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Abstract. We study an optimal control problem for a variational in-
equality with the so-called anisotropic p-Laplacian in the principle part
of this inequality. The coefficients of the anisotropic p-Laplacian, the
matrix A(x), we take as a control. The optimal control problem is to
minimize the discrepancy between a given distribution yd ∈ L2(Ω) and

the solutions y ∈ K ⊂W 1,p
0 (Ω) of the corresponding variational inequal-

ity. We show that the original problem is well-posed and derive existence
of optimal pairs. Since the anisotropic p-Laplacian inherits the degener-

acy with respect to unboundedness of the term |(A(x)∇y,∇y)RN |
p−2

2 ,
we introduce a two-parameter model for the relaxation of the original
problem. Further we discuss the asymptotic behavior of relaxed solu-
tions and show that some optimal pairs to the original problem can
be attained by the solutions of two-parametric approximated optimal
control problems.
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1. Introduction

In this paper we deal with the following optimal control problem (OCP) in
coefficients for variational inequality

Minimize I(A, y) = ‖y − yd‖2L2(Ω) subject to the constraints

〈−∆p(A, y), v − y〉W−1,q(Ω);W 1,p
0 (Ω) ≥

∫
Ω

f(v − y) dx for all v ∈ K,

A ∈ Aad,
(1.1)

where

−∆p(A, y) = −div
(
|(A∇y,∇y)|

p−2
2 A∇y

)
(1.2)

is the anisotropic p-Laplacian, p satisfies 2 ≤ p < +∞, K is a nonempty con-
vex closed subset of the space W 1,p

0 (Ω), the symmetric matrix of anisotropy
A ∈ L∞(Ω;RN×N ) is taken as a control, yd ∈ L2(Ω) and f ∈ L2(Ω) are given
distributions, and Aad denotes the class of admissible controls which will be
specified later on.

The interest to variational inequalities whose principle part is an aniso-
tropic p-Laplace-like operator arises from various applied contexts related to
composite materials such as nonlinear dielectric composites, whose nonlinear
behavior is modeled by the so-called power-low (see, for instance, [3, 15]
and references therein). It is sufficient to say that anisotropic p-Laplacian
∆p(A, y) has profound background both in the theory of anisotropic and
nonhomogeneous media and in Finsler or Minkowski geometry [19]. As a
rule, the effect of anisotropy appears naturally in a wide class of geometry —
Finsler geometry. A typical and important example of Finsler geometry is
Minkowski geometry. In this case, anisotropic Laplacian is closely related to
a convex hypersurface in RN , which is called the Wulff shape [18]. Since the
topology of the Wulff shape essentially depends on the matrix of anisotropy
A(x), it is reasonable to take such matrix as a control. From mathematical
point of view, the interest of anisotropic p-Laplacian lies on its nonlinearity
and an effect of degeneracy, which turns out to be the major difference from
the standard Laplacian on RN .

Using the direct method in the Calculus of Variations, we show in Sec-
tion 3 that the optimal control problem (1.1) has a nonempty set of solutions
provided the admissible controls A(x) are uniformly bounded in BV -norm,
in spite of the fact that the corresponding quasilinear differential operator

−div
(
|(A∇y,∇y)|

p−2
2 A∇y

)
, in principle, has degeneracies as |A 1

2∇y| tends

to zero [2]. Moreover, when the term |(A∇y,∇y)|
p−2

2 is regarded as the co-
efficient of the Laplace operator, we have the case of unbounded coefficients
(see [9, 10]). In order to avoid degeneracy with respect to the control A(x),
we assume that matrix A(x) has a uniformly bounded spectrum away from
zero. As for the optimal control problems in coefficients for degenerate elliptic
equations and variational inequalities, we can refer to [4, 7, 8, 12, 13, 14].

A number of regularizations have been suggested in the literature. See
[17] for a discussion for what has come to be known as (ε, p)-Laplace problem,
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such as −div((ε + |∇y|2)
p−2

2 )∇y. While the (ε, p)-Laplacian regularizes the
degeneracy as the gradients tend to zero, the term |∇y|p−2, viewed again as a
coefficient, may grow large [5]. Therefore, following ideas of [6], we introduce
yet another regularization that leads to a sequence of monotone and bounded
approximation Fk(|A 1

2∇y|2) of |A 1
2∇y|2. As a result, for fixed parameter

p ∈ [2,∞) and control A(x), we arrive at a two-parameter variational prob-

lem governed by operator −div((ε+Fk(|A 1
2∇y|2))

p−2
2 )A∇y. Finally, we deal

with a two-parameter family of optimal control problems in the coefficients
for monotone nonlinear variational inequalities. We consequently provide the
well-posedness analysis for the perturbed elliptic variational inequalities as
well as for the optimal control problem in Sections 4 and 5. In particular, we
show in Section 5 that the solutions of two-parametric family of perturbed
optimal control problems can be considered as appropriate approximations
to optimal pairs for the original problem (1.1). To the end, we note that the
approximation and regularization are not only considered to be useful for the
mathematical analysis, but also for the purpose of numerical simulations. The
numerical analysis as well as the case of degenerating controls are subjects
to future publications.

2. Setting of the Optimal Control Problem

Let Ω be a bounded open subset of RN (N ≥ 1) with a Lipschitz boundary.
Let p be a real number such that 2 ≤ p < ∞, and let q = p/(p − 1) be

the conjugate of p. Let SN := R
N(N+1)

2 be the set of all symmetric matrices
A = [aij ]

N
i,j=1, (aij = aji ∈ R). We suppose that SN is endowed with the

Euclidian scalar product A ·B = tr(AB) = aijbij and with the corresponding

Euclidian norm ‖A‖SN = (A·A)1/2. We also make use of the so-called spectral
norm ‖A‖2 := sup

{
|Aξ| : ξ ∈ RN with |ξ| = 1

}
of matrices A ∈ SN ,

which is different from the Euclidean norm ‖A‖SN . However, the relation

‖A‖2 ≤ ‖A‖SN ≤
√
N‖A‖2 holds true for all A ∈ SN .

Let L1(Ω)
N(N+1)

2 = L1
(
Ω;SN

)
be the space of integrable functions

whose values are symmetric matrices. By BV (Ω; SN ) we denote the space
of all matrices in L1(Ω;SN ) for which the norm

‖C‖BV (Ω;SN ) = ‖C‖L1(Ω;SN ) +

∫
Ω

|DC| = ‖C‖L1(Ω;SN )

+
∑

1≤i≤j≤N

sup
{∫

Ω

cij divϕdx : ϕ ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
(2.1)

is finite.

Let ξ1, ξ2 be given elements of L∞(Ω)∩BV (Ω) satisfying the conditions

0 < α ≤ ξ1(x) ≤ ξ2(x) a.e. in Ω, (2.2)
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where α is a given positive value. Let yd ∈ L2(Ω) and f ∈ L2(Ω) be given
distributions. We define the class of admissible controls Aad as follows

Aad =

{
A ∈ L1(Ω; SN )

∣∣∣∣∣ ξ
2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω∀ η ∈ RN ,

A
1
2 ∈ BV (Ω;SN ),

∫
Ω
|DA 1

2 | ≤ γ

}
,

(2.3)
where γ > 0 is a given constant. In view of estimates

‖A 1
2 (x)‖SN ≤

√
N ‖A 1

2 (x)‖2 ≤
√
N ξ2(x) a.e. in Ω,∫

Ω

‖A‖
p
2

SN dx ≤
∫

Ω

‖A 1
2 ‖pSN dx ≤

∫
Ω

‖A 1
2 ‖p−1

SN ‖A
1
2 ‖SN dx

≤ N
p−1

2 ‖ξ2‖p−1
L∞(Ω)

∫
Ω

‖A 1
2 ‖SN dx,

it is clear that Aad is a nonempty convex subset of L
p
2 (Ω; SN ) with empty

topological interior.

Let K be a nonempty convex closed subset of the space W 1,p
0 (Ω) such

that 0 ∈ K. The optimal control problem we consider in this paper is to min-
imize the discrepancy between the distribution yd ∈ L2(Ω) and the solutions
y ∈ K of the following variational inequality

〈−∆p(A, y), v − y〉W−1,q(Ω);W 1,p
0 (Ω) ≥

∫
Ω

f(v − y) dx for all v ∈ K, (2.4)

by choosing an appropriate matrix-valued function A ∈ Aad as control. Here,
∆p(A, ·) is the so-called anisotropic p-Laplacian which usually can be defined
by the rule (see [2] and references therein)

∆p(A, y) = div
(
|(A∇y,∇y)|

p−2
2 A∇y

)
,

and f ∈ L2(Ω) is a given distribution.
More precisely, we are concerned with the following optimal control

problem

Minimize I(A, y) =

∫
Ω

|y − yd|2 dx subject to the constraints

A ∈ Aad, y ∈ K, and (A, y) are related by variational inequality (2.4).


(2.5)

The existence of a unique solution to the variational inequality (2.4)
follows from an abstract well-known theorem on monotone operators (see
[16, Theorems 8.2, 8.3, 8.4]).

Theorem 2.1. Let V be a reflexive separable Banach space and K ⊂ V be a
nonempty convex closed subset. Let V ∗ be the dual space, and let A : K → V ∗

be a bounded, semicontinuous, strictly monotone operator and coercive in the
following sense

there exists v0 ∈ K such that lim
‖y‖V→∞

〈Ay, y − v0〉V ∗;V
‖y‖V

= +∞. (2.6)
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Then the variational inequality

find y ∈ K s.t. 〈Ay, v − y〉V ∗;V ≥ 〈f, v − y〉V ∗;V , ∀v ∈ K, (2.7)

has a unique solution for each f ∈ V ∗. Moreover, the variational inequality
(2.7) is equivalent to the following one

find y ∈ K s.t. 〈Av, v − y〉V ∗;V ≥ 〈f, v − y〉V ∗;V for all v ∈ K. (2.8)

Here, the above mentioned properties of the strict monotonicity and
semicontinuity of the operator A have respectively the following meaning:

〈Ay −Av, y − v〉V ∗;V ≥ 0, ∀ y, v ∈ V ; (2.9)

〈Ay −Av, y − v〉V ∗;V = 0 =⇒ y = v; (2.10)

the function R 3 t 7→ 〈A(y + tv), w〉V ∗;V is continuous for all y, v, w ∈ V.
(2.11)

Having defined the operator A as a mapping W 1,p
0 (Ω) → W−1,q(Ω) by the

rule

〈Aϕ, v〉W−1,q(Ω);W 1,p
0 (Ω) :=

∫
Ω

|(A∇ϕ,∇ϕ)|
p−2

2 (A∇ϕ,∇v) dx

=

∫
Ω

|A 1
2∇ϕ|p−2 (A∇ϕ,∇v) dx, (2.12)

it is easy to see that in this case we have A = −∆p(A, ·). Let us show that
operator A satisfies all assumptions of Theorem 2.1 for each A ∈ Aad. Indeed,
the right-hand side of (2.12) is continuous in v ∈ W 1,p

0 (Ω) and, therefore,
represents an element of W−1,q(Ω) because∫

Ω

|A 1
2∇ϕ|p−2 (A∇ϕ,∇v) dx ≤

(∫
Ω

|A 1
2∇ϕ|p dx

) p−1
p
(∫

Ω

|A 1
2∇v|p dx

) 1
p

≤ ‖ξ2‖pL∞(Ω)‖∇ϕ‖
p−1
Lp(Ω)N

‖∇v‖Lp(Ω)N = ‖ξ2‖pL∞(Ω)‖ϕ‖
p−1

W 1,p
0 (Ω)

‖v‖W 1,p
0 (Ω)

(we apply here the Hölder’s inequality and the estimate |A 1
2∇ϕ|p ≤ ξp2 |∇ϕ|p

coming from the condition A ∈ Aad). Hence, the operator A : W 1,p
0 (Ω) →

W−1,q(Ω) is bounded. In order to prove the coercivity ofA, we set v0 = 0 ∈ K
in (2.6) and get the desired property immediately, since

〈Ay, y〉W−1,q(Ω);W 1,p
0 (Ω) ≥ α

p‖y‖p
W 1,p

0 (Ω)
.

As for the proof of the strict monotonicity and semicontinuity of the
operator A, we refer for the details to [16, 17]).

Thus, according to Theorem 2.1, variational inequality (2.4) is equiva-
lent to the following one∫

Ω

|(A∇v,∇v)|
p−2

2 (A∇v,∇v −∇y) dx ≥
∫

Ω

f(v − y) dx, ∀ v ∈ K (2.13)

and it admits a unique solution y ∈ K for every admissible control A ∈ Aad.
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Taking this into account, the set of admissible pairs to problem (2.5)

Ξ =
{

(A, y)
∣∣∣ A ∈ Aad, y ∈ K ⊂W 1,p

0 (Ω), (A, y) are related by (2.13)
}

(2.14)

is always nonempty.

Definition 2.2. We say that a pair (A0, y0) ∈ BV (Ω;SN ) × W 1,p
0 (Ω) is an

optimal solution to the problem (2.5) if

(A0, y0) ∈ Ξ and I(A0, y0) = inf
(A,y)∈Ξ

I(A, y).

Remark 2.3. It is easy to see that the set of solutions {y = y(A) ∈ K : A ∈
Aad} to problem (2.4) or (2.13) is uniformly bounded for all A ∈ Aad. Indeed,

since the set K ⊂W 1,p
0 (Ω) contains zero, we have

αp‖y‖p
W 1,p

0 (Ω)
≤
∫

Ω

|A 1
2∇y|p dx = 〈Ay, y〉

by (2.4)

≤ 〈f, y〉

=

∫
Ω

fy dx ≤ ‖f‖Lq(Ω)‖y‖W 1,p
0 (Ω) ≤ |Ω|

p−2
2p ‖f‖L2(Ω)‖y‖W 1,p

0 (Ω).

Hence, the following estimate for the solutions of (2.4) takes place

‖y‖W 1,p
0 (Ω) ≤ α

−q|Ω|
p−2

2p(p−1) ‖f‖
q
p

L2(Ω), ∀A ∈ Aad. (2.15)

Remark 2.4. Let us set K∗ = K ∩ BR, where by BR ⊂ W 1,p
0 (Ω) we denote

a fixed closed ball centered at zero with a radius R > α−q|Ω|
p−2

2p(p−1) ‖f‖
q
p

L2(Ω)

(see (2.15)). It is easy to see that K∗ ⊆ K is a bounded convex closed subset

of W 1,p
0 (Ω) and y ∈ K is a solution to variational inequality (2.3) (or (2.13))

if and only if y ∈ K∗ and∫
Ω

|(A∇v,∇v)|
p−2

2 (A∇v,∇v −∇y) dx ≥
∫

Ω

f(v−y) dx, ∀ v ∈ K∗. (2.16)

Indeed, if y ∈ K is a solution to (2.13), then, due to estimate (2.15), we
have y ∈ BR and (2.16) obviously holds. To prove the inverse assertion let us
suppose by contraposition that y ∈ K∗, (2.16) holds true, and there exists
an element z ∈ K such that z 6= y and z is a solution to (2.3). Then z is a
solution to variational inequality (2.16) as well, and in view of its uniqueness,
we obviously get y = z.

3. Existence of Optimal Solutions

In this section we focus on the solvability of optimal control problem (2.5).

Hereinafter, we suppose that the space BV (Ω;SN ) × W 1,p
0 (Ω) is endowed

with the norm ‖(A, y)‖BV (Ω;SN )×W 1,p
0 (Ω) := ‖A‖BV (Ω;SN ) + ‖y‖W 1,p

0 (Ω).

Remark 3.1. We recall that a sequence {fk}∞k=1 converges weakly∗ to f in
BV (Ω) if and only if the two following conditions hold (see [1]): fk → f

strongly in L1(Ω) and Dfk
∗
⇀ Df weakly∗ in the space of Radon measures
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M(Ω;RN ). Moreover, if {fk}∞k=1 ⊂ BV (Ω) converges strongly to some f in
L1(Ω) and satisfies supk∈N

∫
Ω
|Dfk| < +∞, then (see, for instance, [1])

(i) f ∈ BV (Ω) and

∫
Ω

|Df | ≤ lim inf
k→∞

∫
Ω

|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

(3.1)

We begin with the following property.

Lemma 3.2. Let {(Ak, yk) ∈ Ξ}k∈N be a sequence such that A
1
2

k
∗
⇀ A

1
2 in

BV (Ω; SN ) and yk ⇀ y in W 1,p
0 (Ω). Then

lim
k→∞

∫
Ω

| (∇ϕ,Ak∇ϕ) |
p−2

2 (∇yk, Ak∇ϕ) dx

=

∫
Ω

| (∇ϕ,A∇ϕ) |
p−2

2 (∇y,A∇ϕ) dx, ∀ϕ ∈ C∞0 (Ω). (3.2)

Proof. Since A
1
2

k → A
1
2 in L1(Ω; SN ) and {Ak}k∈N is bounded in L∞(Ω; SN ),

by Lebesgue’s Theorem we get that A
1
2

k → A
1
2 strongly in Lr(Ω;SN ) for

every 1 ≤ r < +∞. Hence, A
1
2

k∇ϕ → A
1
2∇ϕ strongly in Lp(Ω)N for every

ϕ ∈ C∞0 (Ω). Therefore,

|A
1
2

k∇ϕ|
p−2A

1
2

k∇ϕ→ |A
1
2∇ϕ|p−2A

1
2∇ϕ in Lq(Ω)N , ∀ϕ ∈ C∞0 (Ω).

(3.3)

Moreover, since A
1
2

k∇ψ → A
1
2∇ψ strongly in Lq(Ω)N for every ψ ∈

C∞0 (Ω) and ∇yk ⇀ ∇y in Lp(Ω)N , it follows that∫
Ω

(
A

1
2

k∇yk,∇ψ
)
dx =

∫
Ω

(
∇yk, A

1
2

k∇ψ
)
dx→

∫
Ω

(
∇y,A 1

2∇ψ
)
dx

=

∫
Ω

(
A

1
2∇y,∇ψ

)
dx, ∀ψ ∈ C∞0 (Ω), (3.4)

as a product of weakly and strongly convergent sequences in Lp(Ω)N and
Lq(Ω)N , respectively. Using the fact that

sup
k∈N
‖A

1
2

k∇yk‖Lp(Ω)N ≤ ‖ξ2‖L∞(Ω) sup
k∈N
‖∇yk‖Lp(Ω)N < +∞,

we finally get from (3.4)

A
1
2

k∇yk ⇀ A
1
2∇y in Lp(Ω)N . (3.5)

Thus, to complete the proof it remains to note that∫
Ω

| (∇ϕ,Ak∇ϕ) |
p−2

2 (∇yk, Ak∇ϕ) dx =

∫
Ω

(
|A

1
2

k∇ϕ|
p−2A

1
2

k∇ϕ,A
1
2

k∇yk
)
dx

and apply the properties (3.3) and (3.5). �

As an obvious consequence of this result, we have the following property.
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Corollary 3.3. Let {(Ak, yk) ∈ Ξ}k∈N and
{
ζk ∈W 1,q

0 (Ω)
}
k∈N

be sequences

such that A
1
2

k
∗
⇀ A

1
2 in BV (Ω;SN ), yk ⇀ y in W 1,p

0 (Ω), and ζk → ζ in

W 1,q
0 (Ω). Then

lim
k→∞

∫
Ω

| (∇ζk, Ak∇ζk) |
p−2

2 (∇yk, Ak∇ζk) dx

=

∫
Ω

| (∇ζ,A∇ζ) |
p−2

2 (∇y,A∇ζ) dx.

Our next step concerns the study of topological properties of the set of
admissible solutions Ξ to problem (2.4)–(2.5).

The following result is crucial for our further analysis.

Theorem 3.4. Let {(Ak, yk)}k∈N ⊂ Ξ be an arbitrary sequence. Then there is

a pair (A, y) ∈ Ξ such that, up to a subsequence, A
1
2

k
∗
⇀ A

1
2 in BV (Ω;SN )

and yk ⇀ y in W 1,p
0 (Ω).

Proof. As follows from definition of the set Ξ (see (2.3)) and a priori estimate

(2.15) the sequence {(A
1
2

k , yk)}k∈N is bounded in BV (Ω;SN )×W 1,p
0 (Ω).

By Remark 3.1 and the compactness properties ofBV (Ω; SN )×W 1,p
0 (Ω),

there exists a subsequence of {(Ak, yk) ∈ Ξ}k∈N, still denoted by the same

indices, and a symmetric matrix A and a distribution y ∈W 1,p
0 (Ω) such that

A
1
2

k → A
1
2 in L1(Ω;SN ), yk ⇀ y in W 1,p

0 (Ω), (3.6)

A
1
2 ∈ BV (Ω;SN ), A

1
2

k → A
1
2 almost everywhere in Ω, (3.7)∫

Ω

|DA 1
2 | ≤ lim inf

k→∞

∫
Ω

|DA
1
2

k | ≤ γ. (3.8)

Since yk ∈ K for all k ∈ N and the set K is a closed convex subset of W 1,p
0 (Ω),

by Mazur’s lemma this set is closed with respect to the weak topology of
W 1,p

0 (Ω). Hence, y ∈ K. Moreover, as follows from (3.7) and definition of the
set Aad, the inequality

ξ2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω ∀ η ∈ RN , (3.9)

is valid. Thus, A ∈ Aad. To complete the proof it is enough to show that the
limit pair (A, y) is related by variational inequality (2.13). With that in mind
we write down this inequality for (Ak, yk):∫

Ω

|(Ak∇v,∇v)|
p−2

2 (Ak∇v,∇v −∇yk) dx ≥
∫

Ω

f(v − yk) dx, ∀ v ∈ K,

(3.10)

and pass to the limit in it as k →∞.

In view of the properties (3.6)–(3.9) and the boundedness of {Ak}k∈N
in L∞(Ω;SN ), by Lebesgue’s Theorem we get that A

1
2

k∇ϕ→ A
1
2∇ϕ strongly
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in Lp(Ω)N for every ϕ ∈ C∞0 (Ω). Therefore,

lim
k→∞

∫
Ω

|(Ak∇v,∇v)|
p−2

2 (Ak∇v,∇v) dx

= lim
k→∞

∫
Ω

|A
1
2

k∇v|
p−2

(
A

1
2

k∇v,A
1
2

k∇v
)
dx = lim

k→∞

∫
Ω

|A
1
2

k∇v|
p dx

=

∫
Ω

|A 1
2∇v|p−2 (∇v,A∇v) dx =

∫
Ω

|(A∇v,∇v)|
p−2

2 (A∇v,∇v) dx

and

lim
k→∞

∫
Ω

|(Ak∇v,∇v)|
p−2

2 (Ak∇v,∇yk) dx

by Lemma 3.2
=

∫
Ω

|(A∇v,∇v)|
p−2

2 (A∇v,∇y) dx.

We, thus, can pass to the limit in relation (3.10) as k → ∞ and arrive at
the inequality (2.13), which means that y ∈ K is a solution to variational
problem (2.4). This fact together with A ∈ Aad leads us to the conclusion:
(A, y) ∈ Ξ, i.e. the limit pair (A, y) is admissible to optimal control problem
(2.5). The proof is complete. �

In conclusion of this section, we give the existence result for optimal
control problem (2.5) which is an immediate consequence of the compactness
properties of BV (Ω;SN ), a priory estimate (2.15), Theorem 2.1, and the

compactness of embedding W 1,p
0 (Ω) ↪→ L2(Ω).

Theorem 3.5. Let yd ∈ L2(Ω) and f ∈ L2(Ω) be given distributions. Then
optimal control problem (2.5) admits at least one solution (Aopt, yopt) ∈ Ξ.

4. Regularization of OCP (2.5)

As was pointed out in [17], the anisotropic p-Laplacian ∆p(A, y) provides an
example of a quasi-linear operator in divergence form with a so-called de-
generate nonlinearity for p > 2. In this context we have non-differentiability
of the state y with respect to the matrix-valued control A. As follows from
Theorem 3.5, this fact is not an obstacle to prove existence of optimal con-
trols in the coefficients, but it causes certain difficulties when deriving the
optimality conditions for the considered problem. To overcome this difficulty,
we introduce the following family of approximating control problems (see, for
comparison, the approach of Casas and Fernandez [5] for quasi-linear elliptic
variational inequalities with a distributed control in the right hand side)

Minimize Iε,k(A, y) =

∫
Ω

|y(x)− yd(x)|2 dx (4.1)
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subject to the constraints

〈−∆ε,k,p(A, y), v − y〉H−1(Ω);H1
0 (Ω) ≥ 〈f, v − y〉H−1(Ω);H1

0 (Ω), ∀ v ∈ K∗,
(4.2)

y ∈ K∗, (4.3)

A ∈ Aad. (4.4)

Here,

Aad =

{
A ∈ L1(Ω; SN )

∣∣∣∣∣ ξ
2
1‖η‖2 ≤ (η,Aη) ≤ ξ2

2‖η‖2 a.e. in Ω ∀ η ∈ RN ,

A
1
2 ∈ BV (Ω; SN ),

∫
Ω
|DA 1

2 | ≤ γ

}
,

k ∈ N, ε is a small parameter, which varies within a strictly decreasing
sequence of positive numbers converging to 0, the set K∗ is defined in Remark
2.4, and

∆ε,k,p(A, y) = div

([
ε+ Fk

(
|A 1

2∇y|2
)] p−2

2

A(x)∇y
)
, (4.5)

where Fk : R+ → R+ is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈
[
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t ≤ Fk(t) ≤ t+ δ, if k2 ≤ t < k2 + 1 for some δ ∈ (0, 1).

The main goal of this section is to show that, for each ε > 0 and k ∈ N,
the approximating optimal control problem (4.1)–(4.4) is well posed and its
solutions are uniformly bounded in appropriated Banach spaces with respect
to parameters ε > 0 and k ∈ N.

Remark 4.1. It turns out that K∗ is a closed convex subset of H1
0 (Ω).

Since the inclusion K∗ ⊆ cl‖·‖
H1

0(Ω)
K∗ is obvious, it remains to show that

cl‖·‖
H1

0(Ω)
K∗ ⊆ K∗. Indeed, let y ∈ cl‖·‖

H1
0(Ω)

K∗ be an arbitrary element.

Then there exists a sequence {vk}k∈N ⊂ K∗ such that vk → y in H1
0 (Ω) as

k →∞. Hence,

lim
k→∞

∫
Ω

(∇vk, ψ) dx =

∫
Ω

(∇y, ψ) dx, ∀ψ ∈ C∞0 (Ω)N . (4.6)

Since the sequence {vk}k∈N is bounded in W 1,p
0 (Ω) and the set C∞0 (Ω)N

is dense in Lq(Ω)N , it follows from (4.6) and reflexivity of W 1,p
0 (Ω) that

y ∈ W 1,p
0 (Ω) and ∇vk ⇀ ∇y in Lp(Ω)N as k → ∞. Hence, vk ⇀ y in

W 1,p
0 (Ω) as k → ∞. Using the fact that K∗ is a closed convex subset of

W 1,p
0 (Ω) and vk ∈ K∗ for all k ∈ N, by Mazur’s theorem it finally follows

that y ∈ K∗.

Remark 4.2. We note that the main effect of the perturbations of anisotropic
p-Laplacian ∆p(A, y) in the form ∆ε,k,p(A, y) is its regularization around crit-

ical points and points where the function |A 1
2∇y| becomes unbounded. In par-

ticular, if y ∈ W 1,p
0 (Ω), A ∈ Aad, Ωk(A, y) :=

{
x ∈ Ω : |A 1

2∇y| >
√
k2 + 1

}
,
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then the following chain of inequalities

|Ωk(A, y)| :=
∫

Ωk(A,y)

1 dx ≤ 1√
k2 + 1

∫
Ωk(A,y)

|A 1
2∇y| dx

≤ |Ωk(A, y)|
1
q

√
k2 + 1

(∫
Ω

|A 1
2∇y|p dx

) 1
p

≤
‖ξ2‖L∞(Ω)‖y‖W 1,p

0 (Ω)√
k2 + 1

|Ωk(A, y)|
p−1
p

shows that the Lebesgue measure of the set Ωk(A, y) satisfies the estimate

|Ωk(A, y)| ≤
(‖ξ2‖L∞(Ω)√

k2 + 1

)p

‖y‖p
W 1,p

0 (Ω)

≤
‖y‖p

W 1,p
0 (Ω)

‖ξ2‖pL∞(Ω)

kp
, ∀ y ∈W 1,p

0 (Ω), (4.7)

i.e. the approximation Fk(|A !
2∇y|2) is essential on sets with small Lebesgue

measure. At the same time, if instead of element y ∈W 1,p
0 (Ω) we consider an

element y∗ ∈ H1
0 (Ω), then its level set

Ωk(A, y∗) :=
{
x ∈ Ω : |A 1

2∇y∗| >
√
k2 + 1

}
may have other than (4.7) characteristics. Indeed,

|Ωk(A, y∗)| :=
∫

Ωk(A,y∗)

1 dx ≤ 1√
k2 + 1

∫
Ωk(A,y∗)

|A 1
2∇y∗| dx

≤ |Ωk(A, y∗)| 12
k

×

(∫
Ωk(A,y∗)

|A 1
2∇y∗|2 dx

) 1
2

≤
‖ξ2‖L∞(Ω)

k
|Ωk(A, y∗)| 12 ‖y∗‖H1

0 (Ω).

Hence, the Lebesgue measure of the set Ωk(A, y∗) satisfies the estimate

|Ωk(A, y∗)| ≤
‖ξ2‖2L∞(Ω)

k2
‖y∗‖2H1

0 (Ω). (4.8)

We begin with a few auxiliary results concerning monotonicity and
growth conditions for the regularized anisotropic p-Laplacian ∆ε,k,p(A, ·).

Proposition 4.3. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k :=
−∆ε,k,p(A, ·) : H1

0 (Ω)→ H−1(Ω) is bounded.

Proof. From the assumptions on Fk and the boundedness of A, we get

‖Aε,k‖ = sup
‖y‖

H1
0(Ω)
≤1

‖Aε,ky‖H−1(Ω) = sup
‖y‖

H1
0(Ω)
≤1

sup
‖v‖

H1
0(Ω)
≤1

〈Aε,ky, v〉

= sup
‖y‖

H1
0(Ω)
≤1

sup
‖v‖

H1
0(Ω)
≤1

∫
Ω

[
ε+ Fk

(
|A 1

2∇y|2
)] p−2

2

(∇v,A∇y) dx

≤
‖ξ2‖2L∞(Ω)

(ε+ k2 + 1)
2−p

2

sup
‖y‖

H1
0(Ω)
≤1

sup
‖v‖

H1
0(Ω)
≤1

‖y‖H1
0 (Ω)‖v‖H1

0 (Ω) = Cε,k,
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which concludes the proof. �

Proposition 4.4. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
strictly monotone.

Proof. To begin with, we make use of the following algebraic inequality:((
ε+ Fk(|a|2)

) p−2
2 a−

(
ε+ Fk(|b|2)

) p−2
2 b, a− b

)
≥ ε

p−2
2 |a− b|2, ∀ a, b ∈ RN . (4.9)

In order to prove it, we note that the left hand side of (4.9) can be rewritten
as follows((

ε+ Fk(|a|2)
) p−2

2 a−
(
ε+ Fk(|b|2)

) p−2
2 b, a− b

)
=

(∫ 1

0

d

ds

{(
ε+ Fk(|sa+ (1− s)b|2)

) p−2
2 (sa+ (1− s)b)

}
ds, a− b

)
=

∫ 1

0

(
ε+ Fk(|sa+ (1− s)b|2)

) p−2
2 |a− b|2 ds

+ (p− 2)

∫ 1

0

{(
ε+ Fk(|sa+ (1− s)b|2)

) p−4
2 F ′k(|sa+ (1− s)b|2)×

× |(sa+ (1− s)b, a− b)|2
}
ds = I1 + I2.

Since p ≥ 2 and Fk : R+ → R+ is a non-decreasing C1(R+)-function, it
follows that I2 ≥ 0 for all a, b ∈ RN . It remains to observe that

(
ε+Fk(|sa+

(1 − s)b|2)
)
≥ ε, ∀ a, b ∈ RN . Hence, I1 ≥ ε

p−2
2 |a − b|2 and we arrive at the

inequality (4.9). With this we obtain〈
−∆ε,k,p(A, y) + ∆ε,k,p(A, v), y − v

〉
H−1(Ω);H1

0 (Ω)

=

∫
Ω

(
(ε+ Fk(|A 1

2∇y|2))
p−2

2 ∇y,A(∇y −∇v)
)
RN

dx

−
∫

Ω

(
(ε+ Fk(|A 1

2∇v|2))
p−2

2 ∇v,A(∇y −∇v)
)
RN

dx

having put
{
a := A

1
2∇y, b := A

1
2∇v

}
, we get

=

∫
Ω

((
ε+ Fk(|a|2)

) p−2
2 a−

(
ε+ Fk(|b|2)

) p−2
2 b, a− b

)
dx

≥ ε
p−2

2

∫
Ω

|A 1
2∇y −A 1

2∇v|2dx = ε
p−2

2

∫
Ω

(∇y −∇v,A(∇y −∇v)) dx

≥ α2ε
p−2

2 ‖y − v‖2H1
0 (Ω) ≥ 0.

Since the relation〈
−∆ε,k,p(A, y) + ∆ε,k,p(A, v), y − v

〉
H−1(Ω);H1

0 (Ω)
= 0



Approximation of an OCP in Coefficient for Variational Inequality 13

implies that ∇y = ∇v a. e. in Ω, it follows that the strict monotonicity
property (2.10) holds true for each A ∈ Aad, k ∈ N, and ε > 0. �

Proposition 4.5. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
coercive (in the sense of relation (2.6)).

Proof. The coercivity property obviously follows from (2.6) under v0 = 0 ∈
K∗ and the estimate〈

−∆ε,k,p(A, y), y
〉
H−1(Ω);H1

0 (Ω)
≥ α2ε

p−2
2 ‖y‖2H1

0 (Ω). (4.10)

�

Proposition 4.6. For every A ∈ Aad, k ∈ N, and ε > 0, the operator Aε,k is
semicontinuous.

Proof. Indeed, in order to get the equality

lim
t→0
〈−∆ε,k,p(A, y + tw), v〉H−1(Ω);H1

0 (Ω) = 〈−∆ε,k,p(A, y), v〉H−1(Ω);H1
0 (Ω),

it is enough to observe that

(ε+ Fk(|A 1
2 (∇y + t∇w)|2))

p−2
2 A (∇y + t∇w)→ (ε+ Fk(|A 1

2∇y|2))
p−2

2 A∇y
as t → 0 almost everywhere in Ω, and make use of Lebesgue’s dominated
convergence theorem. �

Taking into account the fact that the set K∗, defined in Remark 2.4, is a
nonempty convex closed subset of H1

0 (Ω), we can apply the abstract theorem
on monotone operators (see Theorem 2.1) to the variational inequality

Find y ∈ K∗ s.t. 〈Aε,ky, v−y〉H−1(Ω);H1
0 (Ω) ≥ 〈f, v−y〉H−1(Ω);H1

0 (Ω), ∀ v ∈ K∗.
(4.11)

As a result, closely following the arguments of Section 2, we arrive at the
following assertion.

Theorem 4.7. For each ε > 0, k ∈ N, A ∈ Aad, and f ∈ L2(Ω), the variational
inequality (4.2)–(4.3) admits a unique solution yε,k ∈ K∗ ⊂ H1

0 (Ω) such that∫
Ω

(ε+Fk(|A 1
2∇v|2))

p−2
2 (A∇v,∇v −∇yε,k) dx ≥

∫
Ω

f(v−yε,k) dx, ∀ v ∈ K∗.

(4.12)

Remark 4.8. It is easy to show, that the set{
yε,k ∈ K∗

∣∣∣ A ∈ Aad, (A, yε,k) are related by inequality (4.12)
}
⊂ H1

0 (Ω)

is bounded in H1
0 (Ω)-norm for every k ∈ N and ε > 0. Indeed, since by the

initial assumptions the set K∗ contains zero element of H1
0 (Ω), it follows that

ε
p−2

2 α2‖yε,k‖2H1
0 (Ω)

by (4.10)

≤ 〈Aε,kyε,k, yε,k〉H−1(Ω);H1
0 (Ω)

by (4.11)

≤ 〈f, yε,k〉H−1(Ω);H1
0 (Ω) ≤ ‖f‖L2(Ω)‖yε,k‖H1

0 (Ω).

Hence, supA∈Aad
‖yε,k‖H1

0 (Ω) ≤ ε
2−p

2 α−2‖f‖L2(Ω).
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Thus, as follows from Theorem 4.7, for every ε > 0 and k ∈ N, the set
of admissible pairs to the approximating optimal control problem (4.1)–(4.4)

Ξε,k =
{

(A, y)
∣∣A ∈ Aad, y ∈ K∗ ⊂ H1

0 (Ω), (A, y) are related by (4.12)
}

(4.13)

is nonempty. Moreover, for every sequence {(An, yn) ∈ Ξε,k}n∈N, in view of
Remark 4.8, we have

sup
n∈N

[
‖A

1
2
n‖BV (Ω;SN ) + ‖yn‖H1

0 (Ω)

]
≤
√
N‖ξ2‖L1(Ω) + γ + ε

2−p
2 α−2‖f‖L2(Ω).

Hence (see Remark 3.1), there exists a subsequence {(Ani , yni)}i∈N and a

pair (A, y) ∈ BV (Ω)×H1
0 (Ω) such that

yni
⇀ y in H1

0 (Ω), yni
→ y in L2(Ω),

A
1
2
ni → A

1
2 in L1(Ω), A

1
2
ni → A

1
2 almost everywhere in Ω, (4.14)

γ ≥ lim inf
i→∞

∫
Ω

|DA
1
2
ni | ≥

∫
Ω

|DA 1
2 |.

By analogy with Theorem 3.4, it is easy to show that the set Ξε,k is se-
quentially closed with respect to the convergence (4.14) in BV (Ω)×H1

0 (Ω).
Therefore, (A, y) ∈ Ξε,k. Moreover, since {yni

}i∈N ⊂ K∗ and K∗ is a closed
convex subset of H1

0 (Ω), then the weak convergence yni ⇀ y in H1
0 (Ω) implies

both the inclusion y ∈ K∗ and the strong convergence yi → y in L2(Ω) by
Rellich-Kondrachow compactness theorem. As a result, we have

lim inf
i→∞

Iε,k(Ani
, yni

) = Iε,k(A, y)

whenever {(Ani , yni)}i∈N ⊂ Ξε,k converges to (A, y) in the sense of (4.14).

Thus, since the cost functional (4.1) is bounded below on Ξε,k and Iε,k(A, y) <
+∞ for all (A, y) ∈ Ξε,k, the direct method of Calculus of Variations imme-
diately leads us to the following conclusion.

Theorem 4.9. For every positive value ε > 0 and integer k ∈ N, the opti-
mal control problem (4.1)–(4.4) is solvable, i.e. there exists at least one pair

(Aopt
ε,k , y

opt
ε,k ) ∈ Ξε,k such that

Iε,k(Aopt
ε,k , y

opt
ε,k ) = inf

(A,y)∈Ξε,k

Iε,k(A, y).

5. Asymptotic Analysis of the Approximating OCP (4.1)–(4.4)

Our main intention in this section is to show that some optimal solutions to
the original OCP (2.5) can be attained (in some sense) by optimal solutions to
the approximating problems (4.1)–(4.4). With that in mind, we make use of
the concept of variational convergence of constrained minimization problems
(see [11]). In order to study the asymptotic behaviour of a family of OCPs
(4.1)–(4.4), the passage to the limit in relations (4.1)–(4.4) as ε→ 0 and k →
∞ has to be realized. The expression “passing to the limit” means that we
have to find a kind of “limit cost functional” I and “limit set of constraints” Ξ
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with a clearly defined structure such that the limit object
〈
inf(u,y)∈Ξ I(u, y)

〉
to the family (4.1)–(4.4) could be interpreted as some OCP.

We are now in a position to show that optimal pairs to approximating
OCP (4.1)–(4.4) lead in the limit to some optimal solutions to the original
OCP (2.5). To begin with, we state the following result.

Theorem 5.1. Let yd ∈ L2(Ω), f ∈ L2(Ω), and ξ1, ξ2 ∈ L∞(Ω) ∩ BV (Ω)
be arbitrary distributions with property (2.2). Then, for a given p ≥ 2, the
sequence of sets {Ξε,k} ε>0

k∈N
⊂ BV (Ω)×H1

0 (Ω) converges to the set Ξ as ε→ 0

and k →∞ in Kuratowski sense as follows:

(d) If sequences {εn}n∈N, {kn}n∈N, and {(An, yn)}n∈N are such that εn → 0

and kn → ∞ as n → ∞, (An, yn) ∈ Ξεn,kn
, ∀n ∈ N, A

1
2
n
∗
⇀ A

1
2 in

BV (Ω; SN ), and yn ⇀ y in H1
0 (Ω), then

(A, y) ∈ Ξ; (5.1)

(dd) For every (A, y) ∈ Ξ, there exists a sequence {(Aε,k, yε,k)} ε>0
k∈N

such that

(Aε,k, yε,k) ∈ Ξε,k, ∀ ε > 0, ∀ k ∈ N, (5.2)

yε,k ⇀ y in H1
0 (Ω), A

1
2

ε,k
∗
⇀ A

1
2 in BV (Ω; SN ). (5.3)

Proof. We begin with property (d). Let {εn}n∈N, {kn}n∈N, and {(An, yn)}n∈N
be sequences satisfying all assumptions of item (d). It is easy to see that

y ∈ K∗ ⊂ K ⊂ W 1,p
0 (Ω) due to closedness of K∗ with respect to weak

convergence in H1
0 (Ω), and A is an admissible control (A ∈ Aad). It remains

to show that the limit pair (A, y) is related by inequality (2.13). In fact,
according to Remark 2.4 it is enough to show, that the limit pair (A, y) is
related by inequality (2.15). To this end, let us fix an arbitrary distribution
v ∈ K∗ and pass to the limit in the relation (see Theorem 4.7)

∫
Ω

(εn + Fkn
(|A

1
2
n∇v|2))

p−2
2 (An∇v,∇v −∇yn) dx ≥

∫
Ω

f(v − yn) dx (5.4)

as n→∞. Taking into account Lebesgue Theorem and the facts that

Fkn
(t)→ t everywhere in R1

+, A,An ∈ L∞(Ω;SN ),

A
1
2
n → A

1
2 almost everywhere in Ω,

(εn + Fkn(|∇v|2))
p−2

2 ∇v → |∇v|p−2∇v strongly in Lq(Ω)N ,
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and making use of Lemma 3.2 and its Corollary 3.3, we get

lim
n→∞

∫
Ω

(εn + Fkn
(|A

1
2
n∇v|2))

p−2
2 (An∇v,∇v)dx

=

∫
Ω

|A 1
2∇v|p−2 (A∇v,∇v) dx,

lim
n→∞

∫
Ω

(εn + Fkn
(|A

1
2
n∇v|2))

p−2
2 (An∇v,∇yn)dx

=

∫
Ω

|A 1
2∇v|p−2 (A∇v,∇y) dx,

lim
n→∞

∫
Ω

f(v − yn) dx =

∫
Ω

f(v − y) dx.

Thus, upon passing to the limit in (5.4) as n→∞, we arrive at the following
variational inequality∫

Ω

|(A∇v,∇v)|
p−2

2 (A∇v,∇v −∇y) dx ≥
∫

Ω

f(v − y) dx, ∀ v ∈ K∗. (5.5)

Since y ∈ K∗, it follows that y = y(A) is a solution to the variational problem
(2.15), and, due to Remark 2.4, it is a solution to (2.13). Thus, (A, y) ∈ Ξ.

The next step is to prove property (dd). Let (A, y) ∈ Ξ be an arbi-
trary admissible pair to the original OCP (2.5). We construct a sequence
{(Aε,k, yε,k)} ε>0

k∈N
as follows: Aε,k ≡ A for all ε > 0 and k ∈ N, and yε,k is the

corresponding solution to regularized variational inequality (4.2)–(4.3) under
Aε,k = A. Then, (Aε,k, yε,k) ∈ Ξε,k for all ε > 0 and k ∈ N, and, as follows
from Remark 4.8, the sequence {yε,k} ε>0

k∈N
is uniformly bounded in H1

0 (Ω)

and, hence, it is relatively compact with respect to the weak convergence
in H1

0 (Ω). Hence, all cluster pairs (A, y∗) of the sequence {(Aε,k, yε,k)} ε>0
k∈N

with respect to the convergence (5.3) in BV (Ω; SN ) × H1
0 (Ω) are such that

y∗ ∈ K∗ ⊂ W 1,p
0 (Ω). Moreover, reiterating the arguments of the previous

step, it can be shown that each of the cluster pairs (A, y∗) are related by the
inequality (2.13). Since the variational problem (2.4) has a unique solution
for each A ∈ Aad, it means that the pair (A, y) ∈ Ξ is the limit to the whole
sequence {(Aε,k, yε,k)} ε>0

k∈N
. �

The following result is central in this paper and it clarifies the approxi-
mating properties of the perturbed optimal control problems (4.1)–(4.4).

Theorem 5.2. Let
{

(A0
ε,k, y

0
ε,k) ∈ Ξε,k

}
ε>0
k∈R

be an arbitrary sequence of opti-

mal pairs to the approximating problems (4.1)–(4.4). Then this sequence is
relatively compact with respect to the convergence

y0
ε,k ⇀ y0 in H1

0 (Ω),
(
A0

ε,k

) 1
2 ∗
⇀
(
A0
) 1

2 in BV (Ω;SN ),

A0
ε,k → A0 in L1(Ω; SN ) (5.6)
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and each its cluster pair (A0, y0) is such that (A0, y0) ∈ Ξ and

inf
(A,y)∈Ξ

I(A, y) = I
(
A0, y0

)
= lim

ε→0
k→∞

Iε,k(A0
ε,k, y

0
ε,k)

= lim
ε→0
k→∞

inf
(A,y)∈Ξε,k

Iε,k(A, y). (5.7)

Proof. As definition of the class of admissible controls Aad and Remark 4.8

indicate, the sequence
{

(A0
ε,k, y

0
ε,k) ∈ Ξε,k

}
ε>0
k∈R

of optimal pairs is relatively

compact with respect to the convergence (5.6). To conclude the variational
equality (5.7), it remains to apply the Rellich-Kondrachov compactness the-
orem and the following relation coming from properties (d)–(dd) of Theo-
rem 5.1

lim
i→∞

inf
(A,y)∈Ξεi,ki

Iεi,ki
(A, y) = lim

i→∞
Iεi,ki

(A0
εi,ki

, y0
εi,ki

)
by (d)

= I(Â, ŷ)

≥ inf
(A, y)∈Ξ

I(A, y) = I(A0, y0)
by (dd)

= lim
ε→0
k→∞

Iε,k(A0, yε,k)

≥ lim sup
ε→0
k→∞

inf
(A,y)∈Ξε,k

Iε,k(A, y) ≥ lim sup
i→∞

inf
(A,y)∈Ξεi,ki

Iεi,ki
(A, y)

= lim
i→∞

Iεi,ki
(A0

εi,ki
, y0

εi,ki
).

�

Remark 5.3. As follows from Theorems 5.2 and 5.1, whatever sequence of

optimal solutions
{

(A0
ε,k, y

0
ε,k)
}

ε>0
k∈N

to the approximating problems (4.1)–

(4.4) has been chosen, it always gives in the limit as ε→ 0 and k →∞ some
optimal pair to the original OCP (2.5). However, it is unknown whether any
solutions (A0, y0) to OCP (2.5) can be attained, in the sense of convergence

(5.6), by a sequence of optimal pairs
{

(A0
ε,k, y

0
ε,k)
}

ε>0
k∈R

to problems (4.1)–

(4.4).
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