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Abstract. We discuss the optimal control problem stated as the minimiza-

tion in the L2-sense of the mismatch between the actual out-flux and a demand
forecast for a hyperbolic conservation law that models a highly re-entrant pro-

duction system. The output of the factory is described as a function of the

work in progress and the position of the switch dispatch point (SDP) where
we separate the beginning of the factory employing a push policy from the end

of the factory, which uses a quasi-pull policy. The main question we discuss in

this paper is about the optimal choice of the input in-flux, push and quasi-pull
constituents, and the position of SDP.

1. Introduction. The aim of this article is to analyze an optimal control problem
(OCP) for a highly re-entrant production system which is described by a scalar
nonlinear conservation law. Typically, in high-technological semi-conductor man-
ufacturing, many machines are repeatedly used for similar processing operations.
In such production lines, semi-conductor wafers return to the same set of machines
many times. So, the product flow has a re-entrant character. Typically, the semi-
conductor systems are characterized by a very high volume (number of parts man-
ufactured per unit time) and a very large number of consecutive production steps.
This fact motivates to consider the scalar nonlinear conservation laws for the sim-
ulation of such processes. Partial differential equations, which are related with
nonlinear conservation laws, are rather popular due to their superior analytic prop-
erties and availability of efficient numerical tools for simulation. For more detailed
discussions of these models we refer to [3, 4, 6, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 29, 30, 31].
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From the optimization point of view, in manufacturing systems the natural con-
trol input is the in-flux (see, for instance, [15, 17] where the inflow on the output
has been studied). Specifically, re-entrant production creates the opportunity to
set priority rules for the various stages of production competing for capacity at the
same machines. This dispatch policy, as it was indicated in [5], typically allows for
two models of operations — the so-called push and pull policies. A push policy,
also known as first buffer first step, is typically assigned to the front of the fac-
tory. A pull policy gives priority to later or fixed production steps over the earlier
production steps. The step where push policy switches to pull policy is called the
push-pull point (PPP). Moving the PPP leads not only to a change in dispatch
rules, but also it may have an effect on the total output. In view of this it makes s
sense to consider the PPP as a control variable.

A modern introduction to the study of hyperbolic conservation laws and espe-
cially of the control systems governed by such laws can be found in [9]. Fundamen-
tal are questions of wellposedness, regularity properties of solutions, controllability,
existence, uniqueness and regularity of optimal controls. Existence of solutions,
regularity and wellposedness of nonlinear conservation laws have been widely stud-
ied under diverse sets of hypotheses, see e.g. [1, 2, 6, 7, 8, 10, 14, 28, 32, 33] and
the references therein. Concerning the manufacturing systems, an optimal control
problem related to minimization of the error-signal that is the difference between a
given demand forecast and the actual out-flux of manufacturing system, was studied
in [17, 34]. For the controllability, exponential stability, and feedback stabilization
of highly re-entrant production systems and further results in this field, we refer to
[12, 14, 15, 16, 17, 31].

Here we consider an optimal control problem for a PDE model of a re-entrant
system governed by nonlinear hyperbolic conservation law for the part density ρ(t, x)

∂tρ+ ∂x (ρV (ρ)) = 0 in Q = (0, T )× (0, 1), (1)

where

V (ρ) = H(x− x∗)V2

(∫ 1

x

ρ(t, y − x+ x∗) dy

)
+H(x∗ − x)V1

(∫ x

0

ρ(t, y) dy

)

=


V1

(∫ x

0

ρ(t, y) dy

)
, if x < x∗,

V2

(∫ 1

x

ρ(t, y − x+ x∗) dy

)
, if x > x∗,

(2)

andH(x) stands for the Heaviside function whose value is zero for negative argument
and one for positive argument.

The characteristic feature of OCP, we deal with in this article, is the fact that
this model depends explicitly both on the so-called switch dispatch point (SDP)
which is located at a priori unknown position x∗ and velocity functions V1 and V2

which describe different types of policy in the regions [0, x∗] and [x∗, 1].
Since the SDP divides the production line [0, 1] onto two parts [0, x∗] and [x∗, 1]

with different type of policies, in general, we cannot represent the right hand side
of (2) in the form

V (ρ) = λ

(∫ 1

0

ρ(t, x) dx

)
for a certain function λ ∈ C1([0,∞))

which is the main constituent of models considered in [15, 16, 17, 34]. Hence,
the wellposedness, uniqueness and regularity properties of solutions of hyperbolic
conservation law (1) with a nonlocal speed term (2) requires a separate analysis. In
what follows we will show that in many aspects such analysis can be provided in
the spirit of recent work [17]. Moreover, as follows from (2), we consider the push
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policy for the region [0, x∗], whereas the dependency

V2

(∫ 1

x

ρ(t, y − x+ x∗) dy

)
= V2

(∫ 1

x∗
ρ(t, y) dy −

∫ 1

1−x+x∗
ρ(t, y) dy

)
on the rest production line [x∗, 1] can be interpreted as a certain version of a pull
policy — the so-called quasi-pull policy. However, the right choice of functions V1

and V2 is definitely open question (see, for instance, [5, 17, 34]). This fact motivates
us to consider the functions V1 and V2 as controls too. As a result, we deal with an
OCP for the nonlinear conservation law with a nonlocal character of the velocity
and with three different control actions — the in-flux, the SDP, and the functions
V1 and V2.

The paper is organized as follows. In Section 2 we give the precise statement of
the OCP for a highly re-entrant production system. The aim of Section 3 is to give
some preliminaries and auxiliary results that we make use for our further analysis.
In Section 4 we prove the existence of a unique weak solution to the Cauchy problem
associated with the re-entrant system under given control functions when the initial
and boundary conditions we consider in L1(0, T ) and L1(0, 1) sense, respectively.
We also study the main functional properties of the weak solutions and derive a
priori estimates for them. Section 5 is addressed to the solvability of the original
OCP. As for the optimality conditions for the given class of OCP, these aspects will
be considered in the forthcoming paper.

2. Statement of the problem. Let α2 > α1 > 0 and α3 > 0 be given constants.
Let Aad be the following subset of C1([0,∞))

Aad =

{
V ∈ C1([0,∞))

∣∣∣∣∣ 0 ≤ α1 ≤ V (x) ≤ α2 ∀x ∈ [0,∞),

‖V ′‖C0([0,∞)) ≤ α3.

}
(3)

Following the concept of the continuous flow model, describing the flow of prod-
ucts through a factory like a fluid flow, we denote ρ(t, x) the product density at the
stage x ∈ [0, 1] and time t ∈ [0, T ]. Here, x = 0 refers to the point of raw material
and x = 1 to the finished product.

Definition 2.1. We say that a mapping F : [0, T ]× [0, 1] 7→ [0,∞) is the clearing
function if there exists a point x∗ ∈ [0, 1] and functions V1, V2 ∈ Aad such that

F (t, x) := ρ(t, x) [H(x∗ − x)V1 (Wp(t, x)) +H(x− x∗)V2 (Wq(t, x))] ,

where H(x) stands for the Heaviside function and

Wq(t, x) =

∫ 1

x

ρ(t, y − x+ x∗) dy, Wp(t, x) =

∫ x

0

ρ(t, y) dy.

As follows from this definition F (t, x) can be associated with the flux (production
rate) at the time t ∈ [0, T ] and stage x ∈ [0, 1] in the factory, whereas x∗ ∈ [0, 1] is
the SDP.

We consider the following statement of OCP for manufacturing system:

Minimize
{
I(u, V1, V2, x

∗) =

∫ T

0

|y(t)− yd(t)|2 dt

+ ‖V ′′1 − z1,d‖2L2(0,a1) + ‖V ′′2 − z2,d‖2L2(0,a2)

}
(4)
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subject to the constraints

∂tρ(t, x) + ∂x (V ρ(t, x)) = 0 in Q = (0, T )× (0, 1), (5)

V = H(x− x∗)V2

(∫ 1

x

ρ(t, y − x+ x∗) dy

)
+H(x∗ − x)V1

(∫ x

0

ρ(t, y) dy

)
, (6)

ρ(0, x) = ρ0(x) for x ∈ [0, 1], ρ(t, 0)V1(0) = u, for t ∈ [0, T ], (7)

y(t) = ρ(t, 1)V2(0), (8)

V1, V2 ∈ Aad, x∗ ∈ [0, 1], (9)

u ∈ Uad :=
{
w ∈ L2(0, T ) | ‖w‖L2(0,T ) ≤ α4, w(x) ≥ 0 a.e. on (0, T )

}
, (10)

where

a1 =
√
T α4 + ‖ρ0‖L∞(0,1), a2 =

α2

α1

(√
T α4‖ρ0‖L∞(0,1)

)
, (11)

z1,d ∈ L2(0, a1), z2,d ∈ L2(0, a2), ρ0 ∈ L2(0, 1), and yd ∈ L2(0, T ) are functions, and
y(t) is the out-flux corresponding to the in-flux u ∈ L2

+(0, T ), functions V1, V2, and
initial data ρ0. We also suppose ρ0 ∈ L2(0, 1) and yd ∈ L2(0, T ) are nonnegative
almost everywhere, and the constant a in definition of the cost functional is such
that max {a1, a2} ≤ a < +∞. As for the second and third terms in the cost
functional (4), they are related to the regularity (and, hence, to the solvability) of
the original problem.

Hereinafter, a tuple (u, V1, V2, x
∗) ∈ L2(0, T ) × C1([0, a1]) × C1([0, a2]) × [0, 1]

we call an admissible control to OCP (4)–(10) if (u, V1, V2, x
∗) satisfies constraints

(9)–(10).

3. Preliminaries and auxiliary results. It is easy to see that, for each admis-
sible control (u, V1, V2, x

∗), the Cauchy problem (5)–(7) can be represented in the
form of a coupled system

∂tρ1(t, x) + ∂x

(
V1

(∫ x

0

ρ1(t, y) dy

)
ρ1(t, x)

)
= 0 in (0, T )× (0, x∗), (12)

ρ1(0, x) = ρ0(x) for x ∈ [0, x∗], ρ1(t, 0)V1(0) = u(t), for t ∈ [0, T ], (13)

∂tρ2(t, x) + ∂x

(
V2

(∫ 1

x

ρ2(t, y − x+ x∗) dy

)
ρ2(t, x)

)
= 0 in (0, T )× (x∗, 1),

(14)

ρ2(0, x) = ρ0(x) for x ∈ [x∗, 1], (15)

ρ2(t, x∗)V2

(∫ 1

x∗
ρ2(t, y) dy

)
= ρ1(t, x∗)V1

(∫ x∗

0

ρ1(t, y) dy

)
, for t ∈ [0, T ],

(16)

where the compatibility condition (16) means that the output flux at x = x∗ of the
push region must be considered as the in-flux for the quasi-pull region.

Remark 1. It is easy to note that the following representation for the solutions to
the Cauchy problem (5)–(7)

ρ(t, x) =

{
ρ1(t, x), if t ∈ [0, T ], x ∈ [0, x∗),
ρ2(t, x), if t ∈ [0, T ], x ∈ (x∗, 1]),

holds, where x = x∗ is the discontinuity point for the work in progress (wip) profile.
However, the continuity assumption of the flux (16) guarantees the smooth solutions
later on.

Following [13], we adopt the following definition of a weak solution to the problem
(12)–(16).
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Definition 3.1. Let T > 0, ρ0 ∈ L1(0, 1), u ∈ L1(0, T ), x∗ ∈ [0, 1], and V1, V2 ∈ Aad
be given. We say that a pair (ρ1, ρ2) ∈ C0([0, T ];L1(0, x∗) × L1(x∗, 1)) is a weak
solution to the Cauchy problem (12)–(16) if for every τ ∈ [0, T ] and every test
functions (ϕ1, ϕ2) ∈ C1([0, T ]× [0, x∗])× C1([0, T ]× [x∗, 1]) such that

ϕ1(τ, x) = 0, ∀x ∈ [0, x∗], ϕ1(t, x∗) = 0, ∀ t ∈ [0, τ ],

ϕ2(τ, x) = 0, ∀x ∈ [x∗, 1], ϕ2(t, 1) = 0, ∀ t ∈ [0, τ ],

the following integral identities hold true∫ τ

0

∫ x∗

0

ρ1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ1(t, y) dy

)
∂xϕ1(t, x)

]
dxdt

+

∫ τ

0

u(t)ϕ1(t, 0) dt+

∫ x∗

0

ρ0(x)ϕ1(0, x) dx = 0, (17)∫ τ

0

∫ 1

x∗
ρ2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

x

ρ2(t, y − x+ x∗) dy

)
∂xϕ2(t, x)

]
dxdt

+

∫ τ

0

ρ1(t, x∗)V1

(∫ x∗

0

ρ1(t, y) dy

)
ϕ2(t, x∗) dt+

∫ 1

x∗
ρ0(x)ϕ2(0, x) dx = 0.

(18)

We make use of a few of auxiliary results. In particular, the next Lemmas give
existence of characteristics to the original Cauchy problem and their regularity what
is a crucial point for our further analysis.

Lemma 3.2. Let ρ0 ∈ L1(0, 1) and u, v ∈ L1(0, T ) be nonnegative functions. Let
x∗ ∈ [0, 1], x ∈ [0, x∗], z ∈ [x∗, 1], and V1, V2 ∈ Aad be given and such that Vi(s) =
Vi(0) for all s < 0. Then there exists δ ∈ [0, T ] independent of x and y such that
the Cauchy problem

dξ(t)

dt
= V1

(∫ t

0

u(σ) dσ +

∫ x−ξ(t)

0

ρ0(y) dy

)
, t ∈ [0, δ], ξ(0) = 0,

dζ(t)

dt
= V2

(∫ t

0

v(σ) dσ +

∫ 1−ζ(t)+x∗−z

x∗
ρ0(y) dy

)
, t ∈ [0, δ], ζ(0) = 0,

(19)

has a unique solution (ξx, ζz) ∈
[
C1([0, δ])

]2
.

Proof. We associate with the Cauchy problem (19) the mapping (ξ, ζ) 7→ F (ξ, ζ) :

Ωδ × Ωδ →
[
C0([0, δ])

]2
such that

F (ξ, ζ)(t) =


∫ t

0

V1

(∫ s

0

u(σ) dσ +

∫ x−ξ(s)

0

ρ0(y) dy

)
ds∫ t

0

V2

(∫ s

0

v(σ) dσ +

∫ 1−ζ(s)+x∗−z

x∗
ρ0(y) dy

)
ds

 , ∀ t ∈ [0, δ]

(20)
and

Ωδ =

{
ξ ∈ C0([0, δ]) | ξ(0) = 0, α1 ≤

ξ(s)− ξ(t)
s− t

≤ α2, ∀ s, t ∈ [0, δ], s > t

}
(21)

where the constants α1 and α2 are defined as in (3). It is clear that Ωδ consists of
monotonically increasing functions on [0, δ].

Let us show that there exists a constant κ ∈ (0, 1) such that

‖F (ξ1, ζ1)− F (ξ2, ζ2)‖[C0([0,δ])]2 ≤ κ
[
‖ζ1 − ζ2‖C0([0,δ]) + ‖ξ1 − ξ2‖C0([0,δ])

]
(22)

for all ξi, ζi ∈ Ωδ and δ > 0 small enough. Since F maps into Ωδ provided δ < α−1
2 , it

follows from (22) that F (ξ, ζ) : Ωδ×Ωδ → Ωδ×Ωδ is a contraction mapping. Then,
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by the Banach fixed point theorem, there exists a unique pair (ξx, ζz) such that
F (ξx, ζz) = (ξx, ζz), i.e. (ξx, ζz) is the unique solution to the Cauchy problem (19).
Moreover, as follows from definition of the set Aad and the fact that V1, V2 ∈ Aad,

the unique fixed pair (ξx, ζz) for F is in
[
C1([0, δ])

]2
.

Let ξi, ζi (i = 1, 2) be arbitrary elements of Ωδ. Then (20) implies the estimate

|F (ξ1, ζ1)− F (ξ2, ζ2)|1 ≤ α3

∫ t

0

∣∣∣∣∣
∫ x−ξ2(s)

x−ξ1(s)

ρ0(y) dy

∣∣∣∣∣ ds
+ α3

∫ t

0

∣∣∣∣∣
∫ 1−ζ2(s)+x∗−z

1−ζ1(s)+x∗−z
ρ0(y) dy

∣∣∣∣∣ ds
= α3 [J1(ξ1, ξ2) + J2(ζ1, ζ2)] . (23)

We define ξ̂, ξ ∈ C0([0, δ]) by

ξ̂(t) := max{ξ1(t), ξ2(t)} and ξ(t) := min{ξ1(t), ξ2(t)}.
Since ξi are monotonically increasing functions, it follows that the inverse functions

ξ̂−1 and ξ−1 are well defined. Then, changing the order of integrations in (23) and
following in many aspects [17], we obtain

J1(ξ1, ξ2) =

∫ t

0

∣∣∣∣∣
∫ x−ξ2(s)

x−ξ1(s)

ρ0(y) dy

∣∣∣∣∣ ds
=

∫ x−ξ(t)

x−ξ̂(t)
ρ0(y)

(
t− ξ̂−1(x− y)

)
dy

+

∫ x

x−ξ(t)
ρ0(y)

(
ξ−1(x− y)− ξ̂−1(x− y)

)
dy

≤
∫ x−ξ(t)

x−ξ̂(t)
ρ0(y)

(
ξ−1

(
ξ(t)

)
− ξ̂−1

(
ξ(t)

))
dy

+

∫ x

x−ξ(t)
ρ0(y)

(
ξ−1(x− y)− ξ̂−1(x− y)

)
dy

≤
∫ x

x−ξ̂(t)
ρ0(y) dy sup

0≤y≤ξ(t)

[
ξ−1(y)− ξ̂−1(y)

]
,

where for the term ξ−1(y) − ξ̂−1(y) we have the following estimate for each y ∈
[0, ξ(t)] (this inference is based on (21) and the definition of ξ and ξ̂)

0 ≤ ξ−1(y)− ξ̂−1(y)

=

(
ξ−1(y)−

ξ−1(y) + ξ̂−1(y)

2

)
+

(
ξ−1(y) + ξ̂−1(y)

2
− ξ̂−1(y)

)

≤ 1

α1

[
y − ξ

(
ξ−1(y) + ξ̂−1(y)

2

)]
+

1

α1

[
ξ̂

(
ξ−1(y) + ξ̂−1(y)

2

)
− y

]

=
1

α1

[
ξ̂

(
ξ−1(y) + ξ̂−1(y)

2

)
− ξ

(
ξ−1(y) + ξ̂−1(y)

2

)]
≤ 1

α1
‖ξ1 − ξ2‖C0([0,δ]).

Combining the above results, we finally get

J1(ξ1, ξ2) ≤ 1

α1
‖ξ1 − ξ2‖C0([0,δ])

∫ x

x−ξ̂(t)
ρ0(y) dy

≤ 1

α1
‖ξ1 − ξ2‖C0([0,δ])

∫ x

x−δα2

ρ0(y) dy.
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By analogy, it can be shown that

J2(ζ1, ζ2) ≤ 1

α1
‖ζ1 − ζ2‖C0([0,δ])

∫ 1

1−ζ̂(t)
ρ0(y) dy

≤ 1

α1
‖ζ1 − ζ2‖C0([0,δ])

∫ 1

1−δα2

ρ0(y) dy.

As a result, the inequality (23) implies

|F (ξ1, ζ1)(y)− F (ξ2, ζ2)(y)|1 ≤
α3

α1

[∫ x

x−δα2

ρ0(y) dy +

∫ 1

1−δα2

ρ0(y) dy

]
×
[
‖ξ1 − ξ2‖C0([0,δ]) + ‖ζ1 − ζ2‖C0([0,δ])

]
. (24)

Since ρ0 ∈ L1(0, 1), it follows that there exists δ ∈ (0, T ) small enough such that∫ x

x−δα2

ρ0(y) dy +

∫ 1

1−δα2

ρ0(y) dy <
α1

2α3
. (25)

In view of estimate (24), this immediately leads us to inequality (22).

Our next intention is to study the properties of the mappings x 7→ ξx(t) and
z 7→ ζz(t).

Lemma 3.3. Assume that ρ0 ∈ L∞(0, 1). Then, for given u, v ∈ L1(0, T ), V1, V2 ∈
Aad, and t ∈ [0, δ], the mappings

x 7→ ξx(t) : [0, x∗]→ R+ and z 7→ ζz(t) : [x∗, 1]→ R+ (26)

are uniformly Lipschitz.

Proof. Let x, y ∈ [0, x∗] be arbitrary points. Then, in view of definition of the class
Aad, we can derive from the first equation of (19) the estimate

|ξx(t)− ξy(t)| ≤ α3

∫ t

0

∣∣∣∣∣
∫ x−ξx(s)

y−ξy(s)

ρ0(σ) dσ

∣∣∣∣∣ ds
≤ α3‖ρ0‖L∞(0,1)

∫ t

0

(|x− y|+ |ξx(s)− ξy(s)|) ds

≤ α3‖ρ0‖L∞(0,1)δ|x− y|+ α3‖ρ0‖L∞(0,1)

∫ t

0

|ξx(s)− ξy(s)| ds.

As a result, by Gronwall-Bellman inequality, we see that

|ξx(t)− ξy(t)| ≤ α3‖ρ0‖L∞(0,1)δ|x− y| exp
(
α3‖ρ0‖L∞(0,1)t

)
≤ C|x− y|, (27)

that is, x 7→ ξx(t) : [0, x∗]→ R+ is a uniformly Lipschitz continuous mapping. The
same property of z 7→ ζz(t) can be established in a similar manner.

Let x ∈ [0, x∗] and z ∈ [x∗, 1] be fixed. Let (ξx, ζz) ∈
[
C1([0, δ])

]2
be the

corresponding solution of the system (19) on some small time interval [0, δ]. For
given ρ0 ∈ L1(0, 1), u, v ∈ L1(0, T ), and x∗ ∈ [0, 1], we introduce the following
couple of functions

ρ̃1,x(t, y) =


u
(
ξ−1
x (ξx(t)− y)

)
ξ′x
(
ξ−1
x (ξx(t)− y)

) , 0 ≤ y ≤ ξx(t),

ρ0(y − ξx(t)), ξx(t) ≤ y ≤ x∗,
∀ t ∈ [0, δ], (28)

ρ̃2,z(t, y) =


v
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) , x∗ ≤ y ≤ x∗ + ζz(t),

ρ0(y − ζz(t)), x∗ + ζz(t) ≤ y ≤ 1.

∀ t ∈ [0, δ]. (29)
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Lemma 3.4. For given ρ0 ∈ L1(0, 1), u, v ∈ L1(0, T ), x∗ ∈ [0, 1], x ∈ [0, x∗],

z ∈ [x∗, 1], and (ξx, ζz) ∈
[
C1([0, δ])

]2
, the functions ρ̃1,x and ρ̃2,z, defined by (28)–

(29) are such that

ρ̃1,x ∈ C([0, δ];L1(0, x∗)), ρ̃2,z ∈ C([0, δ];L1(x∗, 1)). (30)

Proof. We only prove the inclusion ρ2 ∈ C([0, δ];L1(x∗, 1)), since the second one in
(30) can be established by analogy. Let ε > 0 be an arbitrary value. Our aim it to
show that there exists θ = θ(ε) > 0 such that, for arbitrary points s, t ∈ [0, δ], we
have

‖ρ̃2,z(s, ·)− ρ̃2,z(t, ·)‖L1(x∗,1) < ε, provided |s− t| < θ.

Indeed, having assumed for simplicity that s > t, we have

∫ 1

x∗
|ρ̃2,z(s, y)− ρ̃2,z(t, y)| dy

≤
∫ x∗+ζz(t)

x∗

∣∣∣∣∣ v
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − v
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy
+

∫ x∗+ζz(s)

x∗+ζz(t)

|ρ̃2,z(s, y)− ρ̃2,z(t, y)| dy

+

∫ 1

x∗+ζz(s)

|ρ0(y − ζz(s))− ρ0(y − ζz(t))| dy = J1 + J2 + J3. (31)

Since

J2 :=

∫ x∗+ζz(s)

x∗+ζz(t)

|ρ̃2,z(s, y)− ρ̃2,z(t, y)| dy ≤

≤
∫ x∗+ζz(s)

x∗+ζz(t)

ρ̃2,z(s, y) dy +

∫ x∗+ζz(s)

x∗+ζz(t)

ρ̃2,z(t, y) dy

by (29)
=

∫ x∗+ζz(s)

x∗+ζz(t)

v
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) dy +

∫ x∗+ζz(s)

x∗+ζz(t)

ρ0(y − ζz(t)) dy

=

∫ ζ−1
z (ζz(s)−ζz(t))

0

v(σ) dσ +

∫ x∗+ζz(s)−ζz(t)

x∗
ρ0(γ) dγ

and ρ0 ∈ L1(0, 1) and v ∈ L1(0, T ), it is easy to conclude from monotonicity
property of ζz ∈ C1([0, δ]) and condition ζz(0) = 0 that there exists a value θ2(ε) > 0
such that J2 < ε/3.

Now we show that the same conclusion can be obtained with respect to the term
J3. Indeed, let

{
ρk0
}
k∈N ⊂ C1([x∗, 1]) be an arbitrary sequence such that ρk0 → ρ0
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in L1(x∗, 1) as k →∞. Then

J3 :=

∫ 1

x∗+ζz(s)

|ρ0(y − ζz(s))− ρ0(y − ζz(t))| dy

≤
∫ 1

x∗+ζz(s)

∣∣ρ0(y − ζz(s))− ρk0(y − ζz(s))
∣∣ dy

+

∫ 1

x∗+ζz(s)

∣∣ρk0(y − ζz(s))− ρk0(y − ζz(t))
∣∣ dy

+

∫ 1

x∗+ζz(s)

∣∣ρk0(y − ζz(t))− ρ0(y − ζz(t))
∣∣ dy

≤
∫ 1−ζz(s)

x∗

∣∣ρ0(y)− ρk0(y)
∣∣ dy

+

∫ 1−ζz(t)

x∗+ζz(s)−ζz(t)

∣∣ρk0(y)− ρ0(y)
∣∣ dy + C(k)|ζz(s)− ζz(t)|

≤ 2

∫ 1

x∗

∣∣ρ0(y)− ρk0(y)
∣∣ dy + C(k)|ζz(s)− ζz(t)|,

where the constant C(k) depends on k ∈ N but does not depend on t and s.
Hence, in view of the strong convergence ρk0 → ρ0 in L1(x∗, 1) and monotonicity of
ζz ∈ C1([0, δ]), there exists a value θ3(ε) > 0 such that J3 < ε/3.

It remains to estimate the first term in the right hand side of (31). Let {vk}k∈N ⊂
C1([0, T ]) be a strongly convergent sequence to v in L1(0, T ). Then

J1 :=

∫ x∗+ζz(t)

x∗

∣∣∣∣∣ v
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − v
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy

≤
∫ x∗+ζz(t)

x∗

∣∣∣∣∣ v
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − vk
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) ∣∣∣∣∣ dy
+

∫ x∗+ζz(t)

x∗

∣∣∣∣∣vk
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − vk
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy
+

∫ x∗+ζz(t)

x∗

∣∣∣∣∣vk
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) − v
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy
= A1 +A2 +A3.

Since

A1 =

∫ s

ζ−1
z (ζz(s)−ζz(t))

|v(σ)− vk(σ)| dσ ≤ ‖v − vk‖L1(0,T ),

A3 =

∫ t

0

|v(σ)− vk(σ)| dσ ≤ ‖v − vk‖L1(0,T ),



10 CIRO D’APICE, PETER I. KOGUT AND ROSANNA MANZO

and

A2 :=

∫ x∗+ζz(t)

x∗

∣∣∣∣∣vk
(
ζ−1
z (ζz(s) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − vk
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy
≤
∫ x∗+ζz(t)

x∗

∣∣∣∣∣vk
(
ζ−1
z (ζz(s) + x∗ − y)

)
− vk

(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) ∣∣∣∣∣ dy
+

∫ x∗+ζz(t)

x∗

∣∣∣∣∣vk
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(s) + x∗ − y)

) − vk
(
ζ−1
z (ζz(t) + x∗ − y)

)
ζ ′z
(
ζ−1
z (ζz(t) + x∗ − y)

) ∣∣∣∣∣ dy
≤ C(k)|ζz(s)− ζz(t)|

+ Ĉ(k)

∫ x∗+ζz(t)

x∗

∣∣ζ ′z (ζ−1
z (ζz(t) + x∗ − y)

)
− ζ ′z

(
ζ−1
z (ζz(s) + x∗ − y)

)∣∣ dy
it follows from definition of function ζz (see the Cauchy problem (19)) that

A2 ≤ C(k)|ζz(s)− ζz(t)|

+ Ĉ(k)

∫ x∗+ζz(t)

x∗

∣∣∣V2(·)|ζ−1
z (ζz(t)+x∗−y) − V2(·)|ζ−1

z (ζz(s)+x∗−y)

∣∣∣ dy
≤ C(k)|ζz(s)− ζz(t)|+ Ĉ(k)α3

∫ x∗+ζz(t)

x∗

∫ ζ−1
z (ζz(s)+x∗−y)

ζ−1
z (ζz(t)+x∗−y)

v(σ) dσdy

+ Ĉ(k)α3

∫ x∗+ζz(t)

x∗

∫ 1−ζz(t)−x∗+y

1−ζz(s)−x∗+y
ρ0(γ) dγdy. (32)

To estimate the right hand side in (32), we change the order of integration. As a
result, we obtain

∫ x∗+ζz(t)

x∗

∫ ζ−1
z (ζz(s)+x∗−y)

ζ−1
z (ζz(t)+x∗−y)

v(σ) dσdy =

∫ ζ−1
z (ζz(s)−ζz(t))

0

∫ x∗+ζz(t)

ζz(t)−ζz(σ)+x∗
v(σ) dydσ

+

∫ t

ζ−1
z (ζz(s)−ζz(t))

∫ ζz(s)−ζz(σ)+x∗

ζz(t)−ζz(σ)+x∗
v(σ) dydσ +

∫ s

t

∫ ζz(s)−ζz(σ)+x∗

x∗
v(σ) dydσ

=

∫ ζ−1
z (ζz(s)−ζz(t))

0

ζz(σ)v(σ) dσ +

∫ t

ζ−1
z (ζz(s)−ζz(t))

(ζz(s)− ζz(t))v(σ) dσ

+

∫ s

t

(ζz(s)− ζz(σ))v(σ) dσ. (33)

Taking into account that

0 ≤ ζz(σ) ≤ ζz(s)− ζz(t), if 0 ≤ σ ≤ ζ−1
z (ζz(s)− ζz(t)) ,

0 ≤ ζz(s)− ζz(σ) ≤ ζz(s)− ζz(t), if t ≤ σ ≤ s,

we can conclude from (33) the following estimate

∫ x∗+ζz(t)

x∗

∫ ζ−1
z (ζz(s)+x∗−y)

ζ−1
z (ζz(t)+x∗−y)

v(σ) dσdy ≤ |ζz(s)− ζz(t)|
∫ s

0

v(σ) dσ

≤ ‖v‖L1(0,T )|ζz(s)− ζz(t)|. (34)
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It remains to estimate the last term in (32). Following in the similar manner, we
change the order of integration. As a result, we obtain∫ x∗+ζz(t)

x∗

∫ 1−ζz(t)−x∗+y

1−ζz(s)−x∗+y
ρ0(γ) dγdy =

∫ 1−ζz(t)

1−ζz(s)

∫ γ+ζz(s)+x∗−1

x∗
ρ0(γ) dydγ

+

∫ 1−ζz(s)+ζz(t)

1−ζz(t)

∫ γ+ζz(s)+x∗−1

γ+ζz(t)+x∗−1

ρ0(γ) dydγ

+

∫ 1

1−ζz(s)+ζz(t)

∫ x∗+ζz(t)

γ+ζz(t)+x∗−1

ρ0(γ) dydγ

=

∫ 1−ζz(t)

1−ζz(s)

(γ + ζz(s)− 1)ρ0(γ) dγ +

∫ 1−ζz(s)+ζz(t)

1−ζz(t)

(ζz(s)− ζz(t))ρ0(γ) dγ

+

∫ 1

1−ζz(s)+ζz(t)

(1− γ)ρ0(γ) dγ. (35)

Since

0 ≤ γ + ζz(s)− 1 ≤ ζz(s)− ζz(t), provided 1− ζz(s) ≤ γ ≤ 1− ζz(t),
0 ≤ 1− γ ≤ ζz(s)− ζz(t), provided 1− ζz(s) + ζz(t) ≤ γ ≤ 1,

we deduce from (35) that∫ x∗+ζz(t)

x∗

∫ 1−ζz(t)−x∗+y

1−ζz(s)−x∗+y
ρ0(γ) dγdy ≤ |ζz(s)− ζz(t)|

∫ 1

1−ζz(s)

ρ0(γ) dγ

≤ ‖ρ0‖L1(0,1)|ζz(s)− ζz(t)|. (36)

Thus, combining the estimates (32), (34), and (36), we get

A3 ≤
[
C(k) + Ĉ(k)α3

(
‖v‖L1(0,T ) + ‖ρ0‖L1(0,1)

)]
|ζz(s)− ζz(t)|

= D(k)|ζz(s)− ζz(t)||ζz(s)− ζz(t)|,

and, hence,

J1 ≤ A1 +A2 +A3 ≤ 2‖v − vk‖L1(0,T ) +D(k)|ζz(s)− ζz(t)||ζz(s)− ζz(t)|, (37)

where the constant D(k) depends on k ∈ N but does not depend on t and s. As
follows from (37), for k ∈ N large enough there exists a value θ1(ε) > 0 such that
J1 < ε/3. As a result, we arrive at the following conclusion: for a given ε > 0 and
all t, s ∈ [0, δ] such that |s− t| < θ = min{θ1(ε), θ2(ε), θ3(ε)}, the estimate

‖ρ̃2,z(s, ·)− ρ̃2,z(t, ·)‖L1(x∗,1) ≤ J1 + J2 + J3 < ε

holds true.

As a consequence of Lemma 3.3, we have the following important property.

Corollary 1. If, in additional to the assumptions of Lemma 3.4, ρ0 ∈ L∞(0, 1),
then the mappings

x 7→ ‖ρ̃1,x(t, ·)‖L1(0,x∗) : [0, x∗]→ R+ and z 7→ ‖ρ̃2,z(t, ·)‖L1(x∗,1) : [x∗, 1]→ R+

Are continuous for each t ∈ [0, δ].

Proof. It is easy to check that the following relations∫ x∗

0

ρ̃1,x(t, y) dy =

∫ t

0

u(σ) dσ +

∫ x∗−ξx(t)

0

ρ0(y) dy, (38)∫ 1

x∗
ρ̃2,z(t, y) dy =

∫ t

0

v(σ) dσ +

∫ 1−ζz(t)

x∗
ρ0(y) dy (39)
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hold true for each x ∈ [0, x∗], z ∈ [x∗, 1]. As a result, for any x, y ∈ [0, x∗], we have∣∣∣‖ρ̃1,x(t, ·)‖L1(0,x∗) − ‖ρ̃1,y(t, ·)‖L1(0,x∗)

∣∣∣ =

∣∣∣∣∣
∫ x∗

0

ρ̃1,x(t, σ) dσ −
∫ x∗

0

ρ̃1,y(t, σ) dσ

∣∣∣∣∣
by (38)

=

∣∣∣∣∣
∫ x∗−ξy(t)

x∗−ξx(t)

ρ0(σ) dσ

∣∣∣∣∣ ≤ ‖ρ0‖L∞(0,1)

[
|ξx(t)− ξy(t)|

]
by (27)

≤ ‖ρ0‖L∞(0,1)C|x− y|.

The continuity of the mapping z 7→ ‖ρ̃2,z(t, ·)‖L1(x∗,1) can be shown in a similar
way.

By Lemma 3.3, the following limits

lim
y→x

∫ y

0

ρ̃1,y(t, γ) dγ
by (28)

= lim
y→x

[∫ t

0

u(σ) dσ +

∫ x−ξy(t)

0

ρ0(y) dy

]
,

lim
z→x

∫ 1

z

ρ̃2,z(t, γ + x∗ − z) dγ by (29)
= lim

z→x

[∫ t

0

v(σ) dσ +

∫ 1−ζz(t)−z+x∗

x∗
ρ0(y) dy

]
(40)

are well defined provided t ∈ [0, ξ−1
x (x)] in (40)1 and t ∈ [0, ζ−1

x (1−x+x∗)] in (40)2.
In view of this, we make use of the following notations∫ x

0

ρ1(t, γ) dγ := lim
y→x

∫ y

0

ρ̃1,y(t, γ) dγ,∫ 1

x

ρ2(t, γ + x∗ − x) dγ := lim
z→x

∫ 1

z

ρ̃2,z(t, γ + x∗ − z) dγ.
(41)

Then relations (38)–(39) and Lemma 3.3 imply the following integral representation
for the limit functions ρ1 and ρ2∫ x

0

ρ1(t, γ) dγ =

∫ t

0

u(σ) dσ +

∫ x−ξx(t)

0

ρ0(γ) dγ, ∀ t ∈ [0,min{δ, ξ−1
x (x)}], (42)∫ 1

x

ρ2(t, γ + x∗ − x) dγ =

∫ t

0

v(σ) dσ +

∫ 1−ζx(t)−x+x∗

x∗
ρ0(γ) dγ,

∀ t ∈ [0,min{δ, ζ−1
x (1− x+ x∗)}]. (43)

4. Existence of weak solutions to the Cauchy Problem (5)–(7). We begin
this section with the following result.

Theorem 4.1. For given ρ0 ∈ L∞(0, 1), u ∈ L1(0, T ), V1, V2 ∈ Aad, and x∗ ∈ [0, 1],
let ρ1 = ρ1(t, x) be defined by (42), and let ρ2 = ρ2(t, x) be defined by (43) with

v(t) := ρ1(t, x∗)V1

(∫ x∗

0

ρ1(t, y) dy

)
. (44)

Then (ρ1, ρ2) ∈ C([0, δ];L1(0, x∗))× C([0, δ];L1(x∗, 1)) and

ρ(t, x) =

{
ρ1(t, x), if t ∈ [0, δ], x ∈ [0, x∗),
ρ2(t, x), if t ∈ [0, δ], x ∈ (x∗, 1])

(45)

is a weak solution to the Cauchy problem (5)–(7) in the strip

Πδ := {(t, x) : t ∈ [0, δ], x ∈ [0, 1]} . (46)
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Proof. In view of Remark 1, a weak solution to the Cauchy problem (5)–(7) in the
strip (46) can be defined in the sense of Definition 3.1. Following this definition,
we fix an arbitrary τ ∈ [0, δ] and a couple of test functions (ϕ1, ϕ2) ∈ C1([0, τ ] ×
[0, x∗])× C1([0, τ ]× [x∗, 1]) such that

ϕ1(τ, x) = 0, ∀x ∈ [0, x∗], ϕ1(t, x∗) = 0, ∀ t ∈ [0, τ ],

ϕ2(τ, x) = 0, ∀x ∈ [x∗, 1], ϕ2(t, 1) = 0, ∀ t ∈ [0, τ ].
(47)

Then, direct computations show that

A :=

∫ τ

0

∫ x∗

0

ρ1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ1(t, s) ds

)
∂xϕ1(t, x)

]
dxdt

by (41)
= lim

y→x

∫ τ

0

∫ x∗

0

ρ̃1,y(t, x)

[
∂tϕ1(t, x) + V1

(∫ y

0

ρ1(t, s) ds

)
∂xϕ1(t, x)

]
dxdt

by Lemma 3.3 and Corollary 1
= lim

y→x

∫ τ

0

∫ ξy(t)

0

u
(
ξ−1
y (ξy(t)− x)

)
ξ′y
(
ξ−1
y (ξy(t)− x)

) ∂tϕ1(t, x) dxdt

= lim
y→x

∫ τ

0

∫ ξy(t)

0

u
(
ξ−1
y (ξy(t)− x)

)
ξ′y
(
ξ−1
y (ξy(t)− x)

) V1

(∫ y

0

ρ1(t, s) ds

)
∂xϕ1(t, x) dxdt

+ lim
y→x

∫ τ

0

∫ x∗

ξy(t)

ρ0(x− ξy(t))∂tϕ1(t, x) dxdt

+ lim
y→x

∫ τ

0

∫ x∗

ξy(t)

ρ0(x− ξy(t))V1

(∫ y

0

ρ1(t, s) ds

)
∂xϕ1(t, x) dxdt

= lim
y→x

∫ τ

0

∫ t

0

u(σ)∂tϕ1(t, ξy(t)− ξy(σ)) dσdt

+ lim
y→x

∫ τ

0

∫ t

0

u(σ)V1

(∫ ξy(t)−ξy(σ)

0

ρ1(t, s) ds

)
∂xϕ1(t, ξy(t)− ξy(σ)) dσdt

+ lim
y→x

∫ τ

0

∫ x∗−ξy(t)

0

ρ0(σ)∂tϕ1(t, σ + ξy(t)) dσdt

+ lim
y→x

∫ τ

0

∫ x∗−ξy(t)

0

ρ0(σ)V1

(∫ σ+ξy(t)

0

ρ1(t, s) ds

)
∂xϕ1(t, σ + ξy(t)) dσdt.

Using again Lemma 3.3 and Corollary 1, we can pass to the limit as y → x−0.
Therefore,

A =

∫ τ

0

∫ t

0

u(σ)∂tϕ1(t, ξx(t)− ξx(σ)) dσdt

+

∫ τ

0

∫ t

0

u(σ)V1

(∫ ξx(t)−ξx(σ)

0

ρ1(t, s) ds

)
∂xϕ1(t, ξx(t)− ξx(σ)) dσdt

+

∫ τ

0

∫ x∗−ξx(t)

0

ρ0(σ)∂tϕ1(t, σ + ξx(t)) dσdt

+

∫ τ

0

∫ x∗−ξx(t)

0

ρ0(σ)V1

(∫ σ+ξx(t)

0

ρ1(t, s) ds

)
∂xϕ1(t, σ + ξx(t)) dσdt.
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As a result, making use of relations (19) and (38), we arrive at the following relation

A =

∫ τ

0

∫ t

0

u(σ)
dϕ1(t, ξx(t)− ξx(σ))

dt
dσdt

+

∫ τ

0

∫ x∗−ξx(t)

0

ρ0(σ)
dϕ1(t, σ + ξx(t))

dt
dσdt

=

∫ τ

0

u(σ)

(∫ τ

σ

dϕ1(t, ξx(t)− ξx(σ))

dt
dt

)
dσ

+

∫ x∗−ξx(τ)

0

ρ0(σ)

(∫ τ

0

dϕ1(t, σ + ξx(t))

dt
dt

)
dσ

+

∫ x∗

x∗−ξx(τ)

ρ0(σ)

(∫ ξ−1
x (x∗−σ)

0

dϕ1(t, σ + ξx(t))

dt
dt

)
dσ

by (47)
= −

∫ τ

0

u(σ)ϕ1(σ, 0) dσ −
∫ x∗−ξx(τ)

0

ρ0(σ)ϕ1(0, σ) dσ

−
∫ x∗

x∗−ξx(τ)

ρ0(σ)ϕ1(0, σ) dσ

= −
∫ τ

0

u(t)ϕ1(t, 0) dt−
∫ x∗

0

ρ0(x)ϕ1(0, x) dx,

which immediately yields the integral identity (17).
Following the similar scheme, it can be shown that

B :=

∫ τ

0

∫ 1

x∗
ρ2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

x

ρ2(t, y + x∗ − x) dy

)
∂xϕ2(t, x)

]
dxdt

by (41)
= lim

z→x

∫ τ

0

∫ 1

x∗
ρ2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

z

ρ2(t, y) dy

)
∂xϕ2(t, x)

]
dxdt

=

∫ τ

0

∫ t

0

v(σ)
dϕ2(t, ζx(t)− ζx(σ) + x∗)

dt
dσdt

+

∫ τ

0

∫ 1−ζx(t)

x∗
ρ0(σ)

dϕ2(t, σ + ζx(t))

dt
dσdt

=

∫ τ

0

v(σ)

(∫ τ

σ

dϕ2(t, ζx(t)− ζx(σ) + x∗)

dt
dt

)
dσ

+

∫ 1−ζx(τ)

x∗
ρ0(σ)

(∫ τ

0

dϕ2(t, σ + ζx(t))

dt
dt

)
dσ

+

∫ 1

1−ζx(τ)

ρ0(σ)

(∫ ζ−1
x (1−σ)

0

dϕ2(t, σ + ζx(t))

dt
dt

)
dσ

= −
∫ τ

0

v(t)ϕ2(t, x∗) dt+

∫ 1

x∗
ρ0(x)ϕ2(0, x) dx

for all ϕ2 ∈ C([0, τ ]×[x∗, 1]) with properties (47), where the input-flux v(t) is defined
by (44). Since the inclusion (ρ1, ρ2) ∈ C([0, δ];L1(0, x∗)) × C([0, δ];L1(x∗, 1)) is a
consequence of Lemma 3.4 and representations (42)–(43), the existence result to
the Cauchy problem (5)–(7) in the strip (46) is established.

Theorem 4.2. Under assumptions of Theorem 4.1, a weak solution to the Cauchy
problem (5)–(7) in the strip (46) is unique.

Proof. In order to show that the distribution (45) defined in Theorem 4.1 is the
unique solution to this problem, we make use of some ideas from [17, Theorem 3.2].
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Let us assume, by contraposition, that there exists another distribution

ρ̂(t, x) =

{
ρ̂1(t, x), if t ∈ [0, δ], x ∈ [0, x∗),
ρ̂2(t, x), if t ∈ [0, δ], x ∈ (x∗, 1])

such that ρ(t, x) 6= ρ̂(t, x). It is worth to emphasize that, in general, it is unknown
whether this function can be represented in the form like (42)–(43), because in this
case Lemma 3.2 immediately leads to the conclusion∫ x

0

(ρ1(t, γ)− ρ̂1(t, γ)) dγ = 0,

∫ 1

y

(ρ2(t, γ + x∗ − y)− ρ̂2(t, γ + x∗ − y)) dγ = 0,

for all t ∈ [0, T ], almost all x ∈ [0, x∗] and y ∈ [x∗, 1], and, therefore, ρ1(t, γ) =
ρ̂1(t, x) and ρ2(t, γ) = ρ̂2(t, x) almost everywhere in the corresponding domains.

In view of this, we assume that ρ̂(t, x) is merely a weak solution to the Cauchy
problem (5)–(7) in the sense of Definition 3.1. For each τ ∈ [0, δ], ε ∈ (0, τ), and a
test function (ϕ1, ϕ2) ∈ C1([0, τ ]× [0, x∗])×C1([0, τ ]× [x∗, 1]) with properties (see
for comparison (47))

ϕ1(t, x∗) = 0 and ϕ2(t, 1) = 0, ∀ t ∈ [0, τ ], (48)

we set ϕ1,ε(t, x) := ηε(t)ϕ1(t, x) and ϕ2,ε(t, x) := ηε(t)ϕ2(t, x), where

ηε(τ) = 0 and ηε(t) = 1, ∀ t ∈ [0, τ − ε] and η′ε(t) ≤ 0, ∀ t ∈ [0, τ ]. (49)

It is clear that, in this case, the new test function (ϕ1,ε, ϕ2,ε) satisfies properties
(47). Hence, by Definition 3.1, we have the equalities∫ τ

0

∫ x∗

0

ρ̂1(t, x)

[
∂tϕ1,ε(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ1,ε(t, x)

]
dxdt

+

∫ τ

0

u(t)ϕ1,ε(t, 0) dt+

∫ x∗

0

ρ0(x)ϕ1,ε(0, x) dx = 0,∫ τ

0

∫ 1

x∗
ρ̂2(t, x)

[
∂tϕ2,ε(t, x) + V2

(∫ 1

x

ρ̂2(t, y + x∗ − x) dy

)
∂xϕ2,ε(t, x)

]
dxdt

+

∫ τ

0

v̂(t)ϕ2,ε(t, x
∗) dt+

∫ 1

x∗
ρ0(x)ϕ2,ε(0, x) dx = 0,

where

v̂(t) := ρ̂1(t, x∗)V1

(∫ x∗

0

ρ̂1(t, y) dy

)
.

In view of (49), these relations can be rewritten as follows∫ τ

0

∫ x∗

0

ρ̂1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ1(t, x)

]
dxdt

+

∫ τ

0

u(t)ϕ1(t, 0) dt+

∫ x∗

0

ρ0(x)ϕ1(0, x) dx

=

∫ τ

τ−ε

∫ x∗

0

(1− ηε)ρ̂1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ1(t, x)

]
dxdt,

+

∫ τ

τ−ε
(1− ηε)u(t)ϕ1(t, 0) dt−

∫ τ

τ−ε
η′ε(t)

(∫ x∗

0

ρ̂1(t, x)ϕ1(t, x) dx

)
dt, (50)
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0

∫ 1

x∗
ρ̂2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

x

ρ̂2(t, y + x∗ − x) dy

)
∂xϕ2(t, x)

]
dxdt

+

∫ τ

0

v̂(t)ϕ2(t, x∗) dt+

∫ 1

x∗
ρ0(x)ϕ2(0, x) dx

=

∫ τ

τ−ε

∫ 1

x∗
(1− ηε)ρ̂2(t, x) [∂tϕ2(t, x)

+V2

(∫ 1

x

ρ̂2(t, y + x∗ − x) dy

)
∂xϕ2(t, x)

]
dxdt

+

∫ τ

τ−ε
(1− ηε)v̂(t)ϕ2(t, x∗) dt−

∫ τ

τ−ε
η′ε(t)

(∫ 1

x∗
ρ̂2(t, x)ϕ2(t, x) dx

)
dt. (51)

Since ρ̂ ∈ C([0, δ];L1(0, x∗)) × C([0, δ];L1(x∗, 1)), (ϕ1, ϕ2) ∈ C1([0, τ ] × [0, x∗]) ×
C1([0, τ ] × [x∗, 1]), and V1, V2 ∈ Aad ⊂ C1([0,∞)), it follows that there exists a
constant D independent of ε such that∣∣∣∣∣
∫ τ

τ−ε

∫ x∗

0

(1− ηε)ρ̂1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ1(t, x)

]
dxdt

∣∣∣∣∣ ≤ Dε,
∣∣∣∣∫ τ

τ−ε

∫ 1

x∗
(1−ηε)ρ̂2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

x

ρ̂2(t, y+x∗−x) dy

)
∂xϕ2(t, x)

]
dxdt

∣∣∣∣
≤ Dε,∣∣∣∣∫ τ

τ−ε
(1− ηε)u(t)ϕ1(t, 0) dt

∣∣∣∣ ≤ Dε, ∣∣∣∣∫ τ

τ−ε
(1− ηε)v̂(t)ϕ2(t, x∗) dt

∣∣∣∣ ≤ Dε.
At the same time, the last terms in (50)–(51) possess the following properties∫ τ

τ−ε
η′ε(t)

(∫ x∗

0

ρ̂1(t, x)ϕ1(t, x) dx

)
dt

ε→0→ −
∫ x∗

0

ρ̂1(τ, x)ϕ1(τ, x) dx,∫ τ

τ−ε
η′ε(t)

(∫ 1

x∗
ρ̂2(t, x)ϕ2(t, x) dx

)
dt

ε→0→ −
∫ 1

x∗
ρ̂2(τ, x)ϕ2(τ, x) dx.

Thus, passing to the limit in (50)–(51), we arrive at the extended integral identities
for the weak solution ρ̂ ∈ C([0, δ];L1(0, x∗))× C([0, δ];L1(x∗, 1)):∫ τ

0

∫ x∗

0

ρ̂1(t, x)

[
∂tϕ1(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ1(t, x)

]
dxdt

+

∫ τ

0

u(t)ϕ1(t, 0) dt+

∫ x∗

0

ρ0(x)ϕ1(0, x) dx−
∫ x∗

0

ρ̂1(τ, x)ϕ1(τ, x) dx = 0,

(52)∫ τ

0

∫ 1

x∗
ρ̂2(t, x)

[
∂tϕ2(t, x) + V2

(∫ 1

x

ρ̂2(t, y + x∗ − x) dy

)
∂xϕ2(t, x)

]
dxdt

+

∫ τ

0

v̂(t)ϕ2(t, x∗) dt+

∫ 1

x∗
ρ0(x)ϕ2(0, x) dx−

∫ 1

x∗
ρ̂2(τ, x)ϕ2(τ, x) dx = 0. (53)

We are now in a position to specify the choice of test functions (ϕ1, ϕ2) ∈ C1([0, τ ]×
[0, x∗])×C1([0, τ ]× [x∗, 1]) in (52)–(53) with properties (48). With that in mind, for
given ρ0 ∈ L∞(0, 1), u ∈ L1(0, T ), V1, V2 ∈ Aad, x

∗ ∈ [0, 1], and arbitrary y ∈ [0, x∗]

and z ∈ [x∗, 1], we define functions (ξ̂y(t), ζ̂z(t)) by the rule

ξ̂y(t) :=

∫ t

0

V1

(∫ y

0

ρ̂1(s, σ) dσ

)
ds, ζ̂z(t) :=

∫ t

0

V2

(∫ 1

z

ρ̂2(s, σ + x∗ − z) dσ
)
ds.

(54)
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It is clear that these functions are monotonically increasing, (ξ̂y, ζ̂z) ∈
[
C1([0, δ])

]2
,

and the mappings

y 7→ ξ̂y(t) : [0, x∗]→ R+ and z 7→ ζ̂z(t) : [x∗, 1]→ R+ (55)

are continuous. Moreover, direct computations show that

∂

∂y
ξ̂y(t) :=

∫ t

0

V ′1

(∫ y

0

ρ̂1(s, σ) dσ

)
ρ̂1(s, y) ds,

∂

∂z
ζ̂z(t) := −

∫ t

0

V ′2

(∫ 1

z

ρ̂2(s, σ + x∗ − z) dσ
)
ρ̂2(s, x∗) ds

and, therefore, the mappings

y 7→ ∂

∂y
ξ̂y(t) : [0, x∗]→ R+ and z 7→ ∂

∂z
ζ̂z(t) : [x∗, 1]→ R+

are measurable and integrable. Thus, the mappings (55) are absolutely continuous.
Let (ψ1, ψ2) ∈ C1

0 ([0, x∗]) × C1
0 ([x∗, 1]) be arbitrary functions. As a result, we

define the test functions (ϕ1, ϕ2) for (52)–(53) as follows: (ϕ1, ϕ2) = (ϕy1, ϕ
z
2), where

ϕy1(t, x) :=

{
ψ1

(
ξ̂y(τ)− ξ̂y(t) + x

)
, 0 ≤ x ≤ ξ̂y(t)− ξ̂y(τ) + x∗,

0, ξ̂y(t)− ξ̂y(τ) + x∗ ≤ x ≤ x∗,
t ∈ [0, τ ],

(56)

ϕz2(t, x) :=

 ψ2

(
ζ̂z(τ)− ζ̂z(t) + x

)
, x∗ ≤ x ≤ 1− ζ̂z(τ) + ζ̂z(t),

0, 1− ζ̂z(τ) + ζ̂z(t) ≤ x ≤ 1,
t ∈ [0, τ ].

(57)

It is clear now that (ϕy1, ϕ
z
2) ∈ C1([0, δ] × [0, x∗]) × C1([0, δ] × [x∗, 1]) and for each

y ∈ [0, x∗] and z ∈ [x∗, 1] these functions satisfy the Cauchy problems
∂tϕ

y
1(t, x) + V1

(∫ y

0

ρ̂1(t, σ) dσ

)
∂xϕ

y
1(t, x) = 0, (t, x) ∈ (0, δ)× (0, x∗),

ϕy1(τ, x) = ψ1(x), x ∈ [0, x∗],

ϕy1(t, x∗) = 0, t ∈ [0, δ],
(58)

and

∂tϕ
z
2(t, x) + V2

(∫ 1

z

ρ̂2(t, σ + x∗ − z) dσ
)
∂xϕ

z
2(t, x) = 0,

(t, x) ∈ (0, δ)× (x∗, 1),

ϕz2(τ, x) = ψ2(x), x ∈ [x∗, 1],

ϕz2(t, 1) = 0, t ∈ [0, δ],
(59)

respectively.
As immediately follows from (56)–(57) and properties (55), the mapping

y 7→ ϕy1(t, x) : [0, x∗]→ R and z 7→ ϕz2(t, x) : [x∗, 1]→ R,

y 7→ ∂tϕ
y
1(t, x) : [0, x∗]→ R and z 7→ ∂tϕ

z
2(t, x) : [x∗, 1]→ R,

y 7→ V1

(∫ y

0

ρ̂1(t, σ) dσ

)
∂xϕ

y
1(t, x) : [0, x∗]→ R and

z 7→ V2

(∫ 1

z

ρ̂2(t, σ + x∗ − z) dσ
)
∂xϕ

z
2(t, x) : [x∗, 1]→ R
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are continuous. Hence, the limit passage in (58)–(59) as y → x and z → x yields
∂tϕ

x
1(t, x) + V1

(∫ x

0

ρ̂1(t, σ) dσ

)
∂xϕ

x
1(t, x) = 0, (t, x) ∈ (0, δ)× (0, x∗),

ϕx1(τ, x) = ψ1(x), x ∈ [0, x∗],

ϕx1(t, x∗) = 0, t ∈ [0, δ],
(60)

∂tϕ
x
2(t, x) + V2

(∫ 1

x

ρ̂2(t, σ + x∗ − x) dσ

)
∂xϕ

x
2(t, x) = 0,

(t, x) ∈ (0, δ)× (x∗, 1),

ϕx2(τ, x) = ψ2(x+ ẑ − x∗), x ∈ [x∗, 1 + x∗ − ẑ],

ϕx2(τ, x) = 0, x ∈ [1 + x∗ − ẑ, 1],

ϕx2(t, 1) = 0, t ∈ [0, δ].
(61)

As a result, we deduce from (52)–(53) that

0 = lim
y→x

∫ τ

0

∫ x∗

0

ρ̂1(t, x)

[
∂tϕ

y
1(t, x) + V1

(∫ x

0

ρ̂1(t, y) dy

)
∂xϕ

y
1(t, x)

]
dxdt

+ lim
y→x

∫ τ

0

u(t)ϕy1(t, 0) dt+ lim
y→x

∫ x∗

0

ρ0(x)ϕy1(0, x) dx

− lim
y→x

∫ x∗

0

ρ̂1(τ, x)ϕy1(τ, x) dx

by (60),(56)
= lim

y→x

∫ τ

0

u(t)ψ1

(
ξ̂y(τ)− ξ̂y(t)

)
dt

+ lim
y→x

∫ x∗−ξ̂y(τ)

0

ρ0(x)ψ1

(
ξ̂y(τ) + x

)
dx−

∫ x∗

0

ρ̂1(τ, x)ψ1(x) dx

= lim
y→x

∫ ξ̂y(τ)

0

u
(
ξ̂−1
y (ξ̂y(τ)− σ)

)
ξ̂′y

(
ξ̂−1
y (ξ̂y(τ)− σ)

) ψ1(σ) dσ +

∫ x∗

ξ̂y(τ)

ρ0(σ − ξ̂y(τ))ψ1(σ) dσ


−
∫ x∗

0

ρ̂1(τ, x)ψ1(x) dx = −
∫ x∗

0

ρ̂1(τ, x)ψ1(x) dx

+

∫ ξ̂x(τ)

0

u
(
ξ̂−1
x (ξ̂x(τ)− σ)

)
ξ̂′x

(
ξ̂−1
x (ξ̂x(τ)− σ)

) ψ1(σ) dσ +

∫ x∗

ξ̂x(τ)

ρ0(σ − ξ̂x(τ))ψ1(σ) dσ, (62)

and

0 = lim
z→x

∫ τ

0

∫ 1

x∗
ρ̂2(t, x)

[
∂tϕ

z
2(t, x) + V2

(∫ 1

z

ρ̂2(t, y + x∗ − z) dy
)
∂xϕ

z
2(t, x)

]
dxdt

+ lim
z→x

∫ τ

0

v̂(t)ϕz2(t, x∗) dt+ lim
z→x

∫ 1

x∗
ρ0(x)ϕz2(0, x) dx

− lim
z→x

∫ 1

x∗
ρ̂2(τ, x)ϕz2(τ, x) dx

by (61),(57)
= lim

z→x

∫ τ

0

v̂(t)ψ2

(
ζ̂z(τ)− ζ̂z(t) + x∗

)
dt−

∫ 1

x∗
ρ̂2(τ, x)ψ2(x) dx

+ lim
z→x

∫ 1−ζ̂z(τ)

x∗
ρ0(x)ψ2

(
ζ̂z(τ) + x

)
dx
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= lim
z→x

∫ x∗+ζ̂z(τ)

x∗

v̂
(
ζ̂−1
z

(
ζ̂z(τ) + x∗ − x

))
ζ̂ ′z

(
ζ̂−1
z

(
ζ̂z(τ) + x∗ − x

)) ψ2(x) dx

+ lim
z→x

∫ 1

x∗+ζ̂z(τ)

ρ0(x− ζ̂z(τ))ψ2(x) dx−
∫ 1

x∗
ρ̂2(τ, x)ψ2(x) dx. (63)

Taking into account the continuity result (26) and the fact that functions (ψ1, ψ2) ∈
C1

0 ([0, x̂])×C1
0 ([ẑ, 1]) and parameter τ ∈ [0, δ] were arbitrary, after localization, we

can conclude from (62)–(63) the following relations

∫ x

0

ρ̂1(t, σ) dσ :=

∫ ξ̂x(t)

0

u
(
ξ̂−1
x (ξ̂x(t)− x)

)
ξ̂′x

(
ξ̂−1
x (ξ̂x(t)− x)

) dx+

∫ x

ξ̂x(t)

ρ0(σ − ξ̂x(t)) dσ

=

∫ t

0

u(s) ds+

∫ x−ξ̂x(t)

0

ρ0(σ) dσ, (64)

∫ 1

x∗
ρ̂2(t, σ) dσ := lim

z→x

∫ x∗+ζ̂z(t)

x∗

v̂
(
ζ̂−1
z

(
ζ̂z(t) + x∗ − x

))
ζ̂ ′z

(
ζ̂−1
z

(
ζ̂z(t) + x∗ − x

)) dx
+ lim
z→x

∫ 1

x∗+ζ̂z(t)

ρ0(σ − ζ̂z(t)) dσ =

∫ t

0

v̂(s) ds+

∫ 1−ζ̂x(t)

x∗
ρ0(σ) dσ (65)

which evidently hold true in C([0, δ];L1(0, x∗)) and C([0, δ];L1(x∗, 1)), respectively.
Moreover, as immediately follows from (65), we have

∫ 1

x

ρ̂2(t, γ + x∗ − x) dγ =

∫ t

0

v̂(σ) dσ +

∫ 1−ζ̂x(t)−x+x∗

x∗
ρ0(γ) dγ. (66)

Then, combining relations (54), (66), and (64), we see that the functions (ξ̂y(t), ζ̂z(t))
satisfy the Cauchy problem (19). Since, by Lemma 3.2, this problem has a unique

solution, it follows that ξ̂y(t) ≡ ξy(t) and ζ̂z(t) ≡ ζz as elements of C1([0, δ]). Hence,
ρ = ρ̂ by comparing (66) and (64) with (42) and (43). Thus, a weak solution to the
Cauchy problem (5)–(7) is unique for small time.

As a consequence of Theorem 4.1, we have the following hidden regularity prop-
erty of the weak solutions.

Corollary 2. Let ρ = (ρ1, ρ2) ∈ C([0, τ ];L1(0, x∗))× C([0, τ ];L1(x∗, 1)) be a weak
solution to the Cauchy problem (5)–(7) for some τ ∈ (0, T ]. Then for given ρ0 ∈
L∞(0, 1), u ∈ L1(0, T ), V1, V2 ∈ Aad, and x∗ ∈ [0, 1], we have

(ρ1, ρ2) ∈ C([0, x∗];L1(0, τ))× C([x∗, 1];L1(0, τ)). (67)

Proof. Let x ∈ (0, x∗) be an arbitrary point. Then, by the first mean value theorem
for integration, we get

A(x) :=

∫ τ

0

ρ1(t, x) dt = lim
∆→0

1

2∆

∫ τ

0

(∫ x+∆

x−∆

ρ1(t, y) dy

)
dt = {by (41)}

= lim
∆→0

lim
z→x

1

2∆

∫ τ

0

(∫ x+∆

x−∆

ρ̃1,z(t, y) dy

)
dt. (68)
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As follows from (28), we have the following representation

∫ x+∆

x−∆

ρ̃1,z(t, y) dy

=



∫ x+∆

x−∆

ρ0(y − ξz(t)) dy, 0 < t < ξ−1
z (x−∆),∫ ξz(t)

x−∆

u
(
ξ−1
z (ξz(t)− y)

)
ξ′z
(
ξ−1
z (ξz(t)− y)

) dy
+

∫ x+∆

ξz(t)

ρ0(y − ξz(t)) dy, ξ−1
z (x−∆) < t < ξ−1

z (x+ ∆),∫ x+∆

x−∆

u
(
ξ−1
z (ξz(t)− y)

)
ξ′z
(
ξ−1
z (ξz(t)− y)

) dy, ξ−1
z (x+ ∆) < t < τ,

=



∫ x+∆−ξz(t)

x−∆−ξz(t)

ρ0(σ) dσ, 0 < t < ξ−1
z (x−∆),∫ ξ−1

z (ξz(t)−x+∆)

0

u(s) ds+

∫ x+∆−ξz(t)

0

ρ0(σ) dσ,

ξ−1
z (x−∆) < t < ξ−1

z (x+ ∆),∫ ξ−1
z (ξz(t)−x−∆)

ξ−1
z (ξz(t)−x+∆)

u(s) ds, ξ−1
z (x+ ∆) < t < τ.

(69)

In view of (68), we can conclude from (69) that

A(x) = lim
∆→0

lim
z→x

1

2∆

[∫ ξ−1
z (x−∆)

0

∫ x+∆−ξz(t)

x−∆−ξz(t)

ρ0(σ) dσdt

+

∫ ξ−1
z (x+∆)

ξ−1
z (x−∆)

∫ ξ−1
z (ξz(t)−x+∆)

0

u(s) dsdt+

∫ ξ−1
z (x+∆)

ξ−1
z (x−∆)

∫ x+∆−ξz(t)

0

ρ0(σ) dσdt

+

∫ τ

ξ−1
z (x+∆)

∫ ξ−1
z (ξz(t)−x−∆)

ξ−1
z (ξz(t)−x+∆)

u(s) ds dt

]
= A1(x) +A2(x) +A3(x) +A4(x).

(70)

Changing the order of integration in each terms of (70), we arrive at the following
relations

A1(x) = lim
∆→0

lim
z→x

1

2∆

[∫ 2∆

0

(∫ ξ−1
z (x−∆)

ξ−1
z (x−∆−σ)

dt

)
ρ0(σ) dσ

+

∫ x−∆

2∆

(∫ ξ−1
z (x+∆−σ)

ξ−1
z (x−∆−σ)

dt

)
ρ0(σ) dσ +

∫ x+∆

x−∆

(∫ ξ−1
z (x+∆−σ)

0

dt

)
ρ0(σ) dσ

]

= lim
∆→0

lim
z→x

[∫ 2∆

0

ξ−1
z (x−∆)− ξ−1

z (x−∆− σ)

2∆
ρ0(σ) dσ

+

∫ x−∆

2∆

ξ−1
z (x+ ∆− σ)− ξ−1

z (x−∆− σ)

2∆
ρ0(σ) dσ
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+

∫ x+∆

x−∆

ξ−1
z (x+ ∆− σ)

2∆
ρ0(σ) dσ

]
by Lemmas 3.2 and 3.3

=

= lim
∆→0

∫ x−∆

2∆

ξ−1
z (x+ ∆− σ)− ξ−1

z (x−∆− σ)

2∆
ρ0(σ) dσ

=

∫ x

0

dξ−1
x (y)

dy

∣∣∣∣
y=x−σ

ρ0(σ) dσ, (71)

A2(x) = lim
∆→0

lim
z→x

1

2∆

∫ 2∆

0

(∫ ξ−1
z (ξz(s)+x−∆)

ξ−1
z (x−∆)

dt

)
u(s) ds

= lim
∆→0

lim
z→x

1

2∆

∫ 2∆

0

(
ξ−1
z (ξz(s) + x−∆)− ξ−1

z (x−∆)
)
u(s) ds = 0, (72)

A3(x) = lim
∆→0

lim
z→x

1

2∆

∫ 2∆

0

(∫ ξ−1
z (x+∆−σ)

ξ−1
z (x−∆)

dt

)
ρ0(σ) dσ

= lim
∆→0

lim
z→x

1

2∆

∫ 2∆

0

(
ξ−1
z (x+ ∆− σ)− ξ−1

z (x−∆)
)
ρ0(σ) dσ = 0, (73)

A4(x) = lim
∆→0

lim
z→x

1

2∆

[∫ ξ−1
z (2∆)

0

(∫ ξ−1
z (x+∆)

ξ−1
z (ξz(s)+x−∆)

dt

)
u(s) ds

+

∫ ξ−1
z (ξz(τ)−x−∆)

ξ−1
z (2∆)

(∫ ξ−1
z (ξz(s)+x+∆)

ξ−1
z (ξz(s)+x−∆)

dt

)
u(s) ds

]

= lim
∆→0

1

2∆

[∫ ξ−1
x (ξx(τ)−x−∆)

ξ−1
x (2∆)

(∫ ξ−1
x (ξx(s)+x+∆)

ξ−1
x (ξx(s)+x−∆)

dt

)
u(s) ds

]

=

∫ ξ−1
z (ξz(τ)−x)

0

dξ−1
x (y)

dy

∣∣∣∣
y=ξx(s)+x

u(s) ds. (74)

Combining results (70)–(74), we finally get∫ τ

0

ρ1(t, x) dt =

∫ x

0

dξ−1
x (y)

dy

∣∣∣∣
y=x−σ

ρ0(σ) dσ

+

∫ ξ−1
z (ξz(τ)−x)

0

dξ−1
x (y)

dy

∣∣∣∣
y=ξx(s)+x

u(s) ds, x ∈ [0, x∗]. (75)

By analogy, it can be shown that∫ τ

0

ρ2(t, x) dt =

∫ x

x∗

dζ−1
x (y)

dy

∣∣∣∣
y=x−x∗−σ

ρ0(σ) dσ

+

∫ ζ−1
z (ζz(τ)−x+x∗)

0

dζ−1
x (y)

dy

∣∣∣∣
y=ζx(s)+x−x∗

v(s) ds, x ∈ [x∗, 1]. (76)

It is worth to note that ξ−1
x ∈ C1([0, ξx(τ)]) and ζ−1

x ∈ C1([0, ζx(τ)]) because

(ξx, ζz) ∈
[
C1([0, δ])

]2
are monotonically increasing functions. Hence, to conclude

the proof, it remains to apply the arguments of Lemma 3.4 to relations (75)–(76).

Remark 2. Taking into account the fact that(
ξ−1
x (y)

)′
=

1

ξ′x
(
ξ−1
x (y)

) , (
ζ−1
x (y)

)′
=

1

ζ ′x
(
ζ−1
x (y)

) , (77)
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and by Lemma 3.2 and relations (42)-(43)

ξ′x
(
ξ−1
x (y)

)
= V1

(∫ x

0

ρ1(ξ−1
x (y), γ) dγ

)
, (78)

ζ ′x
(
ζ−1
x (y)

)
= V2

(∫ 1

x

ρ2(ζ−1
x (y), γ + x∗ − x) dγ

)
,

it is easy to deduce from definition of the set Aad and representations (75)–(76) the
following estimates

‖ρ1(·, x)‖L1(0,τ) :=

∫ τ

0

ρ1(t, x) dt ≤ α−1
1

[
‖u‖L1(0,τ) + ‖ρ0‖L1(0,x∗)

]
∀x ∈ [0, x∗],

(79)

‖ρ2(·, x)‖L1(0,τ) :=

∫ τ

0

ρ2(t, x) dt ≤ α−1
1

[
‖v‖L1(0,τ) + ‖ρ0‖L1(x∗,1)

]
∀x ∈ [x∗, 1].

(80)

We are now in a position to prove the main result of this section.

Theorem 4.3. Let ρ0 ∈ L∞(0, 1), u ∈ L1(0, T ), V1, V2 ∈ Aad, and x∗ ∈ [0, 1] be
given. Then the Cauchy problem (5)–(7) admits a unique global solution

ρ(t, x) =

{
ρ1(t, x), if t ∈ [0, T ], x ∈ [0, x∗),
ρ2(t, x), if t ∈ [0, T ], x ∈ (x∗, 1])

(81)

such that

(ρ1, ρ2) ∈ C([0, T ];L1(0, x∗))× C([0, T ];L1(x∗, 1)),

(ρ1, ρ2) ∈ C([0, x∗];L1(0, T ))× C([x∗, 1];L1(0, T )).
(82)

Proof. As follows from Theorem 4.1, there exists a value δ ∈ (0, T ] such that the
Cauchy problem (5)–(7) is uniquely solvable in the strip (t, x) ∈ [0, δ] × (0, 1).
Moreover, in view of representation (42)–(43), we have the following estimates for
the weak solution (ρ1, ρ2) ∈ C([0, δ];L1(0, x∗))× C([0, δ];L1(x∗, 1))

0 ≤
∫ x∗

0

ρ1(t, γ) dγ =

∫ t

0

u(σ) dσ +

∫ x∗−ξx∗ (t)

0

ρ0(γ) dγ ≤ ‖u‖L1(0,T ) + ‖ρ0‖L∞(0,1)

0 ≤
∫ 1

x∗
ρ2(t, γ) dγ =

∫ t

0

v(σ) dσ +

∫ 1−ζx∗ (t)

x∗
ρ0(γ) dγ ≤ ‖v‖L1(0,δ) + ‖ρ0‖L∞(0,1)

for all t ∈ [0, δ]. In order to estimate the term

‖v‖L1(0,δ) :=

∫ δ

0

ρ1(t, x∗)V1

(∫ x∗

0

ρ1(t, y) dy

)
dt,

we apply the inequality (79). Then

‖v‖L1(0,δ) ≤ α2

∫ δ

0

ρ1(t, x∗) dt ≤ α2

α1

[
‖u‖L1(0,T ) + ‖ρ0‖L1(0,x∗)

]
.

Since ‖ρ0‖L1(0,x∗) ≤ ‖ρ0‖L∞(0,1), we finally get

‖ρ1‖C([0,δ];L1(0,x∗) ≤ ‖u‖L1(0,T ) + ‖ρ0‖L∞(0,1), (83)

‖ρ2‖C([0,δ];L1(x∗,1) ≤
2α2

α1

[
‖u‖L1(0,T ) + ‖ρ0‖L∞(0,1)

]
. (84)

Since both the a priori estimates for weak solution (ρ1, ρ2) and the choice rule (25)
does not depend on δ, it follows that the weak solution (ρ1, ρ2) ∈ C([0, δ];L1(0, x∗))×
C([0, δ];L1(x∗, 1)) can be extended to the next time interval [δ, 2δ] ∩ [0, T ]. Hence,
following this iterative procedure, we finally find a unique global solution

(ρ1, ρ2) ∈ C([0, T ];L1(0, x∗))× C([0, T ];L1(x∗, 1)).

It remains to note that inclusion (82)2 is a direct consequence of Corollary 2.
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5. Existence of optimal solutions. In this section we focus on solvability of
OCP (4)–(10). To begin with we note that unknown control functions V1 and V2 in
(4)–(9) are supposed to be defined on domains [0, a1] and [0, a2], respectively, with
constants a1 and a2 given by (11). As follows now from Theorem 4.3, the reason to
define the constant ai in the way (11) comes from a priori estimates (83)–(84) and

the fact that ‖u‖L1(0,T ) ≤
√
T‖u‖L2(0,T ).

Definition 5.1. We say that a tuple (u, V1, V2, x
∗, ρ) is an admissible solution

to OCP (4)–(10) if (u, V1, V2, x
∗) satisfies constraints (9)–(10), the function ρ(t, x)

with properties (81)–(82) is the corresponding weak solution to the Cauchy problem
(5)–(7), and I(u, V1, V2, x

∗) <∞.

We denote by Ξ the set of all admissible solutions for the OCP (4)–(10).

Remark 3. As follows from (3) and Definition 5.1, if (u, V1, V2, x
∗, ρ) ∈ Ξ, then

Vi ∈ W 2,2(0, ai) (i = 1, 2). Indeed, since I(u, V1, V2, x
∗) < +∞, it follows that

V ′′i ∈ L2(0, ai). Hence, by Sobolev Embedding Theorem, we have W 2,2(0, ai) ↪→
C1,1/2([0, ai]), where 1

2 stands for the Hölder exponent. Therefore, as a direct con-

sequence of Arzelà-Ascoli Theorem, we have a compact inclusion C1,1/2([0, ai]) ↪→
C1([0, ai]).

We say that a tuple (u0, V 0
1 , V

0
2 , x

∗,0, ρ0) is an optimal solution to (4)–(10) if

(u0, V 0
1 , V

0
2 , x

∗,0, ρ0) ∈ Ξ and I(u0, V 0
1 , V

0
2 , x

∗,0) = inf
(u,V1,V2,x∗,ρ)∈Ξ

I(u, V1, V2, x
∗).

We are now in a position to give the existence result for OCP (4)–(10).

Theorem 5.2. For arbitrary z1,d ∈ L2(0, a1), z2,d ∈ L2(0, a2), ρ0 ∈ L∞(0, 1),
yd ∈ L2(0, T ), αi > 0, (i = 1, . . . , 4), such that α2 > α1 > 0, and constants ai,
(i = 1, 2) given by (11), the OCP (4)–(10) admits at least one optimal solution
(u0, V 0

1 , V
0
2 , x

∗,0, ρ0) ∈ Ξ.

Proof. Since the cost functional I : Ξ → R is bounded from below and Ξ 6=
∅, it follows that there exists a sequence {(uk, V1,k, V2,k, x

∗
k)}k∈N ⊂ L2(0, T ) ×

W 2,2([0, a1])×W 2,2([0, a2])× [0, 1] such that

lim
k→∞

I(uk, V1,k, V2,k, x
∗
k) = inf

(u,V1,V2,x∗,ρ)∈Ξ
I(u, V1, V2, x

∗) ≥ 0. (85)

Hence, supk∈N I(uk, V1,k, V2,k, x
∗
k) ≤ C, where the constant C is independent of

k. Without lost of generality we can suppose that the sequence {x∗k}k∈N ⊂ [0, 1]
is monotone. For the simplicity, we assume that this sequence is monotonically
increasing. The case of a monotonically decreasing sequence can be considered in a
similar manner. Then, in view of (3) and (10), we have

‖uk‖L2(0,T ) ≤ α4, ‖Vi,k‖W 2,2(0,ai) ≤ C̃, i = 1, 2, ‖yk‖L2(0,T ) ≤ C̃, ∀ k ∈ N (86)

for some constant C̃ independent of k, where yk = yk(t) is the out-flux of system
(5)–(9) corresponding to the in-flux uk ∈ Uad, functions V1,k, V2,k, and initial data
ρ0. Hence, by Banach-Alaoglu Theorem and Remark 3, there exist functions u0 ∈
L2(0, T ), V 0

1 ∈ C1([0, a1]), V 0
2 ([0, a2]), y0 ∈ L2(0, T ), and a value x∗,0 ∈ [0, 1] such

that (up to subsequences)

V ′′1,k →
(
V 0

1

)′′
in L2([0, a1]), V ′′2,k →

(
V 0

2

)′′
in L2([0, a2]),

uk ⇀ u0 in L2(0, T ), V1,k → V 0
1 in C1([0, a1]), V2,k → V 0

2 in C1([0, a2]),

yk ⇀ y0 in L2(0, T ), and x∗k → x∗,0 as k →∞.
(87)

We may always suppose that functions V 0
i ∈ C1([0, ai]), (i = 1, 2), are extended to

R+ in such way that V 0
i ∈ Aad for i = 1, 2.
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Before proceeding further, we note that the set

Uad :=
{
w ∈ L2(0, T ) | ‖w‖L2(0,T ) ≤ α4, w(x) ≥ 0 a.e. on (0, T )

}
is sequentially closed with respect to the weak convergence in L2(0, T ). Hence, (87)
and the admissibility condition uk ∈ Uad for all k ∈ N imply that u0 ∈ Uad.

Let ρk = (ρ1,k, ρ2,k) be the weak solution to the Cauchy problem (5)–(7) with
u = uk, Vi = Vi,k, and x∗ = x∗k. Let

W1,k : [0, T ]× [0, x∗k]→ R+, W2,k : [0, T ]× [x∗k, 1]→ R+,

ξk : [0, T ]× [0, x∗k]→ R+, and ζk : [0, T ]× [x∗k, 1]→ R+

be defined by

W1,k(t, x) =

∫ x

0

ρ1,k(t, γ) dγ, W2,k(t, x) =

∫ 1

x

ρ2,k(t, γ + x∗k − x) dγ, (88)

ξk(t, x) =

∫ t

0

V1,k (W1,k(s, x)) ds, ζk(t, x) =

∫ t

0

V2,k (W2,k(s, x)) ds, ∀ k ∈ N.

(89)

Then by (42)–(43), we have

ξk(t, x) =

∫ t

0

V1,k

(∫ s

0

uk(σ) dσ +

∫ x−ξk(s,x)

0

ρ0(γ) dγ

)
ds, (90)

x ∈ [0, x∗k], t ∈ [0, t1,k],

ζk(t, x) =

∫ t

0

V2,k

(∫ s

0

vk(σ) dσ +

∫ 1−ζk(s,x)−x+x∗k

x∗k

ρ0(γ) dγ

)
ds, (91)

x ∈ [x∗k, 1], t ∈ [0, t2,k],

where

t1,k = min{t∗1,k, T}, ξk(t∗1,k, x
∗
k) = x∗k, t2,k = min{t∗2,k, T}, ζk(t∗2,k, 1) = 1− x∗k,

(92)

and

vk(t) := ρ1,k(t, x∗k)V1,k

(∫ x∗k

0

ρ1,k(t, y) dy

)
. (93)

By (93) and Corollary 2, the sequence {vk}k∈N is uniformly bounded in L1(0, T ).
Moreover, as immediately follows from (3), Corollary 2, and a priori estimate (79),
this sequence is equi-integrable. Indeed, for any τ1, τ2 ∈ [0, T ] (τ1 < τ2), we have∫ τ2

τ1

|vk(t)| dt ≤ α2

∫ τ2

τ1

ρ1,k(t, x∗k) dt

by (75)
= α2

∫ ξ−1
k,x∗

k
(ξk,x∗

k
(τ2)−x∗k)

ξ−1
k,x∗

k
(ξk,x∗

k
(τ1)−x∗k)

dξ−1
k,x∗k

(y)

dy

∣∣∣∣∣
y=ξk,x∗

k
(s)+x∗k

uk(s) ds
by (77)–(78)

=

≤ α2α
−1
1

∫ ξ−1
k,x∗

k
(ξk,x∗

k
(τ2)−x∗k)

ξ−1
k,x∗

k
(ξk,x∗

k
(τ1)−x∗k)

uk(s) ds

by (86)1
≤ α2α4

α1

√
ξ−1
k,x∗k

(ξk,x∗k(τ2)− x∗k)− ξ−1
k,x∗k

(ξk,x∗k(τ1)− x∗k) ≤ α2α4C

α1
|τ2 − τ1|

by Lipschitz continuity of the functions ξ−1
k,x∗k
∈ C1([0, x0]) (see the proof of Corol-

lary 2). Hence, by Dunford-Pettis Criterion, the sequence {vk}k∈N is weakly com-

pact in L1(0, T ). It means that there exists a function v0 ∈ L1(0, T ) such that, up
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to a subsequence, we have∫ T

0

vk(t)ϕ(t) dt→
∫ T

0

v0(t)ϕ(t) dt, ∀ϕ ∈ L∞(0, T ). (94)

In view of (86), (67), Lemma 3.4, and (88)–(89), we can derive from (90)–(91)
and Lemma 3.3 that

‖Wi,k‖C([0,T ]×[0,1] ≤ C, ‖ξk‖C1([0,T ]×[0,x∗k] ≤ C, ‖ζk‖C1([0,T ]×[x∗k,1] ≤ C, ∀ k ∈ N.

Moreover, in view of definition of the class Aad, ξ
′
k and ζ ′k are uniformly bounded

from above and below:

0 < α1 ≤ξ′k(t, x) ≤ α2, ∀(t, x) ∈ [0, T ]× [0, x∗k], ∀ k ∈ N,
0 < α1 ≤ζ ′k(t, x) ≤ α2, ∀(t, x) ∈ [0, T ]× [x∗k, 1], ∀ k ∈ N.

Then it follows from Arzelà-Ascoli Theorem that there exist functions ξ0(t, x) and
ζ0(t, x) such that, up to subsequences,

ξk → ξ0 in C([0, T ]× [0, x∗,0]) and ζk → ζ0 in C([0, T ]× [x∗,0, 1]). (95)

Since ξk(t, x) := ξk,x(t) and ξ0(t, x) = ξ0
x(t) in the notations of the previous sections,

and

0
by (3) and (89)

< α1|ξ−1
k,x(y)− (ξ0

x)−1(y)| ≤
∣∣∣ξk,x (ξ−1

k,x(y)
)
− ξk,x

(
(ξ0
x)−1(y)

)∣∣∣
=
∣∣y − ξk,x ((ξ0

x)−1(y)
)∣∣ =

∣∣ξ0
x

(
(ξ0
x)−1(y)

)
− ξk,x

(
(ξ0
x)−1(y)

)∣∣→ 0 as k →∞

uniformly for x, y by (95), it follows that

ξ−1
k,x → (ξ0

x)−1 in C([0, x0]) for any x, x0 ∈ [0, x∗,0]. (96)

A similar conclusion can be made with respect to the functions ζ−1
k,x. Hence, we can

pass to the limit in (92) as k →∞. As a result, we have

t1,k → t1 = min{t∗1, T}, ξ0(t∗1, x
∗,0) = x∗,0, t2,k → t2 = min{t∗2, T},

ζ0(t∗2, 1) = 1− x∗,0,

and, therefore, passing to the limit in (88)1, (89)1, and (90) as k → ∞, we arrive
at the following relation

ξ0(t, x) =

∫ t

0

V 0
1

(∫ s

0

u0(σ) dσ +

∫ x−ξ0(s,x)

0

ρ0(γ) dγ

)
ds, x ∈ [0, x∗,0], t ∈ [0, t1].

(97)

By Lemma 3.2 and Theorem 4.3, the function ξ0(t, x) satisfying equation (97) is
uniquely defined and such that ξ0(·, x) ∈ C1([0, T ]) for each x ∈ [0, x∗,0]. Moreover,
this function is strictly related with the weak solution of the following Cauchy
problem

∂tρ
0
1(t, x) + V 0

1

(∫ x

0

ρ0
1(t, y) dy

)
∂xρ

0
1(t, x) = 0 in Q = (0, T )× (0, x∗,0),

ρ0
1(0, x) = ρ0(x) for x ∈ [0, x∗,0], ρ0

1(t, 0)V 0
1 (0) = u0(t), for t ∈ [0, T ],

namely, (for the details we refer to (42))∫ x

0

ρ0
1(t, γ) dγ =

∫ t

0

u0(σ) dσ +

∫ x−ξ0(t,x)

0

ρ0(γ) dγ, ∀ t ∈ [0, t1], ∀x ∈ [0, x∗,0].

Taking this fact into account, let us show that, in fact, the limit function v0 ∈
L1(0, T ) in (94) is such that

v0(t) := ρ0
1(t, x∗k)V 0

1

(∫ x∗,0

0

ρ0
1(t, y) dy

)
. (98)



26 CIRO D’APICE, PETER I. KOGUT AND ROSANNA MANZO

In this case, we could reiterate the previous arguments in order to pass to the limit
in (88)2, (89)2, and (91) as k → ∞, and conclude the same properties for the
limit function ζ0(t, x) and its relation with the weak solution to (14)–(15) under
v(t) = v0(t).

With that in mind, we assume that ξ0(T, x∗,0) ≤ x∗,0. Then, by (95) and mono-
tonicity of {x∗k}k∈N ⊂ [0, 1], we have ξk(T, x∗k) ≤ x∗,0 for k large enough. Therefore,
for an arbitrary test function ϕ ∈ L∞(0, T ), we get∫ T

0

vk(t)ϕ(t) dt =

∫ T

0

ρ1,k(t, x∗k)V1,k

(∫ x∗k

0

ρ1,k(t, y) dy

)
ϕ(t) dt

=

∫ T

0

ρ0(x∗k − ξx∗k(t))V1,k

(∫ x∗k

0

ρ1,k(t, y) dy

)
ϕ(t) dt

=

∫ x∗k

x∗k−ξx∗k (T )

ρ0(y)ϕ
(
ξ−1
x∗k

(x∗k − y)
)
dy

by (87),(95), and (96)→
∫ x∗,0

x∗,0−ξ0
x∗,0

(T )

ρ0(y)ϕ
(
(ξ0
x∗,0)−1

(
x∗,0 − y

))
dy

=

∫ T

0

ρ0(x∗,0 − ξ0
x∗,0(t))V 0

1

(∫ x∗,0

0

ρ0
1(t, y)ϕ(t) dy

)
dt

=

∫ T

0

ρ0
1(t, x∗,0)V 0

1

(∫ x∗,0

0

ρ0
1(t, y) dy

)
ϕ(t) dt =:

∫ T

0

v̂(t)ϕ(t) dt. (99)

Hence, vk ⇀ v̂ in L1(0, T ) as k →∞. Then, in view of condition (94), this implies
that v0(t) = v̂(t) and we arrive at the representation (98).

It remains to consider the case when ξ0(T, x∗,0) > x∗,0. Then ξk(T, x∗k) > x∗,0

for k large enough. Since∫ T

0

vk(t)ϕ(t) dt =

∫ (ξ0
x∗,0 )−1(x∗,0)

0

vk(t)ϕ(t) dt+

∫ T

(ξ0
x∗,0

)−1(x∗,0)

vk(t)ϕ(t) dt, (100)

for each ϕ ∈ L∞(0, T ), it follows from the previous case that we need only to
treat the last term in (100). With that in mind, we assume that (ξk,x∗k)−1(x∗k) <

(ξ0
x∗,0)−1(x∗,0) (the case (ξk,x∗k)−1(x∗k) > (ξ0

x∗,0)−1(x∗,0) can be considered in a sim-
ilar way). Then we get from (28) that∫ T

(ξ0
x∗,0

)−1(x∗,0)

vk(t)ϕ(t) dt =

∫ T

(ξ0
x∗,0

)−1(x∗,0)

uk

(
ξ−1
k,x∗k

(ξk,x∗k(t)− x∗k)
)
ϕ(t) dt

=

∫ ξ−1
k,x∗

k
(ξk,x∗

k
(T )−x∗k)

ξ−1
k,x∗

k
(ξk,x∗

k
((ξ0

x∗,0
)−1(x∗,0))−x∗k)

uk(σ)ϕ
(
ξ−1
k,x∗k

(ξk,x∗k(σ) + x∗k)
)

ξ′k,x∗k

(
ξ−1
k,x∗k

(ξk,x∗k(σ) + x∗k)
) dσ

=

∫ τk(T )

τk((ξ0
x∗,0

)−1(x∗,0))

uk(σ)ϕ (ηk(σ))

ξ′k,x∗k
(ηk(σ))

dσ, (101)

where
τk(t) := ξ−1

k,x∗k
(ξk,x∗k(t)− x∗k), ηk(t) := ξ−1

k,x∗k
(ξk,x∗k(t) + x∗k).

By continuity property (26) of functions ξk,x∗k(t) = ξk(t, x∗k) and conditions (95)
and (87), we have

τk(t)→ τ0(t) := (ξ0
x∗,0)−1(ξ0

x∗,0(t)− x∗,0), in C([0, T ]),
ηk(t)→ η0(t) := (ξ0

x∗,0)−1(ξ0
x∗,0(t) + x∗,0), in C([0, τ0(T )]),

ξ′k,x∗k
(ηk(σ))→ (ξ0

x∗,0)′ (η0(σ)) , in C([0, T ]).
(102)
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Then we can conclude from (101) that∫ τk(T )

τk((ξ0
x∗,0

)−1(x∗,0))

uk(σ)ϕ (ηk(σ))

ξ′k,x∗k
(ηk(σ))

dσ =

∫ τ0(T )

τ0((ξ0
x∗,0

)−1(x∗,0))

uk(σ)ϕ (ηk(σ))

ξ′k,x∗k
(ηk(σ))

dσ

+

∫ τ0((ξ0
x∗,0 )−1(x∗,0))

τk((ξ0
x∗,0

)−1(x∗,0))

uk(σ)ϕ (ηk(σ))

ξ′k,x∗k
(ηk(σ))

dσ +

∫ τk(T )

τ0(T )

uk(σ)ϕ (ηk(σ))

ξ′k,x∗k
(ηk(σ))

dσ

= J1 + J2 + J3

where J1 →
∫ τ0(T )

τ0((ξ0
x∗,0

)−1(x∗,0))

u0(σ)ϕ
(
η0(σ)

)
(ξ0
x∗,0)′ (η0(σ))

dσ as k → ∞ as a product of

strongly convergent sequence in C([0, T ]) and weakly convergent one in L2(0, T ),
and

J2 ≤ α−1
1 ‖ϕ‖L∞(0,T )

∣∣∣∣∣
∫ τ0((ξ0

x∗,0 )−1(x∗,0))

τk((ξ0
x∗,0

)−1(x∗,0))
uk(σ) dσ

∣∣∣∣∣ by (102)−→ 0 as k →∞,

J3 ≤ α−1
1 ‖ϕ‖L∞(0,T )

∣∣∣∣∣
∫ τk(T )

τ0(T )

uk(σ) dσ

∣∣∣∣∣ by (102)−→ 0 as k →∞.

Since ∫ τ0(T )

τ0((ξ0
x∗,0

)−1(x∗,0))

u0(σ)ϕ
(
η0(σ)

)
(ξ0
x∗,0)′ (η0(σ))

dσ

by (101)
=

∫ T

(ξ0
x∗,0

)−1(x∗,0)

u0
(
(ξ0
x∗,0)−1(ξ0

x∗,0(t)− x∗,0)
)
ϕ(t) dt

=

∫ T

(ξ0
x∗,0

)−1(x∗,0)

ρ0
1(t, x∗,0)V 0

1

(∫ x∗,0

0

ρ0
1(t, y) dy

)
ϕ(t) dt

=:

∫ T

(ξ0
x∗,0

)−1(x∗,0)

v̂(t)ϕ(t) dt,

it follows from (99) and (100) that vk ⇀ v̂ in L1(0, T ) as k →∞. Hence, v0(t) = v̂(t)
by (94). Thus, the representation (98) for the limit function v0(t) holds true, and
the tuple (u0, V 0

1 , V
0
2 , x

∗,0, ρ0) is admissible for the OCP (4)–(10).
It remains to show that (u0, V 0

1 , V
0
2 , x

∗,0, ρ0) is an optimal solution. With that in
mind, we note that following the similar reasoning as we applied to the convergence
(94), it can be shown that the same property is inherent to the out-flux functions
yk(t), that is, there exists an element ŷ ∈ L1(0, T ) such that yk ⇀ ŷ in L1(0, T ) as
k → ∞, where ŷ(t) = ρ0

2(t, 1)V 0
2 (0). However, the weak L2-convergence yk ⇀ y0

(see (87)) implies that y0(t) = ŷ(t). As a result, we finally obtain from (85)

inf
(u,V1,V2,x∗,ρ)∈Ξ

I(u, V1, V2, x
∗) = lim

k→∞
I(uk, V1,k, V2,k, x

∗
k)

= lim
k→∞

[∫ T

0

|yk(t)− yd(t)|2 dt+ ‖V ′′1,k − z1,d‖2L2(0,a1) + ‖V ′′2,k − z2,d‖2L2(0,a2)

]
by (87)

≥
∫ T

0

|y0(t)− yd(t)|2 dt+ ‖
(
V 0

1

)′′ − z1,d‖2L2(0,a1) + ‖
(
V 0

2

)′′ − z2,d‖2L2(0,a2)

= I(u0, V 0
1 , V

0
2 , x

∗,0).

Thus, (u0, V 0
1 , V

0
2 , x

∗,0, ρ0) is an optimal solution to the problem (4)–(10).
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