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ABSTRACT: A comprehensivestudy on the torsional eismic response controlling capy of extre-
structural dissipation devices in the asymmetrampbuildings is herein presented. Effects of thanjlise
distribution of supplemental damping on torsionallynamic behaviour have been investigated bygusin
modal analysis techniques in the state space mmesn. Parametrical analysis leads to the optpiaan-
wise design for different allocation pattemmisdamping resources on varying the dynamic charetics o
the asymmetric-plan system. The nuita& constraints on the mechanical parameterdetleo the pratic.
application of the proposed control strategy anglieitally take into accountResults are carried out by ap-
plying H, and k., norm control methot.

1 INTRODUCTION cept allows for the definition of a new statistieql-
proach to optimally locate extra-structural dissipa

Studies on the seismic response of asymmetric-plaion devices.

systems have always aroused considerable interesti The present study faces the problem locate the

the scientific community, Hejal & Chopra (1987), “Empirical Center of Balance (ECB)” at equal dis-

Goel & Booker (2001). The importance of torsionaltance from both edges of the building plan through

effects on the seismic behaviour of structurestgavi methodologies of “vibration control theory”. In par

an irregular plan distribution of mass and stiffnes ticular, linear seismic response of non-proportiona

generally known and it is taken into account indamped systems is investigated through the use of

aseismic provisions and guidelines for the desiign omodal analysis techniques and bnd H, transfer

seismic-resistant systems. function norms. Parametrical analyses are carried
From the beginning of the 1990s, assessment staut for the definition of supplemental damping de-

dies started to evaluate the possibilities of sitity  sign criteria by considering both mass and stiffnes

extra-structural damping in order to reduce seismiproperties of the asymmetric system and numerical

demand in asymmetric-plan systems, Goel (1998konstraints on the mechanical parameters related to

Recent studies have demonstrated the effectiveneige pratical application of the control strategina-

of such a control strategy in reducing both thedm Iy, the proposed design criteria have been tested

Goel (2000), Lin & Chopra (2001), and non-linear,through the dynamic analysis of asymmetric systems

Goel & Booker (2001), seismic response of asymsubjected both to synthetic and recorded seismic

metric systems through the use of viscous-fluid deevents, having the aim to demostrate its effective-

vices. These studies have pointed out the impagtantess in terms of perfomance and robustness.

of the plan-wise distribution of additional damping

devices by supplying a sort of design guidelinee Th

result of these studies is to arrange the supplaahen2 DYNAMIC ANALYSIS OF IRREGULAR

dampers such that the damping eccentricity respect SYSTEMS EQUIPPED WITH

to the mass centre takes on the largest valueakith SUPPLEMENTAL DAMPING

gebraic sign opposite to the structural eccenyricit

This means locate the supplemental damping centtet us consider the structure shown in figure 1 de-

on the flexible edge side. Recently, the design corscribed in a co-ordinate system where the origin of

cept of “torsional balance” was presented, De Ldhe axes is located to coincide with the centre of

Llera et al. (2004). It's defined as a property ofstiffnessC, and the direction of x-axis is described

asymmetric structure that leads to similar deformaby the line connectin€, with the centre of masses

tion demand in structural members equidistant fronCy - System asymmetry is defined by eccentricity

the geometric center of the building plan. This-con
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where the dynamic properties of the system are de-
scribed by means of the following set of parameters
e the translation vibration circular frequency of
the system, ;
* the supplemental damping,;
 the structural eccentricityg = e/l ;
« the spreads of mass and stiffness about their

Figure 1. Asymmetric structure equipped with extrarctural distribution centroids, respectively
dampers Au =pu /l and A = p /1
» the supplemental damping eccentricity,

The system is characterized by its natural damp- Ec =e:ll;
ing parameters proportional to its mass and ssne ¢ the spread of damping about its centroid,
by means of Rayleigh coefficientsy, and £, and Ac = pc /1.
with extra-structural damping devices described by
viscous damping constantg; andc, ; respectively In a matrix form (3) can be represented as:

in directions x and y. The equations of motion for
are derived for the coupled two degrees of freedom 7 + (oM + K X + C_ & + K¢ =-MlI Ay @)
as:

where M ,C_,, and K are the mass, supplemental

m(y+?(lé)){am(wT(lﬁ'))+ﬁkyY} damping and stiffness matrices respectively, is
the influence vector of the ground motion and
+Cy’ext(y+e|—c(lt9'))+kyy:—m'jg’y Z;=[y It9]T the displacement vector. he supple-

1) mental damping may be considered as a control ac-
tion described by = C{ . Equation (4) can therefore

m(ey‘*pﬁ‘('é))‘{a’n’(ﬁﬁﬁ](|5’))+,3k pkz('g)}
172 2 Y2 be rewritten in the form:
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In (1), the supplemental damping system is deghich in state space representation leads to:
scribed by eccentricitye, between the centre of
dampingC. = (X:,Yc ) and the centre of stiffness (; 0 | ¢
Cy , the radius of gyrationp. and the overall {Q}:{ 22 L2 H}
damping coefficient ., in direction y: ¢ [-M7K -M 7 (aM + SK)

+
S

(6)
n n n n 02X1 o 02X2
Xe :ch,i)ﬂ ch,i Ye :Zcx,i Y, Zcx,i + - Ug + -M -1 u
i=1 i=1 i=1 i1 g
;Cw X+ ZC v " (2) or rather, in symbolic form:
pc = : n In Cy,e><1 = ch,i
chi+zcxi = = ..
= = Z :AZ+BgUg +BUU (7)
u=K,zZ

In the following, | indicates the projection along
the x-axis of the edge of the systemjs the number r T
of dampers, and finallyx, and y; the coordinates Where Z = [( Z] =[y 1oy |6’] is the state
which identify the position of the i-nth device. vector of the system, with the state matrix for the

Equations (1) can be rewritten in the form: uncontrolled structure and with; =[0,,, Ci,]

the gain matrix that connects the control action to
the system state.



In the complex Laplace space, equation (7) can b&tudy of the transfer function relating the maximum

written as: edge displacement of the asymmetric-plan system to
the input seismic excitation. The evaluation of the
SZ=AZ +B U, +Bu H. and H, norms of such a transfer function rep-
(8) resent suitable perfomance index for the definition
u=K,Z of optimal design criteria for the plan-wise distri

tion of extra-structural dampers.
By defining H = (sl = A)"B,s’ the transfer ma-
trix relating the complex response of the uncon3.1 Physical constraints for dissipation devices
trolled system to the input seismic action, thaesys location

(8) can be rewritten as: Parameters(e.,A. )characterize the allocation of
dissipation devices within the structural systems.

Z=HU +H B, u However, _depending on the stiffnes_s centroid_posi-
9 Bgsz (9) tion, that is to the origin of the defined coordma
system, a application domine for cougle.,A. is)
u=K,z defined. Such a domine is due to the necessity of

placing the devices within the structural system.
From (9) the control block diagram, shown in fig. In this paper, a single couple of stiff elements
2, which is representative of the behaviour of arplaced on system’s edges and uniform distribution
asymmetric-plan system equipped with extrafor mass is considered. Therefore, the structwral e
structural damping is obtained, Palazzo & Pettcentricity can be defined by mean of a single pa-
(2997). rameter:

U + ~ Kk =k, I(k, +k,) (12)

+

wherek, andk, are the stiffness element values.

It's possible to show that the adimensional values

L U of structural eccentricity and minimum distance be-
B, /(B;s%) K1 tween the stiffness centroid and the edges can be
write as:

Figure 2. Block diagram of the controlled system
£=(2x - 1) /L+1-2«|) (12)

It is interesting to note that the supplemental dis
= (L-[1- 2) ff1+ 1 - 2«]) (13)

sipation is seen by the system as a closed loop con O
troller in which the control action works retroac-

tively on the system. It can be observed that,
although the controller input is the complete stdte
the system, the specific form of the gain matKx,,
only allows for direct control of the velocity comyp
nents. Therefore, displacement control is obtained

by indirectly controlling the velocity. By means of 1> & > =0, (14)
supplemental energy dissipation, it is therefors-po A <9, (15)
sible to control efficiently the relative displacents

coupled to high values of velocity components.

System (7) can also be rewritten as: 3.2 Transfer function of controlled systems. ahd
Z=(A+B,K)Z +B,, (10) H., norms
_ Let us consider the Laplace transform of the con-
In this case(A +B,K ;) represents the state ma- trolled system. In equation (10) it is possible to

trix of the controlled system. evaluate the system’s state transform using the fol
lowing equation:

Considering the application of a couple of dissi-
pation devices and using egs. (12) and (13) the fol
lowing constraints for(s.,A. )are carried out:

3 OPTIMAL PLAN-WISE DISTRIBUTION 1
PROBLEM FOR SUPPLEMENTAL Z=(s ~A-B,K) B, (16)
DAMPING
where G(s)=(sl —A-B,K,)"'B,s* represents
A new approach to solving the optimal plan-wisethe transfer function vector relating the stateheaf
distribution problem of supplemental damping iscontrolled system to the input seismic excitation.
herein proposed. In particular, it is based on thébove all, since our interest lies in investigatihg



seismic response in terms of edge displacements, w . stiff edge flexible edge
define the transfer functions relating the edge dis max value & 0.49
placementsG*(s) and G~ €)to the ground motion  os| minalue
as follows:

max value = 1.98
0.8| min value = 0.19

0.6

0.6

G'(s)=[1 1 0 0]G(s) (17)
G (9=[L g, 0 0B(y (18)

0.2
The plan-wise distribution optimisation has been |
investigated through the analysis of performanee in o

dices defined by thed, and H, norms of the T

transfer functions (20) and (21). -0.2\
The H, norm of a transfer functioG(s) is de- \

fined as, Boyd & Barrat (1991): o o1 o2 o3 Ml o 01 02 o3 M

Figure 3. H norm of G™(s) and G*(s) functions
(£=030,¢,,, = 020)

- W
Popt=(0.36,1)

where the symbol&r and T respectively represent 08
the trace and the transpose complex conjugate -opera
tors. TheH, norm represents a measure of the root
mean square (RMS) of the system response to white
noise.

The H,, norm of a stable system transfer matrix 0.4
is defined as, Boyd & Barrat (1991):

H, =\/t{%i(3(iw)§(i a))da)J (19)

0.6 | stiff edge

flexible edge

0.2

H,, = sup o[G(s)] (20)

re(s)>0

where g() is the maximum singular value operator
defined as:

_ d'G (9)G(s)d 0 0.1 0.2 03 ),
a(G(s)) = max d'd (21) Figure 4. Maximum H norm (¢ = 030, £,,, = 020)
Such an expression shows that thk, norm stiff edge flexible edge

represents a measure of the upper extreme of the rn " —————— max value = 0.78
output-input ratio. Therefore, in this sense we are O‘SK 08| Hinvelue = 0,20

talking about design control in the "worst case". 06 06

max value = 0.31
min value = 0.17

3.3 Optimal plan-wise allocation of extrastructural o4 0.4
damping resource

0.2 0.2

Having fixed the amount of extrastructural damping, .
et = 020, in figures 3,5,7 values of the, and 0 0
H, norms applied to the transfer functid@®” s () _0.2\ oo

and G~ 6) on varying the value of structural eccen- \

tricity ¢ and the parameters describing the plan- -04 0.4
wise distribution of the extra-structural damping, \
(¢c,Ac), are plotted. In particular, according to the *° 0°

aim of limiting the maximum of both edge dis- ©° 02 04 osh 0 02 o4 o8’
placements, figure 4,6,8 show the maximum valudigure 5. H norm of G™(s) and G*(s) functions
of the H, (figs. 4,6) andH, (fig. 8) norm between (¢ = 015,¢,,, = 020)

the two transfer function under consideration.
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mal plan-wise arrangement of the dissipation re-



source described by the parametess ,Ac opt)) 4 CONCLUSION

considering also the physical limit for a fixedoak-

tion pattern. Specifically, in figures 9-11 theiopal A new approach for defining plan-wise optimal ar-
value of the damping centre eccentricity and spreadangement of supplemental damping in asymmetric-
on varying the structural eccentricity, are plottedplan systems has been carried out. The dynamic
For a better physical understanding, a new coordiroblem has been investigated in the state spgee re
nate system having the origin in the mass centgesentation showing that the supplemental dissipa-
(MC) and x-axes directed toward the stiffness cention resources work as a closed-loop feedback con-
troid (SC) has been introduced. An interpolatiortrol action. This allowed for a better physical
function to describe the optimal design parameteunderstanding of the problem and for the formula-
analytical trend (dotted line) is also represenfdte  tion of optimal plan-wise design criteria for addi-
optimal condition, when flexible edge control tional damping devices showing that moving the
doesn’t completly describe the problem, is characte damping centre through the flexible edge lead to
ized by the equality of thed_, or H, norms for swap the stiff role between the edges.

both the transfer function&™(s) and G~ §) (fig. Optimal plan-wise arrangement of supplemental
6,8). From the obtained results the following gaher damping, obtained by usingl,, and H, norms,
considerations can be derived: take place, for civil buildings typical eccentricit

 the increase of the supplemental damping cenvalue € = [0.1 ,035L ], when dampers center is lo-
tre eccentricity toward the flexible edge re-cated in the rangg-04L ~05L &nd the spread has
duces the flexible edge displacement, but ithe maximum potential value.
worsens the response of the stiff one.
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