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Abstract

Restricted Gauss-Markov processes are used to construct inhomogeneous leaky
integrate-and-fire stochastic models for single neurons activity in the presence
of a lower reflecting boundary and periodic input signals. The first-passage time
problem through a time-dependent threshold is explicitly developed; numerical,
simulation and asymptotic results for firing densities are provided.
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1. Introduction

One-dimensional continuous-time Markov processes have been widely in-
voked as models to account for statistical features of spike trains recorded from
single neurons belonging to complex networks (cf. [10], [26], [35]). Among
these, the leaky integrate-and-fire (LIF) neuronal models, based on unrestricted
Ornstein-Uhlenbeck processes, play a relevant role to describe the stochastic
fluctuations in the membrane potential of a neuron. In order to analyze the
statistical properties of the interspike intervals in the LIF neuronal model,
the first-passage time (FPT) of the unrestricted Ornstein-Uhlenbeck process
through time-dependent firing thresholds has been extensively studied by means
of numerical procedures, simulation algorithms and asymptotic methods (cf. for
instance, [1], [6], [31], [33], [34] and references therein). Particular attention has
been dedicated to investigate the behavior of the stochastic LIF model when
an additional periodic input in the drift is introduced (cf., for instance, [4], [7],
[13], [14], [18], [20], [27], [32]). In such a context it is shown that the periodic-
ity of the input signal produces an oscillatory behavior of the firing probability
density function (pdf), leading to a multimodal FPT pdf (see [2], [9], [22], [28],
[30]).

In order to embody additional physiological features of real neurons, several
alternative models have been proposed that take into account the existence of
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the reversal potential, which restricts the state space of the continuous stochastic
process from below (cf., for instance, [15], [16], [17], [21]). One possibility is to
describe the evolution of the membrane potential by focusing the attention on
stochastic processes restricted by a reflecting boundary that can be looked at
as the neuronal reversal hyperpolarization potential.

In the present paper, inhomogeneous stochastic LIF models for single neu-
rons activity in the presence of a reflecting boundary and periodic input signals
are analyzed. In particular, making use of results obtained in [5], in Section 2 re-
stricted inhomogeneous LIF stochastic models with time-varying input signals
are considered, such that the transition pdf admits a closed form expression.
The knowledge of the transition pdf allows to obtain the FPT pdf through a
time-dependent firing threshold by using suitable numerical methods and ap-
propriate simulation algorithms. In Section 3, for the restricted inhomogeneous
LIF stochastic model, we specialize the results obtained in [5] to the case of pe-
riodic input signals; furthermore, the asymptotic behavior of the transition pdf
is determined. In Section 4, the firing densities for the unrestricted LIF process
and for the restricted LIF process with periodic input signal are compared by
using numerical and simulation procedures, showing that the FPT densities may
exhibit damped oscillations having the same period of the periodic input sig-
nal. Finally, when the threshold is progressively moved away from the starting
point of the related processes, non-homogeneous exponential approximations
are shown to hold for the firing densities.

2. Time non-homogeneous stochastic LIF model

We consider the Gauss-Markov process {Y (t), t ≥ 0}, characterized by the
mean function

m(t) = !
(
1− e−t/ϑ

)
+

∫ t

0
µ(ξ) e−(t−ξ)/ϑ dξ (t ≥ 0), (1)

and the covariance function c(s, t) = h1(s)h2(t) (0 ≤ s ≤ t) such that

h1(t) = et/ϑ
∫ t

0
σ2(ξ) e−2 (t−ξ)/ϑ dξ, h2(t) = e−t/ϑ (t ≥ 0), (2)

where ϑ > 0, ! ∈ R and µ(t),σ(t) ∈ C1(0,+∞), with σ(t) > 0. The transition
density fY (x, t|y, τ) is a normal pdf with the following mean and variance:

M(t|y, τ) = y e−(t−τ)/ϑ + !
(
1− e−(t−τ)/ϑ

)
+

∫ t

τ
µ(ξ) e−(t−ξ)/ϑ dξ,

(0 ≤ τ ≤ t) (3)

V (t|τ) =
∫ t

τ
σ2(ξ) e−2 (t−ξ)/ϑ dξ.

The infinitesimal moments of Y (t) are

A1(x, t) = −
x− !

ϑ
+ µ(t), A2(t) = σ2(t) (x ∈ R,ϑ > 0, ! ∈ R), (4)
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that identify the drift and the infinitesimal variance of a time non-homogeneous
Ornstein-Uhlenbeck process, whose state space is the interval (−∞,+∞); such
a process is solution of the stochastic differential equation:

dY (t) = −
{Y (t)− !

ϑ
− µ(t)

}
dt+ σ(t) dW (t), Y (τ) = y (5)

where W (t) denotes the standard Brownian motion. In the context of neuronal
models, (4) and (5) characterize an inhomogeneous LIF diffusion process Y (t),
describing the evolution of the membrane potential (cf., for instance, [7] and
references therein). The time constant ϑ governs the spontaneous decay of the
membrane potential to the resting level !, the function µ(t) represents determin-
istic input signal to the neuron, whereas the infinitesimal variance σ2(t) gives
the intensity of the noise.

For the process Y (t) we assume that neural firing takes place, and conse-
quently an action potential (spike) is observed whenever the neuron’s membrane
potential Y (t) reaches the firing threshold S(t). To this purpose, let S(t) be
a C1(0,+∞)-class function and denote by gY [S(t), t|y, τ ] the FPT pdf of Y (t)
from Y (τ) = y to the firing threshold S(t). As shown in [3], [8], [11] the FPT pdf
gY [S(t), t|y, τ ] satisfies a non-singular second-kind Volterra integral equation

gY [S(t), t|y, τ ]=−2ΨY [S(t), t|y, τ ] + 2

∫ t

τ
gY [S(u), u|y, τ ]ΨY [S(t), t|S(u), u] du

[
y < S(τ)

]
, (6)

where

ΨY [S(t), t|y, τ ] =
{
S′(t)−m′(t)

2
+

S(t)−m(t)

2

[
1

ϑ
−

σ2(t)e2t/ϑ
∫ t
τ σ2(ξ) e2ξ/ϑ dξ

]

+
y −m(τ)

2

σ2(t)e(t+τ)/ϑ

∫ t
τ σ

2(ξ) e2ξ/ϑ dξ

}
fY [S(t), t|y, τ ], (7)

and fY (x, t|y, τ) is the transition pdf of Y (t).
In the neuronal model (4) the state space for the underlying stochastic pro-

cess is the entire real axis, that is arbitrarily large hyperpolarization values for
the membrane potential are possible. Some authors (see, for instance, [16], [17],
[21]) have suggested alternative models by assuming the existence of a lower
boundary for the membrane potential. For this reason, in [5] we focused on the
stochastic process {X(t), t ≥ 0}, with state space [ν(t),+∞), obtained by con-
sidering {Y (t), t ≥ 0} in the presence of the following reflecting lower boundary

ν(t) = ! (1− e−t/ϑ) +

∫ t

0
µ(ξ) e−(t−ξ)/ϑdξ +B e−t/ϑ, (8)

where the real constant B is chosen in order to ensure that the starting point
of the process X(t) is greater or equal to the reflecting boundary at the initial
time, i.e. y ≥ ν(τ). We note that the choice of the reflecting boundary (8) is
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motivated by the need to obtain a closed-form expression for the transition pdf
of the process X(t) in the case of time-dependent input signal. On the other
hand, by choosing B = ν ≤ y and µ(t) = −(!− ν)/ϑ in (8), the reflecting lower
boundary ν(t) is identified with the constant ν.

As proved in [5] the transition pdf of the stochastic process {X(t), t ≥ 0},
obtained by considering Y (t) in presence of the reflecting boundary ν(t), is:

fX(x, t|y, τ) = fY (x, t|y, τ)+fY [2 ν(t)−x, t|y, τ ]
[
x ≥ ν(t), y ≥ ν(τ)

]
, (9)

where fY (x, t|y, τ) is the transition pdf of Y (t), with mean and variance given
in (3). We note that the expression of the reflecting boundary (8) is not affected
by the intensity of the noise σ2(t), which instead always plays a fundamental
role in the transition pdf (9).

For the process X(t), restricted in [ν(t),+∞) with the reflecting boundary
ν(t) given in (8), let S(t) be a C1(0,+∞)-class function, such that S(t) > ν(t)
for all t ≥ 0 and denote by gX [S(t), t|y, τ ] the FPT pdf of X(t) from X(τ) = y ≥
ν(τ) to the firing threshold S(t). As proved in [5], the FPT pdf gX [S(t), t|y, τ ]
satisfies a non-singular second-kind Volterra integral equation

gX [S(t), t|y, τ ]=−2ΨX [S(t), t|y, τ ] + 2

∫ t

τ
gX [S(u), u|y, τ ]ΨX [S(t), t|S(u), u] du

[
ν(τ) ≤ y < S(τ)

]
(10)

where

ΨX [S(t), t|y, τ ] =
{
S′(t)−m′(t)

2
+

S(t)−m(t)

2

[
1

ϑ
−

σ2(t)e2t/ϑ
∫ t
τ σ

2(ξ) e2ξ/ϑ dξ

]

+
y −m(τ)

2

σ2(t)e(t+τ)/ϑ

∫ t
τ σ

2(ξ) e2ξ/ϑ dξ

}
fX [S(t), t|y, τ ]

−
[y − ν(τ)]σ2(t)e(t+τ)/ϑ

∫ t
τ σ

2(ξ) e2ξ/ϑ dξ
fY [2 ν(t)− S(t), t|y, τ ], (11)

with ν(t) given in (8) and where fX(x, t|y, τ) and fY (x, t|y, τ) are the transition
pdfs of X(t) and Y (t), respectively.

For k = 1, 2, . . . we denote by

t(Y )
k (y, τ) :=

∫ +∞

τ
tkgY [S(t), t|y, τ ] dt [y < S(τ)

]
,

(12)

t(X)
k (y, τ) :=

∫ +∞

τ
tkgX [S(t), t|y, τ ] dt

[
ν(τ) ≤ y < S(τ)

]
,

the k–order moments of the FPT for the unrestricted LIF process Y (t) and
for the restricted LIF process X(t), respectively; furthermore, Var(Y )(y, τ) =

t(Y )
2 (y, τ)− [t(Y )

1 (y, τ)]2 and Var(X)(y, τ) = t(X)
2 (y, τ)− [t(X)

1 (y, τ)]2 indicate the
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variances of FPT for Y (t) and X(t), respectively. Moreover, with Σ(Y )(y, τ) and
Σ(X)(y, τ) we denote the skewness of the FPT for Y (t) and X(t), respectively.
The skewness, evaluated as Σ = [t3 + 2t31 − 3t1t2]/[t2 − t21]

3/2, gives a measure
of the degree of asymmetry of the FTP density.

In the next sections we specialize the above results to the case of restricted
LIF neuronal models in which the input signal is a periodic function of time
and the threshold is constant.

3. Neuronal model with periodic input signals

We now suppose that the input signal µ(t) in (1) is the periodic function

µ(t) = µ+ λ cos(ω t+ φ) (λ &= 0,φ ∈ R,ω > 0) (13)

for t ≥ 0, whose period is Q = 2π/ω. The periodic input signal (13) oscillates
around the constant µ with angular frequency ω, initial phase φ and input
amplitude λ. Making use of (13) in (1) one has

m(t) = (!+ µϑ) (1− e−t/ϑ) +
λϑ

1 + ω2 ϑ2

{
cos(ω t+ φ) + ω ϑ sin(ω t+ φ)

−
[
cosφ+ ω ϑ sinφ

]
e−t/ϑ

}
(t ≥ 0). (14)

Hence, we consider the Gauss-Markov process {Y (t), t ≥ 0} with mean function
(14) and covariance factors given in (2). The infinitesimal moments of Y (t) are
given in (4) with µ(t) as in (13). The conditional mean of Y (t) follows from (3):

M(t|y, τ) = y e−(t−τ)/ϑ + (!+ µϑ) [1− e−(t−τ)/ϑ] +
λϑ

1 + ω2 ϑ2

{
cos(ω t+ φ)

+ω ϑ sin(ω t+ φ)−
[
cos(ω τ + φ) + ω ϑ sin(ω τ + φ)

]
e−(t−τ)/ϑ

}

(0 ≤ τ ≤ t). (15)

In the absence of noise, i.e. σ(t) = 0, the mean M(t|y, τ) coincides with the
solution of the deterministic version of (5) with µ(t) as in (13). Furthermore,
from (14) and (15) one obtains the asymptotic behavior of the conditional mean:

M̃(t) = lim
n→+∞

M(t+ nQ|y, τ) ≡ lim
n→+∞

m(t+ nQ)

= !+ µϑ+
λϑ

1 + ω2ϑ2

{
cos(ω t+ φ) + ω ϑ sin(ω t+ φ)

}
. (16)

Note that M̃(t) is a periodic function of period Q = 2π/ω and its average in a
period is:

mP =
1

Q

∫ Q

0
M̃(t) dt = !+ µϑ. (17)
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When the firing threshold is constant, i.e S(t) = S, in the absence of noise one
can distinguish between subthreshold and suprathreshold regimes. If

m∞ ≡ sup
t≥0

M̃(t) = !+ µϑ+
|λ|ϑ√

1 + ω2ϑ2
(18)

takes values larger than S, then LIF generates sustained firing. If, conversely,
m∞ remains below the constant threshold S, then the LIF will fire at most a
finite number of discharges and remain quiescent henceforth. Therefore, stimuli
are classified as subthreshold if m∞ ≤ S and suprathreshold otherwise (cf. [24],
[25], [29]).

In the remaining part of the paper we consider the process {X(t), t ≥ 0},
obtained by confining Y (t) to the interval [ν(t),+∞) with the reflecting bound-
ary

ν(t) = (!+ µϑ) (1− e−t/ϑ) +
λϑ

1 + ω2 ϑ2

{
cos(ω t+ φ) + ω ϑ sin(ω t+ φ)

−
[
cosφ+ ω ϑ sinφ

]
e−t/ϑ

}
+B e−t/ϑ (B ∈ R), (19)

obtained from (8) by using (13). By virtue of (9), for y ≥ ν(τ) the conditional
mean and the second order conditional moment of X(t) are:

E[X(t)|X(τ) = y] :=

∫ +∞

ν(t)
x fX(x, t|y, τ) dx =

√
2V (t|τ)

π
e−H2(t|y,τ)

+
1

2
M(t|y, τ)

{
1 + Erf

[
H(t|y, τ)

]}

+
1

2

[
2ν(t)−M(t|y, τ)

]{
1− Erf

[
H(t|y, τ)

]}
,

(20)

E[X2(t)|X(τ) = y] :=

∫ +∞

ν(t)
x2 fX(x, t|y, τ) dx = V (t|τ) +M2(t|y, τ)

−2ν(t)
[
M(t|y, τ)− ν(t)

]{
1− Erf

[
H(t|y, τ)

]}
+ 4 ν(t)

√
V (t|τ)
2π

e−H2(t|y,τ),

with V (t|τ) and M(t|y, τ) given in (3) and (15), and where we have set:

H(t|y, τ) =
M(t|y, τ)− ν(t)√

2V (t|τ)
· (21)

Differently from the LIF model, the conditional mean (20) of the process X(t) is
strongly influenced by the intensity of the noise, involved in the function V (t|τ).

3.1. Behavior of the lower boundary
The function ν(t) in (19) is the sum of two components ν1(t) and ν2(t):

ν1(t) =
λϑ

1 + ω2 ϑ2

{
cos(ω t+ φ) + ω ϑ sin(ω t+ φ)

}
,

ν2(t) = !+ µϑ− e−t/ϑ
{
!+ µϑ+

λϑ

1 + ω2 ϑ2

[
cosφ+ ω ϑ sinφ

]
−B

}
. (22)

6



The function ν1(t) is a periodic function of period Q = 2π/ω, whereas ν2(t) is
a monotonic function of t. The values of parameters µ,ϑ, !,ω,φ, B determine
three different behaviors of ν(t):

• if B < !+µϑ+
λϑ

1 + ω2 ϑ2

[
cosφ+ω ϑ sinφ

]
, then the function ν(t) oscillates

around the increasing function ν2(t);

• if B > !+µϑ+
λϑ

1 + ω2 ϑ2

[
cosφ+ω ϑ sinφ

]
, then the function ν(t) oscillates

around the decreasing function ν2(t);

• if B = !+µϑ+
λϑ

1 + ω2 ϑ2

[
cosφ+ω ϑ sinφ

]
, then the function ν(t) oscillates

around the constant function ν2(t).

The amplitude and the frequency of oscillations depend on the function ν1(t).
In Figure 1 the boundary ν(t) and the function ν2(t) are plotted for φ = 0
(on the left) and φ = 5 (on the right). From (19) it follows that ν(0) = B.

Ν !t"

Ν2!t"

0 20 40 60 80
t"1.00

"0.95

"0.90

"0.85

"0.80

"0.75

"0.70
Ν !t"

(a) φ = 0

Ν !t"

Ν2!t"

0 20 40 60 80
t"1.00

"0.95

"0.90

"0.85

"0.80

"0.75

"0.70
Ν !t"

(b) φ = 5

Figure 1: The boundary ν(t) (solid curve) and the function ν2(t) (dashed curve) are plotted
for ϑ = 1, µ = 0.1, $ = −0.9, λ = −0.1, ω = 0.2 and B = −1.

Furthermore, denoting by

ξ(t) =
λϑ

1 + ω2 ϑ2

{
cos(ω t+φ)+ωϑ sin(ω t+φ)−

[
cosφ+ω ϑ sinφ

]
e−t/ϑ

}
, (23)

from (19) one has

ν(t) = (!+ µϑ) (1− e−t/ϑ) +B e−t/ϑ + ξ(t). (24)

As shown in Figure 2, ξ(t) becomes a periodic function starting from rather
small times, with oscillations around the zero state. Furthermore, ν(t) admits
an asymptotic periodic behavior:

ν̃(t) = lim
n→+∞

ν(t+nQ) = !+ µϑ+
λϑ

1 + ω2ϑ2

{
cos(ω t+φ) +ω ϑ sin(ω t+ φ)

}
,

(25)
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Figure 2: The function ξ(t) is plotted for the same choices of the parameters of Figure 1.

that identifies with M̃(t), given in (16). We note that the asymptotic average
of ν̃(t) in a period is:

νP =
1

Q

∫ Q

0
ν̃(t) dt = !+ µϑ, (26)

that coincides with mP , given in (17).

3.2. Asymptotic behavior of the transition pdf
We now assume that σ2(t) is a bounded function, such that limn→+∞ σ2(t+

nQ) = σ̃2(t), where σ̃2(t) is a constant function or a periodic function of the
same period Q = 2π/ω of the input signal (13). Under such assumption, from
the second of (3) it follows:

Ṽ (t) = lim
n→+∞

V (t+ nQ|τ) =
ϑ σ̃2(t)

2
· (27)

Hence, the pdf fX(x, t|y, τ), given in (9), admits a quasi-stationary behavior as
indicated in the following proposition.

Proposition 3.1. Let m(t) given in (14) and let σ2(t) be a bounded C1(0,+∞)-
class function, such that limn→+∞ σ2(t+nQ) = σ̃2(t), where σ̃2(t) is a constant
function or a periodic function of period Q = 2π/ω. Then, X(t) admits the
quasi-stationary density:

WX(x, t)= lim
n→+∞

fX(x, t+nQ|y, τ) =
2

σ̃(t)
√
πϑ

exp
{
−
[
x− ν̃(t)

]2

ϑ σ̃2(t)

}
[x ≥ ν̃(t)].

(28)
Furthermore, the first two conditional moments and the variance of X(t) admit
the quasi-stationary asymptotic behaviors:

M̃X(t) = lim
n→+∞

E[X(t+ nQ)|X(τ) = y] = ν̃(t) + σ̃(t)

√
ϑ

π
,

(29)

ṼX(t) = lim
n→+∞

Var[X(t+ nQ)|X(τ) = y] = ϑ σ̃2(t)
(1
2
−

1

π

)
.
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Proof. Making use of (16), (25) and (27), expression (28) follows from (9).
Furthermore, recalling that y > ν(τ), from (21) one has:

lim
n→+∞

H(t+ nQ|y, τ) = lim
n→+∞

M(t+ nQ|y, τ)− ν(t+ nQ)√
2V (t+ nQ|τ)

= 0,

so that from (20) one obtains (29). !

We note that M̃(t) = ν̃(t) for the unrestricted Ornstein-Uhlenbeck process

Y (t), whereas M̃X(t) > ν̃(t) for the restricted Ornstein-Uhlenbeck processX(t).
Furthermore, by comparing the asymptotic means and variances of X(t) and

Y (t), one has M̃X(t) > M̃(t) and ṼX(t) < Ṽ (t).
Proposition 3.1 also implies that when σ̃2(t) is a constant function, the

asymptotic boundary ν̃(t) and the asymptotic conditional mean M̃X(t) are pe-
riodic functions with the same period and with the same amplitude. Instead,
when σ̃2(t) is a periodic function of period Q = 2π/ω, the asymptotic boundary
ν̃(t) and the asymptotic conditional mean are periodic functions with the same
period, but the amplitudes of oscillations can be not equal. This suggests the im-
portance of the choice of a periodic infinitesimal variance in the non-stationary
Ornstein-Uhlenbeck neuronal model with the periodic signal (13) and the re-
flecting boundary (19). For instance, for µ(t) as in (13), the cases σ2(t) = σ2

and σ2(t) = σ2
(
1− e−2t/ϑ

)2
admit the same quasi-stationary density (28), with

σ̃2(t) = σ2 and ν̃(t) given in (25).
Under the assumption of Proposition 3.1, denoting by

σP =
1

Q

∫ Q

0
σ̃(t) dt, (30)

the asymptotic average of σ̃(t) in a period , from (29) we obtain

MP =
1

Q

∫ Q

0
M̃X(t) dt = νP +

√
ϑ

π

{
1

Q

∫ Q

0
σ̃(t) dt

}
= !+ µϑ+

√
ϑ

π
σP , (31)

which can be interpreted as the asymptotic average of M̃X(t) in a period.
When the firing threshold and the intensity of noise are constant, i.e S(t) = S

and σ2(t) = σ2, for the process X(t) one can distinguish between subthreshold
and suprathreshold regimes. Indeed, taking into account only the asymptotic
mean, we denote by

M∞ ≡ sup
t≥0

M̃X(t) = !+ µϑ+
|λ|ϑ√

1 + ω2ϑ2
+

√
ϑ

π
σ = m∞ +

√
ϑ

π
σ, (32)

with m∞ given in (18). By comparing (18) and (32) we note that for the
restricted process X(t), M∞ depends on the noise intensity, so that the con-
cept of subthreshold and suprathreshold is changed with respect to that of the
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LIF process Y (t). In analogy to the unrestricted LIF process Y (t), for the re-
stricted process X(t) stimuli can be classified as subthreshold if M∞ ≤ S and
suprathreshold otherwise. Therefore, the behavior of the restricted neuronal
model X(t) is more affected by the variability of the noise intensity.
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E#X!t"$X!0"$y%

mP

MP

m%

M%20 40 60 80
t

"1.0

"0.8

"0.6

"0.4

"0.2

0.0

(a) φ = 0

E#Y!t"$Y!0"$y%

E#X!t"$X!0"$y%

mP

MP

m%

M%20 40 60 80
t

"1.0

"0.8

"0.6

"0.4

"0.2

0.0

(b) φ = 5

Figure 3: For the processes Y (t) and X(t), the conditional means E[Y (t)|Y (0) = y] and
E[X(t)|X(0) = y] are plotted for ϑ = 1, µ = 0.1, $ = −0.9, λ = −0.1, ω = 0.2, σ2 = 1,
B = −1 and y = −0.4. The dashed lines indicate the related asymptotic averages in a period
and the dot-dashed lines indicate the upper bound of the asymptotic averages.

Figure 3 shows the conditional means E[Y (t)|Y (0) = y] and E[X(t)|X(0) =
y] for the unrestricted Ornstein-Uhlenbeck process Y (t) and for the restricted
process X(t) for σ2(t) ≡ σ2 constant. The dashed lines indicate the related
asymptotic averages in a period, with σP = σ, whereas the dot-dashed lines
indicate the upper bound of the asymptotic averages. Taking in account the
choices of parameters of Figure 3, from (17), (18), (31) and (32) for the process
Y (t) we obtain mP = !+µ θ = −0.8, m∞ = −0.701942, whereas for the process
X(t) results MP = mP + 1/

√
π = −0.23581 and M∞ = −0.137752.

4. Firing density

For the process X(t) with transition pdf (9) and subject to the periodic
input signal (13), we analyze the behavior of the firing pdf g[S(t), t|y, τ ] by
means of numerical, simulation and asymptotic methods. Moreover, we compare
the firing densities of the unrestricted process Y (t) and of the restricted process
X(t). The firing pdf gY [S(t), t|y, τ ] satisfies (6) with ΨY [S(t), t|y, τ ] given in (7),
whereas gX [S(t), t|y, τ ] is solution of (10) with ΨX [S(t), t|y, τ ] given in (11). The
firing densities gY [S(t), t|y, τ ] and gX [S(t), t|y, τ ] are obtained making use of the
numerical algorithm proposed in [8]. It should be emphasized that the analysis
of the FPT densities plays an important role when the input signal is reset
to some fixed value after each firing and the process starts again at the initial
time. In this case all interspike interval lengths are statistically independent,
identically distributed random variables and the series of interspike intervals
generate a renewal process.
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Figure 4: For the periodic input signal (13), gY (S, t|y, τ) (red curve) and gX(S, t|y, τ) (blue
curve) are plotted for ϑ = 1, µ = 0.1, $ = −0.9, λ = −0.1, ω = 0.2, φ = 5, B = −1, τ = 0,
y = −0.4 and S = 1.5.

4.1. Influence of the noise and of the periodic input signal

For the case of the periodic input signal (13), in Figures 4 and 5 we plot the
firing pdf gY (S, t|y, 0) of the unrestricted process Y (t) (red curve) and the firing
pdf gX(S, t|y, 0) of X(t) (blue curve) through the constant threshold S = 1.5,
starting from the initial state y = −0.4 at time τ = 0; all cases considered
are related to a subthreshold regime. The integration step in the numerical
algorithm is set at 0.05. In particular, Figure 4 shows that low noise intensities
bring out many peaks; furthermore, when the noise intensity increases the firing
densities are concentrated into the first peaks. Figure 5 shows similar results
as in Figure 4, except that the amplitude |λ| of the input signal is increased.
By comparing Figures 4 and 5 for low noise intensities, we note that the peaks
of the firing densities become more visible when the amplitude |λ| of the input
signal increases; furthermore, when the intensity of the noise increases, the
amplitude |λ| of the input signal does not affect essentially in the shape of the
firing densities.

Making use of the computed firing densities gY [S(t), t|y, τ ] and gX [S(t), t|y, τ ],
obtained by solving the integral equations (6) and (10), the FPT moments (12)
can be numerically obtained. For the cases considered in Figures 4 and 5, with

periodic input signal (13), in Table 1 we compare the mean t(Y )
1 (y, τ), the vari-

ance Var(Y )(y, τ) and the skewness Σ(Y )(y, τ) of the FPT for the unrestricted

11
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Figure 5: As in Figure 4 with λ = −0.15.

LIF process Y (t) with t(X)
1 (y, τ), Var(X)(y, τ) and Σ(X)(y, τ) of the restricted

LIF process X(t), respectively. We note that the mean of FPT for the restricted
process is approximately halved compared to that of the unrestricted process,
whereas the variance of FPT for the process X(t) is about a quarter compared
to that of the process Y (t). Furthermore, the FPT skewness is less than 2 for
both the processes Y (t) and X(t), implying that an exponential asymptotic
regime is not yet reached.

For the case of the periodic input signal (13) with the noise intensity function
σ2(t) = σ2(1 − e−2t/ϑ)2, in Figure 6 we plot the firing pdf gY (S, t|y, 0) of the
unrestricted process Y (t) (red curve) and the firing pdf gX(S, t|y, 0) of X(t)
(blue curve) through the constant threshold S = 1.5, starting from the initial
state y = −0.4 at time τ = 0. The integration step in the numerical algorithm
is again set at 0.05. By comparing Figure 4(a) with Figure 6(a) and Figure 5(a)
with Figure 6(b), we note that the second peaks of the firing densities of Figure 6
are now more pronounced for both the processes Y (t) and X(t).

In Figure 7 we assume σ2(t) = σ2 = 1. We note that for low intensity of the
noise, the firing densities contain a series of peaks spaced by multiples of the
period Q = 2π/ω of the input signal. The location of the first peak depends on
the phase φ, while subsequent peaks are strongly influenced on the frequency
of the periodic input. Differently from Figure 4, the firing densities of Figure 7
have many peaks and the height of the peaks decreases exponentially. Moreover,
the firing densities gY (S, t|y, 0) and gX(S, t|y, 0) in Figure 7 exhibit damped os-
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Unrestricted process Y (t) Restricted process X(t)

λ σ2 t(Y )
1 Var(Y ) Σ(Y ) t(X)

1 Var(X) Σ(X)

−0.1 1.25 67.8725 4261.16 1.79940 34.2583 980.536 1.79498
1.5 37.6737 1289.29 1.79576 19.0884 282.958 1.74084
1.75 24.8236 554.508 1.78265 12.5632 117.937 1.60903
2.0 18.1333 296.369 1.76089 9.10073 62.1734 1.49475

−0.15 1.25 66.9962 4051.36 1.80078 34.154 924.824 1.80030
1.5 37.7258 1246.62 1.79625 19.441 271.907 1.72090
1.75 25.1060 541.866 1.77518 12.9953 116.235 1.51999
2.0 18.4684 292.267 1.73975 9.50499 63.4725 1.35219

Table 1: For the periodic input signal (13), t(Y )
1 (y, τ ), Var(Y )(y, τ ) and Σ(Y )(y, τ ) for

Y (t) are compared with t(X)
1 (y, τ ), Var(X)(y, τ ) and Σ(X)(y, τ ) for X(t), respectively,

with ϑ = 1, µ = 0.1, # = −0.9, ω = 0.2, φ = 5, B = −1, τ = 0, y = −0.4 and S = 1.5.
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(a) σ2 = 1.25, λ = −0.1
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(b) σ2 = 1.25, λ = −0.15

Figure 6: For the periodic signal (13), gY (S, t|y, τ) (red curve) and gX(S, t|y, τ) (blue curve)
are plotted for ϑ = 1, µ = 0.1, $ = −0.9, ω = 0.2, φ = 5, σ2(t) = σ2(1 − e−2t/ϑ)2, B = −1,
τ = 0, y = −0.4 and S = 1.5.

cillations having the same period Q of the periodic input signal. Hence, periodic
subthreshold stimulation produces multimodal firing densities for noise intensi-
ties not too strong. The black curves in Figure 7 indicate the firing densities for
the constant input signal µ(t) = µ = 0.1, in which the function ξ(t) = 0 in ν(t).
We note that the firing densities gY (S, t|y, 0) and gX(S, t|y, 0) oscillate around
the related firing densities in the case of the constant input signal µ(t) = µ.

It should be emphasized that the behaviors of the firing densities of the
unrestricted process Y (t) subject to the periodic input signal (13) and a constant
noise intensity are in agreement with those obtained in [2], [22], [25], [28], [30],
for different choices of the parameters. Similarly, such behaviors occur also
for the firing densities of the process X(t) with reflecting boundary (19). In
addition, as shown in Figures 4, 5 and 7 the first peaks of the firing densities are
more pronounced for the process X(t) than those of the firing density of Y (t).

In Figure 8 we compare the firing densities of Figure 7 with the asymptotic
exponential behaviors of the firing densities in the case of the constant signal
µ(t) = µ = 0.1. As showed in [5], the dashed curves are the exponential densities
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Figure 7: For the periodic signal (13), gY (S, t|y, τ) (red curve) and gX(S, t|y, τ) (blue curve)
are plotted for ϑ = 1, µ = 0.1, $ = −0.9, λ = −0.1, ω = 0.2, σ2 = 1, B = −1, τ = 0, y = −0.4
and S = 1.5. The black curve indicate the firing densities for the constant signal µ(t) = µ.

γX(t) = α e−α t (blue curve) and γY (t) = (α/2) e−(α/2) t (red curve), with

α =
2 [S − (!+ µϑ)]

σ ϑ
√
πϑ

exp
{
−
[S − (!+ µϑ)]2

σ2 ϑ

}
(S > !+ µϑ). (33)

Hence, denoting by E(T̂ k
X) and by E(T̂ k

Y ) the moments of the exponential den-

sities γX(t) and γY (t), one has E(T̂ k
X) = 2−k E(T̂ k

Y ) (k = 1, 2, . . .).
We remark that the exponential behaviors hold as the threshold S is pro-

gressively moved away from the starting point of the related processes.
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Figure 8: Same as in Figure 6. The dashed curves are the exponential density α e−αt (blue)
and (α/2) e−(α/2)t (red), with α given in (33).

4.2. Asymptotic behavior of the firing pdf

For the processX(t) with the transition pdf (9) and the periodic input signal
µ(t) given in (13), we now analyze the asymptotic behavior of gX [S(t), t|y, τ ]
when the intensity of the noise σ2(t) is a bounded C1(0,+∞)-class function,
such that limn→+∞ σ2(t+ nQ) = σ̃2(t), where σ̃2(t) is a constant function or a
periodic function of period Q = 2π/ω.
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Proposition 4.1. Under the assumptions of Proposition 3.1, let S(t) be a bounded
C1(0,+∞)-class function, such that limn→+∞ S(t+ nQ) = S̃. Then,

RX(t) = −2 lim
n→+∞

ΨX

[
S(t+ nQ), t+ nQ|z, u

]
=

2

σ̃(t)ϑ
√
πϑ

{
S̃ − (!+ µϑ)

−
2λω ϑ2

1 + ω2ϑ2
sin(ω t+ φ)−

λϑ (1− ω2 ϑ2)

1 + ω2ϑ2
cos(ω t+ φ)

}
exp

{
−
[
S̃ − M̃(t)

]2

ϑ σ̃2(t)

}
,

(34)

with ΨX defined in (11) and where M̃(t) is given in (16). Furthermore, if
S̃ > !+ µϑ+ |λ|ϑ/

√
1 + ω2ϑ2 one has RX(t) > 0.

Proof. First of all, by setting m1(t) = m′(t), from (14) one has:

lim
n→+∞

m1(t+ nQ) = −
λϑω

1 + ω2ϑ2

{
sin(ω t+ φ)− ω ϑ cos(ω t+ φ)

}
. (35)

Then, making use of (16), (25), (27) and (35) in (11), one obtains (34). Since

sup
t≥0

[
2λω ϑ2

1 + ω2ϑ2
sin(ω t+ φ) +

λϑ (1 − ω2 ϑ2)

1 + ω2ϑ2
cos(ω t+ φ)

]

=
|λ|ϑ√

1 + ω2ϑ2
,

one has:

S̃ − (!+ µϑ)−
2λω ϑ2

1 + ω2ϑ2
sin(ω t+ φ)−

λϑ (1 − ω2 ϑ2)

1 + ω2ϑ2
cos(ω t+ φ)

≥ S̃ − (!+ µϑ)−
|λ|ϑ√

1 + ω2ϑ2
; (36)

hence, from (34) it follows that RX(t) > 0 when S̃ > !+µϑ+ |λ|ϑ/
√
1 + ω2ϑ2.

!

We note that the function RX(t), given in (34), is a periodic function with
period Q = 2π/ω, i.e. the same period of the input signal.

As the threshold S(t) is progressively moved away from the starting point
of the process X(t), a non-homogeneous exponential approximation is shown
to hold for the FPT pdf gX [S(t), t|y, τ ]. Indeed, under the assumptions of
Proposition 4.1, for S̃ > ! + µϑ + |λ|ϑ/

√
1 + ω2ϑ2, gX [S(t), t|y, τ ] admits the

following non-homogeneous exponential asymptotic behavior:

gX [S(t), t|y, τ ] ) RX(t) exp

{
−
∫ t

τ
RX(ξ) dξ

}
≡ g̃X(t) [ν(τ) ≤ y < S(τ)],

(37)
with RX(t) given in (34).
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Moreover, we note that for the unrestricted process Y (t), under the assump-
tions of Proposition 4.1, from (7) one has:

RY (t) = −2 lim
n→+∞

ΨY

[
S(t+ nQ), t+ nQ|y, τ

]
=

RX(t)

2
,

so that, starting from the integral equation (6), the FPT pdf gY [S(t), t|y, τ ]
admits the following asymptotic behavior:

gY [S(t), t|y, τ ] ) RY (t) exp

{
−
∫ t

τ
RY (ξ) dξ

}
≡ g̃Y (t) [y < S(τ)].

(38)
Results (37) and (38) can be obtained along the lines indicated in [12] and [23].
The agreement of the non-homogeneous exponential approximations (37) and
(38) increases as the threshold is progressively moved away from the starting
point of the related processes.

In Figure 9, by using the NIntegrate function in MATHEMATICA, we plot
the asymptotic behaviors (37) and (38) of the firing densities gY [S, t|y, τ ] and
gX [S, t|y, τ ] for the same choices of parameters as in Figure 7. By comparing the
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Figure 9: The asymptotic firing densities g̃X(t) (blue curve) and g̃Y (t) (red curve), given in
(37) and (38) respectively, are plotted with the same choices of parameters of Figure 7.

numerical firing densities of Figure 8 with their related asymptotic behaviors
(37) and (38) of Figure 9, we note that they differ only for small values of the
time, after which a perfect agreement holds.

The k-order FPT moments of the asymptotic densities g̃X(t) and g̃Y (t),
given in (37) and (38) respectively, are defined as:

t̃(X)
k (τ) =

∫ +∞

τ
tk g̃X(t) dt, t̃(Y )

k (τ) =

∫ +∞

τ
tk g̃Y (t) dt (k = 1, 2, . . .).

In Table 2 are reported the FPT asymptotic moments t̃(X)
k ≡ t̃(X)

k (0) for k =

1, 2, 3, the coefficient of variation C̃V
(X)

and the skewness Σ̃(X) for some choices
of the period Q = 2π/ω = 8, 4, 2, 1, 0.5. We note that the coefficient of variation
is close to unity and the skewness tends to be close to 2 for decreasing values
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of the period. Furthermore in the last three columns are indicated the ratios

rk = t̃(X)
k /t̃(Y )

k for k = 1, 2, 3. We note that rk ) 2−k (k = 1, 2, 3), i.e. t̃(X)
k )

2−k t̃(Y )
k .

λ ω t̃
(X)
1 t̃

(X)
2 t̃

(X)
3 C̃V

(X)
Σ̃(X) r1 r2 r3

−0.1 π/4 74.8130 11587.3 2.65 × 106 1.0345 1.7866 0.4942 0.2408 0.1313
π/2 73.0744 11387.0 2.41 × 106 1.0642 1.8779 0.5024 0.2855 0.1227
π 77.9606 11820.3 2.67 × 106 0.9720 1.9440 0.5036 0.2571 0.1260
2π 77.2410 11695.2 2.65 × 106 0.9799 2.0137 0.5045 0.2531 0.1247
4π 75.9052 11609.4 2.68 × 106 1.0075 2.0188 0.5002 0.2504 0.1258

−0.15 π/4 72.8273 11350.3 2.43 × 106 1.0677 1.6715 0.4775 0.2529 0.1307
π/2 70.9035 11102.0 2.32 × 106 1.0993 1.6106 0.5070 0.2708 0.1264
π 77.3175 11828.9 2.57 × 106 0.9893 1.7912 0.4974 0.2605 0.1314
2π 76.4897 11796.0 2.76 × 106 1.0081 1.9215 0.5056 0.2572 0.1307
4π 75.6436 11548.9 2.66 × 106 1.0091 2.0421 0.5016 0.2490 0.1257

Table 2: For the periodic input signal (13), t̃(X)
k (k = 1, 2, 3), C̃V

(X)
, Σ̃(X), rk =

t̃(X)
k /t̃(Y )

k (k = 1, 2, 3) are reported with ϑ = 1, µ = 0.1, σ2 = 1, # = −0.9, φ = 0,
B = −1, τ = 0, y = −0.4 and S = 1.5.

4.3. Simulations for the firing pdf
In order to simulate the firing pdf gX [S(t), t|y, τ ] through the threshold S(t)

we generate the sample paths of the Gauss-Markov process Y (t) characterized
by (2) and (14), from which the sample paths of the restricted process X(t)
are constructed taking in account the presence of the reflecting boundary ν(t)
given in (19). By setting t0 = τ and Y (t0) = X(t0) = y, we simulate Y (t) at
a discrete set of time points t1, t2, . . ., such that t0 < t1 < t2 . . . by using the
stochastic recurrence equation (cf., for instance, [19]):

Y (tk) = m(tk) +
[
Y (tk−1)−m(tk−1)

]
e−∆k/ϑ + ξk

√∫ tk

tk−1

σ2(u) e−2(tk−u)/ϑ du,

(k = 1, 2, . . .), (39)

where m(t) is given in (14), ∆k = tk − tk−1 and ξ1, ξ2, . . . is a sequence of
independent and identically distributed (iid) standard normal random variables.
Hence, we set X(tk) = Y (tk) if Y (tk) ≥ ν(tk), elsewhere X(tk) = 2 ν(tk)−Y (tk)
if Y (tk) < ν(tk). The simulation algorithm, described in more details in [5],
provides a collection of N simulated first passage times of X(t) through S(t).
Making use of the simulation algorithm, in Figure 10 the sample paths of the
unrestricted process Y (t) and of the restricted process X(t) in the presence of
the reflecting boundary (19) are represented for some choices of the parameters,
with constant step ∆k = 0.01.

By means of the simulation algorithm, an estimation of the FPT pdf can be
achieved by the histogram of the simulated first passage times. In Figure 11,
the numerical firing density and the histogram of the simulated firing times,
with constant step ∆k = 10−4, are compared for the constant firing threshold
S = 1.5.
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Figure 10: Sample paths of the unrestricted process Y (t) (green) originating at y = −0.4 at
time τ = 0 with ϑ = 1, µ = 0.1, $ = −0.9, λ = −0.1, ω = 0.2, φ = 5, σ2 = 1 and of the
restricted process X(t) (blue) in the presence of the reflecting boundary (19) with B = −1
(red).
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Figure 11: For the restricted Ornstein-Uhlenbeck process X(t), the histogram of a sample
of 30000 simulated firing times is compared with the numerical firing density gX(S, t|y, 0),
obtained by (10), for S = 1.5 and the same choices of parameters of Figure 10.

5. Concluding remarks

In this paper we study the FPT problem for the inhomogeneous LIF model
for single neurons activity in the presence of a lower reflecting boundary (19)
and periodic input signals (13). The firing densities for the unrestricted LIF pro-
cess Y (t) defined in (5) with periodic input signals (13) and for the restricted
LIF process X(t), obtained from Y (t) in the presence of the reflecting boundary
ν(t) given in (19), are compared by using numerical, asymptotic and simulation
procedures. In particular, the FPT densities of the unrestricted process Y (t)
and the restricted one X(t) are compared with the same periodic input signals,
given in (13), for constant threshold and constant intensity of noise. The in-
fluence of the noise intensity and of the amplitude of the periodic input signal
is analyzed, showing that there are similar behaviors for the firing densities of
the unrestricted process Y (t) and of the restricted process X(t). The peaks of
the firing densities become more visible when the amplitude |λ| of the input
signal increases. When the intensity of the noise increases, the amplitude of the
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input signal does not affect essentially in the shape of the firing densities. For
low intensity of the noise, the peaks of the FPT pdf are spaced at multiples
of the period of the input signal, except for the first few peaks; furthermore,
the envelope of the peaks decays exponentially. Moreover, the first peaks of
the firing densities are more pronounced for the process X(t) than those of the
firing density of Y (t). However, the mean and the variance of FPT for the
restricted process X(t) are lower than those of the corresponding unrestricted
process Y (t). Under suitable assumptions on the noise intensity and on the
threshold, the asymptotic behaviors of the firing densities for the unrestricted
LIF process Y (t) and for the restricted LIF process X(t) are analyzed. Then,
making use of such densities, the asymptotic FPT moments for the restricted
LIF process X(t) are evaluated for different choices of the period and of the
amplitude of the signal; we note that the coefficient of variation is close to unity
and the skewness tends to be close to 2 for decreasing values of the period.

We remark that the Volterra integral equation (10) can be useful in the
parameters estimation of the restricted Ornstein-Uhlenbeck process in the pres-
ence of a periodic input signal. This topic will be developed in a future work in
a similar way to what was done in [36].

Finally, the obtained results suggest the importance of the position of the
lower boundary as well as that of the firing threshold when the statistical prop-
erties of LIF neuron models with periodic input signal (13) are investigated.
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