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Abstract

The idea that the good model-theoretic and algorithmic properties of Modal
Logics are due to the guarded nature of their quantification was put forward
by Andreka, van Benthem and Nemeti in a series of papers in the ’90s, ex-
ploiting the satisfiability problem, the tree model property, and other similar
properties of the guarded fragment of First Order Logic (GF ).
Since then, further work on the Guarded Fragment has been done by various
authors, in some cases reinforcing this idea, in some others not. At least
at first sight, Craig interpolation is on the negative side: there are impli-
cations in GF without an interpolant in GF , while Modal Logic (and even
the µ-calculus, a powerful extension of Modal Logic) enjoys a much stronger
form of interpolation, the uniform one, in which the interpolant of a valid
implication not only exists, but only depends on the antecedent and on the
common language of antecedent and consequent. However, Hoogland and
Marx proved that Craig interpolation is restored in GF if we consider the
modal character of GF with more attention, that is, if relations appearing on
guards are viewed as “modalities” and the rest as “propositions”, and only
the latter enter in the common language. In this paper we strengthen this
result by showing that GF enjoys a Modal Uniform Interpolation Theorem
(in the sense of Hoogland and Marx).
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1. Introduction

The Craig Interpolation property has always been considered as a yard-
stick to measure the good interplay between syntax and semantics of a logic.
In this paper we consider the Guarded Fragment of First Order Logic (GF )
and show that it inherits from Modal Logic its good behavior with respect
to interpolation, provided the modal aspect of GF is considered seriously.
This approach has been already undertaken by Hoogland and Marx [1] and
results in a proof of Modal Interpolation for the guarded fragment.

In this paper we consider the uniform version of Modal Interpolation,
where the interpolant of a valid implication only depends on the antecedent
and on the common language of antecedent and consequent. The importance
of uniform interpolation can be seen in terms of modularization. Suppose we
have a specification of a process in the form of a formula φ but we are only
interested in a particular subset of the language of φ. Then we would like to
extract a formula ψ that only deals with this sublanguage, yet is equivalent
to φ as far as this sublanguage is concerned (i.e. a module for this subtask).
Uniform interpolation tells us that we can always find such a formula ψ.

In contrast with interpolation, the uniform version is not a very robust
property when we leave the language fixed but we restrict the class of mod-
els: uniform interpolation is satisfied in K and GL, but not on logics over
transitive models such as S4 and K4 (although these logics do satisfy in-
terpolation). However, uniform interpolation seems to be more robust with
respect to certain language extensions, as in the µ-calculus, where we leave
the class of models unchanged but we add some fixed point operators to the
language (see [2, 3]).

In this paper, by using the notion of bisimulation quantifiers for GF , we
prove the Uniform version of Modal Interpolation for this logic.

2. Preliminaries

2.1. Syntax and Semantics of Guarded First Order Logic

Definition 2.1. Let τ a vocabulary consisting of a finite number of rela-
tional symbols. The guarded fragment GF (τ) of first-order logic is defined
inductively as follows:

1. every atomic formula xi = xj or r(xi1 , . . . , xin) with r ∈ τ belongs to
GF (τ);

2. GF (τ) is closed under boolean operations;
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3. if ψ is a formula of GF (τ), x,y are tuples of variables, α is an atomic
formula with free(ψ) ⊆ free(α) = x,y then

∃y (α(x,y) ∧ ψ) and ∀y (α(x,y)→ ψ)

belong to GF (τ) (α is called the guard of the formula).

As usual, we may suppose that formulas are in negation normal form,
that is, negation appears only in front of atomic formulas. The free variables
free(φ) of a formula φ are defined as usual.

A formula φ ∈ GF (τ) inherits its semantics from first order logic: if a =
a1, . . . , ah is a tuple of elements in a first order structure A for the language
τ , then A, a |= φ has the usual meaning (where we implicitly suppose that
the free variables free(φ) of φ are among x1, . . . , xh and are interpreted as
the corresponding elements in the tuple a).

If φ, ψ ∈ GF (τ) and free(φ) ∪ free(ψ) ⊆ x, we write φ |= ψ if and only
if for all A, a with A, a |= φ we have A, a |= ψ.

Given a formula φ ∈ GF (τ), let L(φ) be the set of relational symbols
appearing in φ, and let Guard(φ) be the set of relational symbols having at
least one occurrence as a guard in φ.
If τ ′ ⊆ τ , we define the fragment

GF (τ ′, τ) = {φ ∈ GF (τ) : Guard(φ) ⊆ τ ′}.

If φ ∈ GF (τ ′, τ), its quantification rank qr(φ) is defined inductively as usual:

1. if φ is atomic then qr(φ) = 0.
2. qr(¬φ) = qr(φ), qr(φ ∨ ψ) = max{qr(φ), qr(ψ)};
3.

qr(∃y (α(x,y) ∧ ψ)) = qr(∀y (α(x,y)→ ψ)) = qr(ψ) + 1.

Given a structure A and a tuple a = (a1, . . . , ah), we denote by set(a)
the set {a1, . . . , ah}. A tuple a = (a1, . . . , ah) is said to be r-guarded if
A |= r(a1, . . . , ah). The family of r guarded tuples of A is denoted by
Guardr(A). The family of all r guarded tuples of A with r ∈ τ ′ is denoted by
Guardτ ′(A). A set K is said to be r-guarded if there is an r-guarded tuple
a such that K ⊆ set(a); we still write K ∈ Guardτ ′(A) for an r-guarded set
K with r ∈ τ ′.

A (τ ′, τ)-structure is a pair (A, a) where A is a τ -structure and a is a
guarded tuple in Guardτ ′(A). a is called the τ ′-source of the structure.
We denote by A,B, . . . the domains of the structures A,B, . . ., respectively.
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Definition 2.2. A partial isomorphism between (τ ′, τ)-structure (A, a), (B,b)
is a bijection f from set(a) to set(b) satisfying

(ai1 , . . . , ai|r|) ∈ r
A ⇔ (fai1 , . . . , fai|r|) ∈ r

B,

for all r ∈ τ and {ai1 , . . . , ai|r|} ⊆ set(a).

If a = (a1, . . . , ak) and b = (b1, . . . , bk) are tuples of the same length in
A,B, respectively, we denote the correspondence {(ai, bi) : i ∈ {1, . . . , k}}
by a 7→ b.

2.2. Bisimulation

The following definition (is a generalization to our context of a definition
that) can be found in [4].

Definition 2.3. A guarded bisimulation between two (τ ′, τ)-structures (A, a),
(B,b) with domains A,B respectively, is a set I of finite partial τ -isomorphisms
from τ ′-guarded sequences in A to τ ′-guarded sequences in B such that a 7→
b ∈ I, and for all f = c 7→ d ∈ I it holds:

1. Forth: for every guarded tuple c′ ∈ Guardτ ′(A) there exists a partial
isomorphism g = c′ 7→ d′ in I such that f, g agree on the elements
occurring in set(c) ∩ set(c′);

2. Back: for every tuple d′ ∈ Guardτ ′(B) there exists a partial isomor-
phism g = c′ 7→ d′ in I such that f−1, g−1 agree on the elements
occurring in set(d) ∩ set(d′).

If there exists a bisimulation between two (τ ′, τ)-structures (A, a), (B,b)
we write

(A, a) ∼(τ ′,τ) (B,b).

Proposition 2.4. If φ is a formula in GF (τ ′, τ) and (A, a), (B,b) are (τ ′, τ)
structure such that (A, a) ∼(τ ′,τ) (B,b) then

(A, a) |= φ⇔ (B,b) |= φ

As for modal logic, we have a bounded variant of bisimulation:
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Definition 2.5. A n-bounded guarded bisimulation between two (τ ′, τ) struc-
tures (A, a), (B,b) with domains A,B respectively, is a tuple (I0, . . . , In) of
finite partial τ -isomorphisms from τ ′-guarded sequences in A to τ ′-guarded
sequences B such that a 7→ b ∈ In, and for all i ∈ {0, . . . , n − 1} and
f = c 7→ d ∈ Ii+1 it holds:

1. Forth: for every guarded tuple c′ ∈ Guardτ ′(A) there exists a partial
isomorphism g = c′ 7→ d′ in Ii such that f, g agree on the elements
occurring in set(c) ∩ set(c′);

2. Back: for every tuple d′ ∈ Guardτ ′(B) there exists a partial isomor-
phism g = c′ 7→ d′ in Ii such that f−1, g−1 agree on the elements
occurring in set(d) ∩ set(d′).

The existence of an n-bounded guarded bisimulation between the (τ ′, τ)-
structures (A, a), (B,b) is denoted by

(A, a) ∼(τ ′,τ)
n (B,b)

.

Proposition 2.6. If φ is a formula in GF (τ ′, τ) with quantification rank

smaller than n and (A, a) ∼(τ ′,τ)
n (B,b) then

(A, a) |= φ⇔ (B,b) |= φ

If τ ′ ⊆ σ ⊆ τ and (A, a) is a (τ ′, τ) structure, we denote by (A, a)|σ
the (τ ′, σ) structure obtained from (A, a) by considering only relations in σ.
Moreover, if (B,b) is another (τ ′, τ) structure we write

(A, a) ∼(τ ′,σ) (B,b)

for
(A, a)|σ ∼(τ ′,σ) (B,b)|σ,

and the same for bounded bisimulations.

2.3. Forms of Interpolation

In this section we list various forms of interpolation we shall consider for
the Guarded Fragment.
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Definition 2.7. (Craig Interpolant)
Suppose φ, ψ ∈ GF are such that φ |= ψ. A formula θ ∈ L(φ) ∩ L(ψ) is said
to be a Craig Interpolant for the implication if φ |= θ and θ |= ψ.

Example 2.8. It is well known that Craig Interpolation fails for GF , that
is, not all valid implications in GF have a Craig Interpolant. We report here
a counterexample from [8]. Let

φ(x) := ∃y∃z(G(x, y, z) ∧R(x, y) ∧R(y, z) ∧R(z, x)),

ψ(x) := [P0(x) ∧
2∧
i=0

∀y∀z(R(y, z)→ (Pi(y)→ Pi+1(z)))]→ P3(x).

We have φ |= ψ but it is easily seen that an interpolant θ in the language
L(φ)∩L(ψ) = {R} would be equivalent to ∃y∃z(R(x, y)∧R(y, z)∧R(z, x));
however the property expressed by the latter formula is not invariant under
guarded bisimulation, hence there is no guarded interpolant for the implica-
tion φ |= ψ.

In this example we use formulas with one free variable. In [1] a valid im-
plication between sentences of GF without an interpolant in GF is proposed
(but the example is slightly more complicate).

To restore interpolation one could consider more expressive fragments
of First Order Logic where inteprolation holds, like the Guarded Negation
Fragment (see [7]). On the other hand, if we want to keep the fragment
unchanged, in [1] it is shown that we should take the modal character of GF
more seriously, that is, we should consider relations appearing on guards as
modalities and the rest as propositions, where only the latter enter in the com-
mon language. In our terminology, we consider the language GF (τ ′, τ), and
we divide all relations r ∈ τ between modalities (if r ∈ τ ′), and propositions
(if r ∈ τ \ τ ′).

Theorem 2.9. (Modal Interpolation for GF (τ ′, τ) [1])
Let τ ′, τ, σ be finite vocabularies with τ ′ ⊆ τ, τ ′ ⊆ σ, and φ ∈ GF (τ ′, τ), ψ ∈
GF (τ ′, σ). Then: φ |= ψ ⇒ ∃θ ∈ GF (τ ′, τ ∩ σ) with φ |= θ and θ |= ψ.

We now see that 2.8 is no longer a counterexample for Modal Interpolation
in GF (τ ′, τ), simply because the only way to obtain φ ∈ GF (τ ′, τ) and ψ ∈
GF (τ ′, σ) is to consider τ ′ = {G,R}, τ = {G,R}, σ = {G,R, P0, P1, P2, P3},
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and in this case the interpolant θ ∈ GF (τ ′, τ ∩ σ) = GF ({G,R}, {G,R}) for
the implication φ |= ψ is simply θ = φ.

Having the Modal example in mind we consider a stronger form of inter-
polation, where the interpolant of an implication φ |= ψ does not depend on
ψ but only on the common language of φ and ψ. As in Theorem 2.9, we have
to distinguish between propositions and modalities, but once this is done we
can state:

Theorem 2.10. (Uniform Modal Interpolation for GF (τ ′, τ))
Let τ ′, τ, σ be finite vocabularies with τ ′ ⊆ σ ⊆ τ . For any formula φ ∈
Guard(τ ′, τ) there exists a formula θ ∈ Guard(τ ′, σ) such that

1. |= φ→ θ;

2. if ψ ∈ Guard(τ ′, ν) for a vocabulary ν such that τ ′ ⊆ ν, τ ∩ ν ⊆ σ, and
|= φ→ ψ, then |= θ → ψ.

We will prove this theorem using techniques from Modal Logic, such as
bisimulation, bounded bisimulations, modal type, unravelings, bisimulation
quantifiers, reinforcing the idea that the right way to look at the guarded
fragment is to distinguish between propositions and modalities, at least when
interpolation is concerned.

3. Trees and Unravelings

In this paragraph we fix the finite relational vocabularies τ ′ ⊆ τ and we
denote by k = k(τ ′) the maximal arity of τ ′ relations.

Definition 3.1. A Στ ′,τ -tree is a pair (T, T ) where T is a tree and T is a
labeling of vertices and edges of T such that:

1. T (v) consists of a τ -structure over a domain T (v) = {i1, . . . , ih} ⊆
{1, . . . , k(τ ′)}, such that (i1, . . . , ih) is τ ′- guarded in T (v);

2. T (v, v′) ⊆ {1, . . . , k(τ ′)}, for all edges (v, v′) in T .

A Στ ′,τ -tree (T, T ) is said to be consistent if, whenever (v, v′) is an edge in T
then the domains T (v), T (v′) of the τ structures T (v), T (v′) contain T (v, v′)
and T (v), T (v′) agree over T (v, v′). In other words, T (v, v′) asserts which
elements are the same in T (v) and T (v′), and the τ -structures in v and v′

restricted to that set of elements must match.
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We extend the function T from edges of T to pairs (v, v′) ∈ T × T by
letting T (v, v′) to be the set of all i belonging to all edges in the simple
undirected path from v to v′.

The levels Th of a Στ ′,τ -tree (T, T ) are defined inductively, as usual: T0 is
the set containing only the root of T ; Th+1 contains all sons of nodes in Th.

We next define some special kind of Στ ′,τ consistent trees, which are the
analogues of unravelings in modal logic.

Definition 3.2. (see e.g. [5]) An unraveling of a (τ ′, τ) structure (A, a) is
a Στ ′,τ consistent tree (U,U) satisfying the following.

1. The domain U is given by all finite sequences t = a0a1a2 . . . am with
ai ∈ Guardτ ′(A), and a0 = a. We also define end(t) := am.

2. For every t = a0a1a2 . . . am in U , the sons of t in U are all the sequences
of the form ta with a ∈ Guardτ ′(A).

3. For every t = a0a1a2 . . . am in U , there exists a τ - isomorphism πt :
A|set(am) → Ut where Ut is a τ -structure with domain contained in
{1, . . . k(τ ′)}; we also require that if end(t) = a = (a1 . . . , ah), end(t′) =
a′, and t′ ∈ Son(t) then πt, πt′ agree on set(a)∩ set(a′); we define U(t)
to be the τ structure based on the τ ′-guarded sequence

(πt(a1), . . . , πt(ah)).

Moreover, we let

U(t, t′) := {πt(a) : a ∈ set(a) ∩ set(a′)}.

Given a Στ ′,τ consistent tree (T, T ), we denote by rec(T, T ) the (τ ′, τ)-
structure recovered from T , which is defined as follows. We first consider the
disjoint sum of T node labels:

B =
⋃
{T (v)× {v} : v ∈ T}.

Let ≈ be the least equivalence relation on B this such that

(i, v) ≈ (i, v′) if (v, v′) is an edge in T and i ∈ T (v, v′).

Let [i, v] be the ≈ equivalence class of (i, v).
Notice that, since T is a tree, for all (i1, v1), . . . , (ih, vh) and r ∈ τ the

following properties are equivalent:

∃v (i1, v1) ≈ (i1, v) . . . , (ih, vh) ≈ (ih, v) and T (v) |= r(i1, . . . , ih);
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∀v if (i1, v1) ≈ (i1, v) . . . , (ih, vh) ≈ (ih, v) then T (v) |= r(i1, . . . , ih).

Finally:

Definition 3.3. The τ -structure rec(T, T ) is defined as follows:

1. its domain is the set B/ ≈;

2. if r ∈ τ then
rB/≈([i1, v1], . . . , [ih, vh])

m

∃v (i1, v1) ≈ (i1, v) . . . , (ih, vh) ≈ (ih, v) and T (v) |= r(i1, . . . , ih);

Lemma 3.4. A tuple ([i1, v1], . . . , [ih, vh]) is r-guarded in rec(T, T ) if and
only if there exists a v such that (i1, v1) ≈ (i1, v) . . . , (ih, vh) ≈ (ih, v) and
{i1, . . . , ih} is r-guarded in T (v). Given two guarded tuples

([i1, v], . . . , [ih, v]), ([j1, w], . . . , [jl, w])

the set of elements occurring in both tuples is:

{[i, v] : i ∈ {i1, . . . , ih} ∩ {j1, . . . , jl} ∩ T (v, w)}.

Definition 3.5. The (τ ′, τ) structure recovered from (T, T ) consists of the
τ -structure rec(T, T ) and the source ([i1, r] . . . , [ih, r]), where r is the root of
T and (i1, . . . , ih) is the source of the (τ ′, τ)-structure T (r).

Proposition 3.6. If (A, a) is a (τ ′, τ)-structure and (B,b) is the structure
recovered from a (τ ′, τ) unraveling (U,U) of (A, a), then :

(A, a) ∼(τ ′,τ) (B,b).

In particular, if φ(x) is a formula in Guard(τ ′, τ) then

(A, a) |= φ⇔ (B,b) |= φ.

Proof. The bisimulation is given by all partial isomorphisms of the form

(c1, . . . , cn) 7→ ([πv(c1), v], . . . , [πv(cn), v])

where c = (c1, . . . , cn) ∈ Guardτ ′(A) and end(v) = c.

We can transfer the notion of a bisimulation from structures to Στ ′,τ trees:
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Definition 3.7. A guarded tree bisimulation between two Στ ′,τ trees (T, T ),
(S,S) with roots rT , rS, respectively, consists of a relation B ⊆ T×S contain-
ing (rT , rS) such that, for each (t, s) ∈ B there exists a partial τ -isomorphism
ft,s : T (t)→ S(s) with the following properties:

1. Forth: for every son t′ of t there exists a son s′ of s with (t′, s′) ∈ B
such that ft,s, ft′,s′ agree on the elements occurring in T (t, t′), and
ft,s(T (t, t′)) ⊆ S(s, s′);

2. Back: for every son s′ of s there exists a son t′ of t with (t′, s′) ∈ B
such that f−1t,s , f

−1
t′,s′ agree on the elements occurring in S(s, s′), and

f−1s,t (S(s, s′)) ⊆ T (t, t′).

As before, we can give a similar definition for bounded n-bisimulation,
using a sequence (B0, . . . , Bn) of relations and going from pairs in Bi to pairs
in Bi−1.

Remark 3.8. If B = (Bn, . . . , B0) is a bounded guarded bisimulation between
Στ ′,τ trees (T, T ), (S,S), we may suppose without loss of generality that if
(t, s) ∈ Bh then:

1. t ∈ Tn−h and s ∈ Sn−h;

2. if t is not the root of T then s is not the root of S; if t−1, s−1 are the
fathers of t, s, respectively, then (t−1, s−1) ∈ Bh+1 and either

ft,s(T (t−1, t)) ⊆ S(s−1, s) or (ft,s)
−1(S(s−1, s)) ⊆ T (t−1, t).

It is also easy to see that:

Lemma 3.9. Two structures are bisimilar (bounded bisimilar) if and only if
the corresponding unravelings are bisimilar (bounded bisimilar).

3.1. Copying nodes

A typical property of Modal Logic is that, given a structure and a pair
of father and son nodes, we can obtain a bisimilar structure in which the
son has been duplicated. This can be done in the context of GF as well, as
follows. Let (T, T ) be a consistent Στ ′,τ -tree. Fix a node u ∈ T different
from the root, and a subset A ⊆ T (u−1, u), where u−1 is the father of u. We
define a new Στ ′,τ -tree (T, T )u,A as follows:
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• the tree T ′ is obtained from T by adding to the tree T a copy (Tu)
′ =

{u′ : u ∈ T} of the subtree Tu rooted in u, in such a way that the copy
u′ of u is now a new son of u−1;

• T ′(w) =

{
T (w) if w ∈ T ;

T (t) if w = t′ is a new node which is a copy of a node t ∈ Tu;

• T ′(w, z) =


T (w, z) if w, z ∈ T ;

T (s, t) if w = s′, z = t′ are copies of the nodes s, t ∈ Tu;
A if w = u−1 and z = u′ is the copy of the node u ∈ T .

Figure 1: copying a son

In this way, among the sons of u−1 in T ′ we now have both u and its copy
u′. Notice that, during the copying, we are allowing A ⊆ T (u−1, u), so we
are not just duplicating the subtree rooted at u; we are also changing the
relationship between u−1 and the new subtree.

Lemma 3.10. (T, T )u,A is a Στ ′,τ -consistent tree which is (τ ′, τ)-bisimilar
to (T, T ).
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Proof. The Στ ′,τ tree (T ′, T ′)u,A is clearly consistent. Moreover, the set

B = {(v, v) : v ∈ T} ∪ {(t, t′) : t ∈ Tu},

together with fv,v = idT (v), ft,t′ = idT (t) (remember that T (t′) = T (t), by
definition) is a bisimulation between (T, T ) and (T, T )u,A. Here we only
check the back property of a bisimulation w.r.t. the pair (u−1, u−1) ∈ B and
the new u-son u′: in this case we have the isomorphism fu,u′ = idT (u) for
which it holds:

• f−1u−1,u−1 coincides with f−1u,u′ on T (u−1, u′) = A, since both isomorphisms
are identities;

• f−1u−1,u−1(T ′(u−1, u′)) = id−1T (u−1)(A) = A ⊆ T (u−1, u).

Similarly, for each set X, we can copy |X|-times a node u using new
nodes ux for all x ∈ X and different sets Ax to label the new edges (u−1, ux),
provided Ax ⊆ T (u−1, u); we can also simultaneously copy a set of vertices
V , where each u ∈ V has the same level in T , using a different copy ux for
all x in a fixed set X(u), and use sets Ax with x ∈ X(u) to label the new
edges (u−1, ux), provided Ax ⊆ T (u−1, ux).

Lemma 3.11. If two Στ ′,τ -consistent trees (T, T ) and (S,S) are n-bisimilar
via a bisimulation B0 ∪ . . . ∪Bn then, up to a bisimulation, we may suppose
that for all s ∈ Sh, h ≤ n there exists a unique pair (t, s) ∈ B0 ∪ . . . ∪Bn.

Proof. It is enough to duplicate nodes in (S,S), as in Lemma 3.10. By
Remark 3.8 we may suppose that if (t, s) ∈ Bh then s ∈ Sn−h, t ∈ Tn−h and,
if h ≤ n and (t, s) ∈ Bh, then (t−1, s−1) ∈ Bh+1 and either ft,s(T (t−1, t)) ⊆
S(s−1, s) or f−1t,s (S(s−1, s)) ⊆ T (t−1, t) (where t−1, s−1 are the fathers of t, s,
respectively). Hence, if rS is the root of S and (t, rS) ∈ Bh then h = n and
t = rT . Suppose we already achieved the desired property for all nodes at
level h < n in the tree S, and consider a node s at level h+ 1 such that

|{t ∈ T : (t, s) ∈ B0 ∪ . . . ∪Bn})| > 1.

Denote by B−1(s) the set {t : (t, s) ∈ B0 ∪ . . . ∪ Bn} and let s−1 be the
father of s. By induction, |B−1(s−1)| = 1. If t′ ∈ B−1(s−1), then for every
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t ∈ B−1(s) we have t−1 = t′. Fix t0 ∈ B−1(s) and t 6= t0, t ∈ B−1(s) and
consider the set At defined by

At :=

{
ft,s(T (t−1, t)) if ft,s(T (t−1, t)) ⊆ S(s−1, s);

S(s−1, s) if f−1t,s (S(s−1, s)) ⊆ T (t−1, t).

Since At ⊆ S(s−1, s), using Lemma 3.10 we see that the tree (S,S)s,At is
bisimilar to (S,S). Moreover, we prove that (S,S)s,At is n-bisimilar to (T, T ).
If h + 1 ≤ k ≤ n, define B′n−k to be the set Bn−k in which all pairs (u, v)
and all isomorphisms fu,v with u ∈ Tt, v ∈ Ss have been substituted with
the pairs (u, v′) and with the isomorphism fu,v′ := fu,v, where v′ is the copy
of v in (Ss)

′.
If B′ = (B′0, B

′
1, . . . , B

′
n−h−1, Bn−h, Bn−h+1, . . . , Bn) then one can check

that B′ is an n-bisimulation between (T, T ) and (S,S)s,At . In this way the
pair (t, s) ∈ Bn−h−1 has been substituted with (t, s′) ∈ B′n−h−1.

Similarly, we may substitute all pairs (t, s) ∈ Bh with t 6= t0, simulta-
neously for all nodes s ∈ Sh+1, obtaining a new tree in which the property
stated in the Lemma is true for all nodes up to level h + 1. The Lemma is
proved by proceeding in this way up to level n.

Finally, in proving interpolation we shall need to expand a language with
new predicate symbols.

Definition 3.12. Let τ ⊆ σ be two finite relational vocabulary. We say that
a Στ ′,σ tree (S,S) is a σ-expansion of a Στ ′,τ tree (T, T ) if S = T and T is
obtained from S by just restricting the labels of the vertices (which in S are
σ-structures) to the vocabulary τ . In symbols

S(v)|τ = T (v),∀v ∈ S

Lemma 3.13. If (S,S) is a consistent σ-expansion of a Στ ′,τ tree (T, T )
then the σ-structure rec(S,S), restricted to τ , is isomorphic to rec(T, T ).

4. Expanding a bounded bisimulation

This section is devoted to the proof of a key lemma stating that, when-
ever we have τ ′ ⊆ τ and p ∈ τ \ τ ′ then, up to (τ ′, τ \ {p})-bisimulations,
any (τ ′, τ \ {p}) bounded bisimulation can be expanded to a (τ ′, τ) bounded
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bisimulation (notice that the corresponding result for modal logic K is al-
ready known and has been used in [10] to prove Uniform Interpolation for
this logic). The reader should compare this result with amalgamation (see
Proposition 7.1), which is often used to prove Craig Interpolation. As we
shall see this bounded form of amalgamation will allow us to prove the clo-
sure under bisimulation quantifiers for guarded logics, which, together with
the classical amalgamation result for GF , implies uniform interpolation.

Lemma 4.1. (Bounded Amalgamation)
Let (A, a) be a (τ ′, τ)-structure, and (B,b) be a (τ ′, τ \{p})-structure, where
p 6∈ τ ′, such that

(A, a) ∼(τ ′,τ\{p})
n (B,b).

Then there exists a (τ ′, τ)-structure (C, c) with

(C, c) ∼(τ ′,τ)
n (A, a), (C, c) ∼(τ ′,τ\{p}) (B,b)

Proof. Consider unravelings (T, T ) and (S,S) of (A, a), (B,b), respectively.
From the hypothesis and Lemma 3.11 we may suppose that there is an n-
bounded (τ ′, τ \ {p})-bisimulation B = (B0, . . . , Bn) between (T, T ), (S,S),
connecting the two roots, such that if s belongs to the h-level Sh of S for
h ≤ n there is exactly one isomorphism ft,s ∈ Bn−h. We use the τ \ {p}-
isomorphisms in B to construct a Στ ′,τ tree (S ′,S ′) such that:

1. (S ′,S ′) is a τ -expansion of the Στ ′,τ\{p} tree (S,S), that is: S ′ = S,
S ′(u, v) = S(u, v), for all u, v ∈ S, and the restriction of S ′(s) to the
relations in τ \ {p} is S(s), for all s ∈ S;

2. (T, T ) ∼(τ ′,τ)
n (S ′,S ′).

This will prove the Lemma, since (S ′,S ′) is (τ ′, τ \ {p}) bisimilar to (S,S)
which in turn is (τ ′, τ \{p}) bisimilar to (B,b); hence the structure (C, c) :=
rec(S ′,S ′) satisfies the Lemma.

To construct the Στ ′,τ tree (S ′,S ′) we proceed as follows: consider the
(unique) isomorphism frT ,rS : (T (rT ))τ\{p} → S(rS) with frT ,rS ∈ Bn and
use frT ,rS to copy the interpretation of p from the τ -structure T (rT ) to the
domain of S(rS). In this way we obtain a τ -structure S ′(rS) which is a
τ -expansion of the τ \ {p} structure S(rS); more formally, we interpret p
in S(rS) in such a way that for all i1, . . . , i|p| in the domain of S(rS) the
tuple (i1, . . . , ih) belongs to the interpretation of p if and only if T (rT ) |=
p(f−1rT ,rS(i1), . . . , f

−1
rT ,rS

(ih)) holds.
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We may then continue in this way: once we have assigned a τ -interpretation
S ′(s) for s ∈ Sh (with h < n) extending the τ \ {p}-interpretation S(s), we
proceed by assigning a τ -interpretation S ′(s′) to all sons s′ of s: if (t′, s′) is
the unique pair in Bn−(h+1) with second component equal to s′, we use the
isomorphism fs′ := ft′,s′ to define, for all i1, . . . , i|p| in the domain of S(s′),

S ′(s′) |= p(i1, . . . , ih)⇔ T (t′) |= p(f−1s′ (i1), . . . , f
−1
s′ (ih)).

Notice that the interpretations of p are consistent with the tree structure
imposed by (S,S), that is: if u, v are two nodes in S whose distance from
rS is at most n and v is a son of u, then the τ -interpretations S ′(u),S ′(v)
agree on S(u, v); this is true because the inverse f−1u , f−1v of the isomorphisms
fu, fv used to define the p interpretation on S ′(u),S ′(v), respectively, agree
on S(u, v).

In order to complete the definition of the Στ ′,τ tree (S,S ′), we have to
define S ′(s) for all nodes s belonging to level Sh with h > n. For such an s
we consider the unique node s0 ∈ Sn which is the ancestor of s and we assign
to S(s) an interpretation of p in such a way that the resulting τ -structure
S ′(s) agree with S ′(s0) on S(s0, s

′).

5. Expressing bounded bisimulations

In this section we prove that for all n the set of all (τ ′, τ)-structures which
are n-bisimilar to a given structure is definable by a sentence of guarded first
order logic.

In the proof of the next lemma we shall use the following notations,
regarding a variable x and tuples a, a′ of elements in a structure.

• |a| is the length of the tuple a and xa := x1, . . . , x|a|;

• if r is a relational symbol of arity h then |r| := (1, . . . , h);

• if i1, . . . , in is a tuple of indices, then xi1,...,in := xi1 , . . . , xin ;

• ix(a′, a) is the tuple of indices from a′, listed in increasing order, cor-
responding to elements in the tuple a′ which belong to the tuple a;

• xa′,a := xix(a′,a);
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• if f is a function between tuples of indices with domain i = (i1, . . . , ih)
then xf stands for xf(i1), . . . , xf(ih);

• fa′,a is the function with domain ix(a′, a) = (i1, . . . , in) and codomain
ix(a, a′) defined by

fa′,a(i) = min{j ∈ ix(a, a′) : a′i = aj};
• ix(a′\a) is the tuple of indices, listed in increasing order, corresponding

to elements in the tuple a′ which do not belong to the tuple a;

• xa′\a := xix(a′\a);

• if x = x1, . . . , xn, y = y1, . . . , yn are tuples of variables of the same
length and φ is a formula, then φ[y← x] denotes the formula obtained
form φ by substituting yi for xi.

Similarly, we have ya := y1, . . . , y|a|, and so forth. Let us give an example:
consider a = u, v, w, t, u, a′ = b, w, w, u; then

ix(a′, a) = (2, 3, 4); ix(a, a′) = (1, 3, 5); xa′,a = x2, x3, x4;

fa′,a(2) = fa′,a(3) = 3; fa′,a(4) = 1; yfa′,a = y3, y3, y1.

Moreover, if α = r(xa′) = r(x1, x2, x3, x4), then

α[yfa′,a ← xa′,a] = r(x1, y3, y3, y1).

Lemma 5.1. For any (τ ′, τ)-structure (A, a) and natural number n there
exists a GF (τ ′, τ) formula (τ ′, τ)n(A, a) with free((τ ′, τ)n(A, a)) = xa and
quantification rank equal to n such that for all (τ ′, τ)- structures (B,b) it
holds

(B,b) |= (τ ′, τ)n(A, a) ⇔ (A, a) ∼n (B,b).

Proof. The formula (τ ′, τ)n(A, a) is defined by induction on n as follows. For
n = 0, (τ ′, τ)0(A, a) is∧

{α(xa) : α is atomic or negated atomic in τ and (A, a) |= α(xa)}.

In the induction step, we define (τ ′, τ)n+1(A, a) to be the conjunction of
the formula (τ ′, τ)0(A, a) with two formulas. The first one accounts for the
“forth” part of a bounded guarded bisimulation:∧
r∈τ ′,a′∈Guardr(A)

∃ya′\a
[
(r(xa′) ∧ (τ ′, τ)n(A, a′))[ya′\a ← xa′\a; xf(a′,a) ← xa′,a]

]
.
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Notice the role of variable substitutions in the formula: if a′ is guarded by r
in A, then we need to assert the existence of an r-guarded tuple b′ in B sat-
isfying the formula (τ ′, τ)n(A, a′). However, the elements in b′ corresponding
to elements in a′ which are also elements in a shouldn’t be new. This is the
reason for which we write ∃ya′\a in the formula, and we substitute ya′\a for
xa′\a and xf(a′,a) (the already known elements of b′ ) for xa′,a.

Similarly, the second formula in the conjunction accounts for the “back”
part of a bounded guarded bisimulation:

∧
r∈τ ′
i⊆|r|,

f :i→{1,...,|a|}

∀y|r|\i

(r(x|r|)→
∨

a′∈Guardr(A)
fa′,a=f

(τ ′, τ)n(A, a′))[y|r|\i ← x|r|\i; xf ← xi]



The formula (τ ′, τ)n(A, a) is called the n-bisimulation type of the (τ ′, τ)-
structure (A, a).

6. Bisimulation Quantifiers for the Guarded Fragment

The main ingredient of a proof of uniform interpolation for GF is the elim-
ination of the so called “bisimulation quantifiers”, which are non standard
second-order quantifiers asserting the existence of subsets not necessarily in
the domain of the model, but possibly in a bisimilar copy of it. This ap-
proach is inspired by [10] and [6], and has been successfully used to prove the
uniform interpolation property for various extensions of modal logic, such as
the µ-calculus (see [2]).

Definition 6.1. Given a formula φ ∈ Guard(τ ′, τ) and p ∈ τ \ τ ′, we extend

the syntax of guarded formulas with a new quantifier ∃̃p φ; the new formula
is viewed as a formula in the (τ ′, τ \ {p}) language and it is evaluated over a
(τ ′, τ \ {p})-structure (A, a) as follows:

(A, a) |= ∃̃p φ⇔ there exists a (τ ′, τ) structure (B,b) with

(B,b) |= φ and (A, a) ∼(τ ′,τ\{p}) (B,b).

Our goal is to prove ∃̃p elimination in GF (τ ′, τ), for all p ∈ τ \ τ ′. We

start by eliminating ∃̃p in front of type formulas.
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Lemma 6.2. For any (τ ′, τ)-structure (A, a) we have

∃̃p[(τ ′, τ)n(A, a)] ≡ (τ ′, τ \ {p})n(A, a)

Proof. This is actually the content of Lemma 4.1, because using this Lemma
we can prove that the semantics of (τ ′, τ \ {p})n(A, a) coincides with the

one for ∃̃p[(τ ′, τ)n(A, a)]. For any (τ ′, τ \ {p})-structure (B,b), suppose

(B,b) |= (τ ′, τ \ {p})n(A, a); then (A, a) ∼(τ ′,τ\{p})
n (B,b) and by Lemma

4.1 there exists a structure (C, c) with

(C, c) ∼(τ ′,τ)
n (A, a), (C, c) ∼(τ ′,τ\{p}) (B,b).

We obtain (C, c) |= (τ ′, τ)n(A, a), and from (C, c) ∼(τ ′,τ\{p}) (B,b) it follows

(B,b) |= ∃̃p(τ ′, τ)n(A, a).

Viceversa, if (B,b) |= ∃̃p(τ ′, τ)n(A, a) then there exists a structure (C, c)
with

(C, c) ∼(τ ′,τ\{p}) (B,b) and (C, c) |= (τ ′, τ)n(A, a).

Then, since (τ ′, τ)n(A, a) implies (τ ′, τ \ {p})n(A, a) and this last formula is
invariant under (τ ′, τ \ {p})-bisimulation, we obtain

(B,b) |= (τ ′, τ \ {p})n(A, a).

Theorem 6.3. For any finite relational language τ , φ ∈ Guard(τ ′, τ) and
p ∈ τ \ τ ′ there exists a formula ψ ∈ Guard(τ ′, τ \ {p}) which is equivalent

to ∃̃p φ; in other words, for all (τ ′, τ \ {p})-structures (A, a) it holds:

(A, a) |= ψ ⇔ there exists a (τ ′, τ)-structure (B,b) with

(B,b) |= φ and (A, a) ∼(τ ′,τ\{p}) (B,b)

Proof. As it is easily seen via semantics, the formula ∃̃p(φ∨ ψ) is equivalent

to ∃̃pφ ∨ ∃̃pψ. Moreover, since a formula of quantification rank equal to n is
equivalent to a disjunction of n-types, it is enough to prove the theorem for
n-types, which is what we did in Lemma 6.2.
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7. Modal Uniform Interpolation for the Guarded Fragment

We have now almost all ingredients to perform a classical proof of uniform
interpolation via bisimulation quantifiers. The last ingredient is “amalgama-
tion”, which has been already proved in [1].

Proposition 7.1. (Amalgamation [1])
Let τ, σ be two finite vocabularies both containing τ ′. Let A,B be a (τ ′, τ)
and a (τ ′, σ) structure, respectively. If

(A, a) ∼(τ ′,τ∩σ) (B,b)

there exists a (τ ′, τ ∪ σ) structure (C, c) with

(A, a) ∼(τ ′,τ) (C, c),

(B,b) ∼(τ ′,σ) (C, c).

Theorem. (Uniform Modal Interpolation for GF (τ ′, τ))
Let τ ′, τ, σ be finite vocabularies with τ ′ ⊆ σ ⊆ τ . For any formula φ ∈
Guard(τ ′, τ) there exists a formula θ ∈ Guard(τ ′, σ) such that

1. |= φ→ θ;

2. if ψ ∈ Guard(τ ′, ν) for a vocabulary ν such that τ ′ ⊆ ν, τ ∩ ν ⊆ σ, and
|= φ→ ψ, then |= θ → ψ.

Proof. Let τ \σ = {p1, . . . , pn}. By hypothesis, pi 6∈ τ ′, for all i. By Theorem
6.3 we know that there exists a formula θ ∈ Guard(τ ′, σ) which is equivalent

to the formula ∃̃p1 . . . ∃̃pnφ. Consider a (τ ′, τ)-structure (A, a) with (A, a) |=
φ. Since (A, a) ∼(τ ′,τ\{pn}) (A, a) holds, we have (A, a) |= ∃̃pnφ. Proceeding in

this way for all bisimulation quantifiers ∃̃pi, we obtain (A, a) |= ∃̃p1 . . . ∃̃pnφ.
This proves 1.

In order to prove 2., suppose we have ψ ∈ Guard(τ ′, ν) with |= φ → ψ
and τ ∩ ν ⊆ σ, and consider a (τ ′, σ ∪ ν)-structure (A, a) with (A, a) |= θ.

Then by definition of ∃̃ there exists a (τ ′, τ)-structure (B,b) with

(B,b) |= φ and (A, a) ∼(τ ′,σ) (B,b).

Since τ ∩ ν ⊆ σ, by Proposition 7.1, we obtain a (τ ′, τ ∪ ν)-structure (C, c)
with
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(A, a) ∼(τ ′,ν) (C, c),

(B,b) ∼(τ ′,τ) (C, c).

Following the second bisimulation we obtain (C, c) |= φ; since ψ is implied
by φ we have (C, c) |= ψ and following the first bisimulation we obtain
(A, a) |= ψ.

8. Conclusions and further work

In this paper we proved a form of Uniform Interpolation for the Guarded
Fragment, which we called Modal because of the attention that must be
paid to the difference between modalities and propositions. The proof of
this result relies heavily on bounded bisimulations, and in a future research
we will explore the possibility of a similar proof for the Guarded Negation
fragment of first order logic, where full Craig interpolation holds (see [9]).
We will also consider the fixed point extension of the Guarded Fragment,
and try to prove Modal (Uniform) Interpolation for this logic, although in
this case we will not be able to use bounded bisimulation, and a proof using
automata seems more appropriate.
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