable has been cached, no more verifications are needed
until its entry expires. So, this scheme does not heavily
affect the system performances, although it lengthens the
installation process.

7. ABOUT EXECUTABLE HANDLING

The user’s perception of executables, in a UNIX-like system,
actually wraps different objects. Binaries and scripts are just
invoked in the same way but the system handles them quite
differently and, moreover, many differences exist also among
execution processes of different binary formats. Even the
same binary format can be handled differently according to
the design of the program. For this reason, the design of a

general mechanism of verification at run-time of executables
is a non-trivial task and probably it is not currently possible.
We think that in a ‘pure’ model, integrity verification is
simply a phase of execution. Thus, first, an entity that
performs the verification has to be always present and second,
verification that has to be performed on anything is handled
as an ‘executable’.

The approach proposed in [25] is a workable solution
but breaks that model. Introducing the verify() system
call implies that developers can choose not to verify and,
moreover, delegating verification to user-space interpreters,
like ld.so or bash, implies that ‘sometime’ the system
does not provide any verification.

On the other hand, the Linux operating system implements
the exec chain of the different executable format handlers
by means of a sort of object-oriented interface, quite
complete and general, but the execution chain of some
kinds of executables breaks that model. This is the
case of loading ELF dynamic objects by means of the
dlopen() library function, that bypasses the kernel
handler and, thus, the verification step. Currently, the
dlopen()/dlclose() suite of functions is the most
employed way of managing dynamic parts of executables
in many UNIX-like systems with respect to operating system
interfaces like the uselib() system call in Linux.

A possible way to achieve a solution that is closer to the
‘pure model’ is to develop a standard kernel interface for
loading dynamic objects, on top of which the dlopen()
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interface could be re-modeled. Currently, the dlopen()
function loads the target dynamic object into the memory
by means of an mmap() system call1 that does not involve
the ELF handler. Introducing a new system call, essentially
a dedicated version of mmap() that loads executable code
into the memory, under the control of the ELF format handler,
could be a good solution in order to allow our model to catch
this execution case, saving portability.

Scripts open a serious issue. In some way, script files have
been considered as executables for ‘historical’ reasons, but
actually, they should be considered as data files while script
language interpreters are simple user-level applications.
Handling execution of scripts and binaries in the same way
is in some cases impossible. Consider, as an example, the
source command of the tcsh interpreter.2 For the shell,
invoking source is like a ‘dynamic code loading’, but from
the kernel point of view, this operation appears simply as a
user-level application that opens a file, hence, involving the
kernel in this operation, within the ‘pure model’, is clearly
impossible.

Currently both [25] and our architecture cover this point
with an ad hocsolution. The issue is still open.

8. CONCLUSIONS

We have presented a solution for run-time integrity check
of executable code. Our architecture can be used for any
type of executable file format provided that a tool for the
signature and a kernel handler are available. A format inde-
pendent cache management mechanism has been designed
and implemented to improve the performance of the system.
We provided a proof of concept implementation for ELF
and script files.

Our approach is suitable for workstations that provide
services to end users and not for the development of applica-
tions. In fact, the simple compilation of a program generates
an executable file that can become trusted only if the author
signs it and its public key is in the list of trusted public keys.

Experimental results show that our solution is very efficient
but other issues need to be addressed in order to protect a
workstation from attacks based on malicious code.

Attacks to our infrastructure are possible by changing the
kernel during its execution; however, such attacks are not
as easy as the installation of a root-kit and can only have a
temporary success.

Next we point out two drawbacks of our approach and
leave them as open questions. First, we observe that scripts
that are invoked by passing the name of the file as a
command line argument to the interpreter are not verified
at all. Our architecture only guarantees that the interpreter
is verified. One solution, as suggested by [25], is to modify

1The mmap() system call maps files or devices into memory, allowing
the user to state the starting address and several access permissions (e.g.
read, write, execution) of the target memory buffer.

2The source command asks the shell to parse and execute the sequence
of commands contained in a given file. Note that the file is not necessarily
an executable, and that when source is invoked, the shell does not create
a new process.

all interpreters, thus losing the universality of the approach.
Moreover, we believe that it is not an easy task to modify
complex objects like the Perl interpreter and thus a better
solution to this problem is needed. A second weakness of our
architecture concerns dynamic libraries. In our architecture,
dynamic libraries that are specified at linking time (and thus
are referenced in the executable) are verified.

A preliminary version of this work appeared in [35].
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