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Abstract. We prove the existence and the multiplicity of positive solutions of the one-dimensional
capillarity-type problem

−
(
u′/
√

1 + (u′)2
)′

= a(x)f(u), u′(0) = 0, u′(1) = 0,

where a ∈ L1(0, 1) changes sign and f : [0,+∞) → [0,+∞) is continuous and has a power-like
behavior at the origin and at infinity. Our approach is variational and relies on a regularization
procedure that yields bounded variation solutions which are of class W 2,1

loc , and hence satisfy the
equation pointwise almost everywhere, on each open interval where the weight function a has a
constant sign.

1. Introduction and statements

In this paper we are interested in the existence of positive solutions of the quasilinear Neumann
problem −

(
u′√

1 + (u′)2

)′
= a(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1.1)

where a ∈ L1(0, 1) changes sign and f : [0,+∞) → [0,+∞) is a continuous function having
superlinear, or sublinear, growth at 0 and at +∞.

Problem (1.1) is a particular, one-dimensional, version of the elliptic problem
−div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(1.2)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and g : Ω×R→ R
and σ : ∂Ω → R are given functions. This problem plays a relevant role in the mathematical
analysis of a number of physical or geometrical issues, such as capillarity phenomena for incom-
pressible fluids, reaction-diffusion processes where the flux features saturation at high regimes,
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or prescribed mean curvature problems for cartesian surfaces in the Euclidean space. Significant
references include [41, 58, 10, 22, 31, 28, 34, 32, 30, 36, 39, 33, 40, 16].

Although there is a large amount of literature devoted to the existence of positive solutions
for semilinear elliptic problems with superlinear indefinite nonlinearities, starting with [7, 1, 2,
9, 8, 3], no result is available for the problem (1.2), even in the one-dimensional case (1.1), in
spite of the interest that this topic may have both mathematically and from the point of view
of the applications.

As it will become clear later, according to Proposition 1.1 below, the existence of a positive
solution for the homogeneous Neumann problem (1.1) forces the right hand side of the equation
to change sign, thus ruling out the possibility, if f is non-negative, that the sign of the weight
function a be constant. Hence, the absence of any previous result in the existing literature might
be attributable to the fact that superlinear indefinite weighted problems are fraught with a num-
ber of technical difficulties which do not arise in dealing with purely sublinear or superlinear
problems, even in the most classical semilinear case, not to talk about the degenerate quasilinear
problem dealt with in this paper. In addition, as an effect of the spatial heterogeneities incor-
porated into the formulation of the problem the complexity of the structure of the solution sets
might be quite intricate, even in the semilinear case [35, 48, 47, 46, 13, 14]. This an extremely
challenging problem in the context of (1.1), which will be addressed elsewhere (see, e.g., [45]).

When the homogeneous Neumann boundary conditions are replaced in (1.1) by Dirichlet
conditions, the existence of positive solutions is compatible with the right hand side of the
equation having constant sign. As in this case technicalities are partially reduced, there are
various results about existence, non-existence and multiplicity of positive solutions, even in
higher dimension, assuming that both the functions a and f are non-negative (see, e.g., [51, 59,
50, 21, 20, 37, 42, 11, 53, 18]).

Our aim here is therefore to begin the analysis of the effects of spatial heterogeneities in the
simplest one-dimensional prototype problem (1.1). Although part of our discussion has slightly
been inspired by some available results in the context of semilinear elliptic problems, it must be
stressed that the specific structure of the mean curvature operator,

u 7→
(
u′/
√

1 + (u′)2
)′
,

makes the analysis much more delicate and sophisticated, as it may determine the occurrence
of discontinuous solutions [40, 11, 12, 52, 16, 54, 24, 23].

Since problem (1.1) has a variational structure, it is natural to look for its solutions as critical
points of an associated action functional, such as

H(v) =

∫ 1

0
(
√

1 + (v′)2 − 1) dx−
∫ 1

0
aF (v) dx,

with

F (s) =

∫ s

0
f(ξ) dξ. (1.3)

As the functional H grows linearly with respect to the gradient v′, it is well-defined in the
Sobolev space W 1,1(0, 1) of all absolutely continuous functions in (0, 1). Yet, this space, which
might be an obvious candidate where to settle the study of H, is not a favorable framework
to deal with critical point theory. Therefore, we replace the space W 1,1(0, 1) with the space
BV (0, 1) of all bounded variation functions in (0, 1), and the functional H with its relaxation I
to BV (0, 1). Namely, we introduce the functional J : BV (0, 1)→ R defined by

J (v) =

∫ 1

0

√
1 + |Dv|2 − 1, (1.4)
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where, for v ∈ BV (0, 1),∫ 1

0

√
1 + |Dv|2 = sup

w1,w2∈C1
0 (0,1)

‖w2
1+w2

2‖L∞≤1

∫ 1

0
(vw1 + w2) dx,

Then, we denote by I : BV (0, 1)→ R the functional defined by

I(v) = J (v)−F(v) (1.5)

where, for v ∈ BV (0, 1),

F(v) =

∫ 1

0
aF (v) dx.

The relaxed functional I is not differentiable in BV (0, 1), at least in the usual sense, yet it is
the sum of the convex (Lipschitz) continuous functional J and of the continuously differentiable
functional F . Hence, following, e.g., [60], we say that a critical point of I is a function u ∈
BV (0, 1) such that

F ′(u) ∈ ∂J (u),

where ∂J (u) denotes the subdifferential of J at the point u in the sense of convex analysis [27],
or, equivalently, such that the variational inequality

J (v)− J (u) ≥
∫ 1

0
af(u)(v − u) dx (1.6)

holds for all v ∈ BV (0, 1). Accordingly, the concept of solution used in this paper is fixed by
the next definition.

Definition 1.1. A solution of problem (1.1) is a function u ∈ BV (0, 1) such that (1.6) holds
for all v ∈ BV (0, 1). In addition, a solution u of (1.1) is said to be positive if ess inf u ≥ 0 and
ess supu > 0, and strictly positive if ess inf u > 0.

Remark 1.1. A function u ∈ BV (0, 1) satisfies the variational inequality (1.6) for all v ∈
BV (0, 1) if, and only if, u is a global minimizer in BV (0, 1) of the functional

Ku(v) = J (v)−
∫ 1

0
af(u)v dx.

Hence, we deduce from [6] that u ∈ BV (0, 1) is a solution of (1.1) if, and only if,∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+

∫ 1

0
sgn

(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s =

∫ 1

0
a f(u)φdx (1.7)

for all φ ∈ BV (0, 1) such that |Dφ|s is absolutely continuous with respect to |Du|s. Here, and
in the sequel, for any given v ∈ BV (0, 1),

Dv = (Dv)adx+ (Dv)s

is the Lebesgue-Nikodym decomposition of the Radon measure Dv, the distributional derivative
of v, in its absolutely continuous part (Dv)adx, with density function (Dv)a, and its singular
part (Dv)s, with respect to the Lebesgue measure in R. If |Dv| denotes the absolute variation
of Dv,

|Dv| = |Dv|adx+ |Dv|s

is the Lebesgue-Nikodym decomposition of |Dv|. Moreover, Dv
|Dv| stands for the density function

of Dv with respect to its absolute variation |Dv|.
Note, in particular, that (1.7) implies that u is a weak solution of (1.1) if u ∈W 1,1(0, 1).
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The notion of solution for problem (1.1) introduced by Definition 1.1 has already been used
and discussed in a series of papers, such as, e.g., [49, 42, 52, 53, 54, 56]. We just stress here
its relevance because it allows to consider bounded variation solutions which arise as critical
points of a different nature than minimizers of the associated action functional. However, unlike
in these works, here we will go further in the investigation of the regularity properties of the
bounded variation solutions we will find, by proving that they are actually W 2,1

loc , and therefore
classically satisfy the equation, on each open interval where the weight function a has a constant
sign. Consequently, the discontinuities of the solutions that we construct may occur only in the
nodal set of a, and we show that such discontinuity points must be ‘vertical’ ones. In this paper
we do not address yet the issue of the existence of classical solutions: this topic will be discussed
in the forthcoming paper [45], by using a different approach.

In order to better motivate the hypotheses we are going to impose on the coefficients a and
f , we first observe that, if a positive solution u of (1.1) exists, then the function a f(u) must
change sign, unless it vanishes a.e. in [0, 1]. Indeed, by choosing v = u ± 1 as test functions in
(1.6), or, in view of Remark 1.1, φ = 1 in (1.7), we get∫ 1

0
a f(u) dx = 0. (1.8)

Thus, if f has a constant sign, the function a(x) must change sign in [0, 1]. However, in the
frame of (1.1) a stronger property holds if f is assumed to be increasing, as expressed by the
following result. As usual, we write

a+ = max{a, 0} and a− = −min{a, 0}.

Proposition 1.1. Assume that

(a1) a ∈ L1(0, 1) and a 6= 0,

and

(f1) f ∈ C1[0,+∞) is such that f(0) ≥ 0 and f ′(s) > 0 for all s > 0.

Suppose that problem (1.1) has a strictly positive solution. Then, the following holds

(a2) a+ 6= 0 and

∫ 1

0
a dx < 0.

Remark 1.2. Even when a ∈ L1(0, 1) satisfies (a2), the condition (f1) is not in general sufficient
for guaranteeing the existence of a positive solution of (1.1). Indeed, suppose that there is an
interval [x1, x2] ⊂ (0, 1) such that a(x) > 0 a.e. in [x1, x2]. Let φ1 be a positive eigenfunction
associated with the principal eigenvalue of −d2/dx2 in H1

0 (x1, x2) and define

φ(x) =

{
φ1(x) if x ∈ [x1, x2],
0 if x ∈ [0, 1] \ (x1, x2).

Suppose that (1.1) admits a positive solution u. Then, taking φ as a test function in (1.7) and
using (f1), we are driven to

‖φ′1‖L1 ≥
∫ x2

x1

a f(u)φ1 dx ≥ f(ess inf u)

∫ x2

x1

aφ1 dx,

which clearly imposes a restriction on the size of f on the range of u, or on the amplitude of a
in (x1, x2). This shows that some additional control on f , or on a, is needed.

Based on the observation that the mean curvature operator
(
u′/
√

1 + (u′)2
)′

behaves like

the Laplace operator u′′ at 0 and like the 1-Laplace operator (u′/|u′|)
′

at infinity, and hence the
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functional J (u), defined in (1.4), behaves like 1
2

∫ 1
0 |u

′|2 dx at 0 and like
∫ 1

0 |u
′| dx at infinity, we

are led to impose on the potential F , defined in (1.3), some superquadraticity, or subquadraticity,
conditions at 0 and superlinearity, or sublinearity, conditions at +∞.

Our first existence result deals with the case where the potential F is superquadratic at 0 and
superlinear at +∞.

Theorem 1.1. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,

(f3) there exist p > 2 and L > 0 such that

lim
s→0+

F (s)

sp
= L,

(f4) there exist q > 1 and M > 0 such that

lim
s→+∞

F (s)

sq
= M,

(f5) there exists ϑ > 1 such that

lim
s→+∞

ϑF (s)− f(s) s

s
= 0,

with F defined in (1.3). Then, problem (1.1) has at least one positive solution u, with I(u) > 0.
In addition,

u ∈W 2,1
loc (α, β) ∩W 1,1(α, β)

for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0 a.e. in (α, β), or a(x) ≤ 0 a.e. in (α, β).

Moreover, u ∈ W 2,1
loc [0, β), with u′(0) = 0, if α = 0, while u ∈ W 2,1

loc (α, 1], with u′(1) = 0, if
β = 1. Finally, u satisfies the equation

−

(
u′√

1 + (u′)2

)′
= a(x)f(u), (1.9)

a.e. in each of such intervals.

Suppose further that

(f6) f is locally Lipschitz in [0,+∞).

Then, for every pair of adjacent intervals, (α, β), (β, γ) ⊂ (0, 1) with a(x) ≥ 0 a.e. in (α, β) and
a(x) ≤ 0 a.e. in (β, γ) (respectively, a(x) ≤ 0 a.e. in (α, β) and a(x) ≥ 0 a.e. in (β, γ)), either

u ∈W 2,1
loc (α, γ),

or

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+)

(respectively, u(β−) ≤ u(β+) and u′(β−) = +∞ = u′(β+)),

where u′(β−), u′(β+) are, respectively, the left and the right Dini derivatives at β.
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Assume further that

(a4) the function a changes sign finitely many times in (0, 1), in the sense that there is a
decomposition

[0, 1] =

k⋃
i=1

[αi, βi], with αi < βi = αi+1 < βi+1, for i = 1, . . . , k − 1,

such that

(−1)ia(x) ≥ 0 a.e. in (αi, βi), for i = 1, . . . , k,

or

(−1)ia(x) ≤ 0 a.e. in (αi, βi), for i = 1, . . . , k.

Then, u is a strictly positive special function of bounded variation [5, Chapter 4].

Remark 1.3. The existence of classical positive solutions can be proved (see [45]), basically
under the assumptions of Theorem 1.1, for all λ > 0 sufficiently large; whereas, for small λ > 0,
it is likely that only bounded variation solutions may exist.

Remark 1.4. Suppose that (f4) and (f5) hold simultaneously. Condition (f4) requires that the
potential F behaves asymptotically as a power with exponent q, whereas condition (f5), when
coupled with (f4), prescribes that the elasticity EF of F , defined by

EF (s) =
sf(s)

F (s)
,

satisfies

lim
s→+∞

EF (s) = ϑ,

and hence F behaves asymptotically as a power with exponent ϑ. Thus, we conclude that ϑ = q.
Indeed, from

lim
s→+∞

ϑF (s)− f(s) s

s
= 0,

we infer

lim
s→+∞

sq−1

(
ϑ
F (s)

sq
− f(s)

sq−1

)
= 0,

and hence, as q > 1,

lim
s→+∞

(
ϑ
F (s)

sq
− f(s)

sq−1

)
= 0.

Since

lim
s→+∞

F (s)

sq
= M,

we get

lim
s→+∞

f(s)

sq−1
= ϑM.

Then, L’Hospital’s rule yields

lim
s→+∞

F (s)

sq
=
ϑ

q
M

and hence ϑ = q.
We also point out that (f4) does not imply (f5). This is shown by the function f(s) =

sq−1 + sq0−1, with 1 ≤ q0 < q, which obviously satisfies (f4), but not (f5). However, such a
function satisfies both (f4) and (f5) whenever 0 < q0 < 1 < q.
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Remark 1.5. Conditions (a2) and (a3) are equivalent if the function a is continuous. Hence, if
(f1), (f3), (f4), (f5), and (a4) are assumed, then we deduce from Proposition 1.1 and Theorem
1.1 that (a2) is a necessary and sufficient condition for the existence of a strictly positive solution
of (1.1).

A paradigmatic class of nonlinearities satisfying (f2), (f3), (f4), and (f5) is given by

f(s) = min{sp−1, sq−1},

with p > 2, q > 1. Condition (f1) is satisfied as well whenever p = q.

Our next existence result considers the case where the potential F is subquadratic at 0 and
sublinear at +∞.

Theorem 1.2. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,

(f7) there exist p ∈ (1, 2) and L > 0 such that

lim
s→0+

F (s)

sp
= L,

(f8) there exist q ∈ (0, 1) and M > 0 such that

lim
s→+∞

F (s)

sq
= M,

with F defined in (1.3).
Then, problem (1.1) has at least one positive solution u, with I(u) < 0. In addition, u ∈

W 2,1
loc (α, β) ∩W 1,1(α, β) for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0 a.e. in (α, β), or

a(x) ≤ 0 a.e. in (α, β). Moreover, u ∈W 2,1
loc [0, β), with u′(0) = 0, if α = 0, while u ∈W 2,1

loc (α, 1],
with u′(1) = 0, if β = 1.

Remark 1.6. The existence of classical positive solutions can be proved (see [45]), under the
assumptions of Theorem 1.2, for all λ > 0 sufficiently small. On the contrary, we conjecture
that, for large λ > 0, only bounded variation solutions may exist.

Remark 1.7. Assume that f is locally Lipschitz in (0,+∞) and, for a pair of adjacent intervals,
(α, β), (β, γ) ⊂ (0, 1), we have a(x) ≥ 0 a.e. in (α, β) and a(x) ≤ 0 a.e. in (β, γ) (respectively,
a(x) ≤ 0 a.e. in (α, β) and a(x) ≥ 0 a.e. in (β, γ)).

If u(β−) > 0, u(β+) > 0, then either

u ∈W 2,1
loc (α, γ),

or

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+)

(respectively, u(β−) ≤ u(β+) and u′(β−) = +∞ = u′(β+)).

Whereas, if u(β−) = u(β+) = 0, then u ∈ W 1,1(α, γ) and actually u ∈ W 2,1
loc (α, γ). Indeed,

from (1.7) we infer that u′√
1+(u′)2

∈W 1,1
loc (α, γ) and thus the non-negativity of u yields u′(β) = 0,

which in turn implies u′ ∈W 1,1
loc (α, γ).
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Finally, note that u(β−) > u(β+) = 0 (respectively, u(β+) > u(β−) = 0) cannot occur.
Indeed, otherwise, by taking in (1.7) a test function φ ∈ W 1,1(0, 1), having compact support in
(α, γ) and such that φ(β) 6= 0, we get, as (Dφ)s = 0,∫ γ

α
a f(u)φdx =

∫ γ

α

(Du)a (Dφ)a√
1 + |(Du)a|2

dx.

On the other hand, since u satisfies the equation (1.9) a.e. in (α, β) and a.e. in (β, γ), multiplying
by φ and integrating by parts on each of these two intervals, we obtain, because u′(β−) = −∞

and hence

(
u′√

1+(u′)2

)
(β−) = −1,∫ γ

α
a f(u)φdx

=

∫ γ

α

(Du)a (Dφ)a√
1 + |(Du)a|2

dx−

(
u′√

1 + (u′)2

)
(β−)φ(β−) +

(
u′√

1 + (u′)2

)
(β+)φ(β+)

=

∫ γ

α

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+ φ(β)

(
1 +

(
u′√

1 + (u′)2

)
(β+)

)
.

By comparison we conclude that

(
u′√

1+(u′)2

)
(β+) = −1 and hence u′(β+) = −∞, which is

impossible, due to the non-negativity of u.

Remark 1.8. In the framework of Theorem 1.2, one cannot guarantee the existence of a strictly
positive solution. Actually, the lack of uniqueness for the Cauchy problems associated with the
equation in (1.1) may even produce ‘dead core’ solutions. This will be illustrated through a
simple example in Section 2.

A class of nonlinearities satisfying (f7) and (f8) is given by

f(s) = min
{
sp−1, sq−1

}
,

with p ∈ (1, 2), q ∈ (0, 1). Note also that Remark 1.7 applies to these functions.

Some variants of Theorem 1.1 and Theorem 1.2 can be proved, assuming that f(0) = 0 and
f ′(0) ∈ (0,+∞), and F is superlinear, or respectively sublinear, at +∞. A control on the size
of f ′(0) is however needed. These cases are, respectively, dealt with in Theorem 1.3, where we
actually assume a more general quadraticity condition on F at 0, and in Theorem 1.4, where we
also allow F to be asymptotically linear at +∞. It is worthy to observe that now the considered
assumptions do not rule out the validity of the local Lipschitz condition (f6).

A detailed discussion of the existence and the non-existence of classical positive solutions, as
well as of the development of singularities, when f has finite non-zero slope at 0 is produced in
[45].

Theorem 1.3. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,

(f4) there exist q > 1 and M > 0 such that

lim
s→+∞

F (s)

sq
= M,
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(f5) there exists ϑ > 1 such that

lim
s→+∞

ϑF (s)− f(s) s

s
= 0,

(f9) there exists L > 0 such that

lim
s→0+

F (s)

s2
= L,

with F defined in (1.3).
Then, there is L∗ > 0 such that problem (1.1) has at least one positive solution u, with

I(u) > 0, provided that (f9) is satisfied with L ∈ (0, L∗).

In addition, u ∈ W 2,1
loc (α, β) ∩W 1,1(α, β) for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0

a.e. in (α, β), or a(x) ≤ 0 a.e. in (α, β). Moreover, u ∈ W 2,1
loc [0, β), with u′(0) = 0, if α = 0,

while u ∈W 2,1
loc (α, 1], with u′(1) = 0, if β = 1.

The remaining conclusions of Theorem 1.1 hold too, whenever (f6), or (f6) and (a4), are
assumed.

The simplest prototype of functions satisfying (f2), (f4), (f5) and (f9) is obviously

f(s) = 2Ls,

for some L > 0.

Theorem 1.4. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,

(f9) there exists L > 0 such that

lim
s→0+

F (s)

s2
= L,

(f10) there exists M > 0 such that

lim
s→+∞

F (s)

s
= M,

with F defined in (1.3). Then, there are L∗ > 0 and M∗ > 0 such that problem (1.1) has at
least one positive solution u, with I(u) < 0, provided that (f9) is satisfied with L > L∗ and (f10)
is satisfied with M < M∗.

In addition, u ∈ W 2,1
loc (α, β) ∩W 1,1(α, β) for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0

a.e. in (α, β), or a(x) ≤ 0 a.e. in (α, β). Moreover, u ∈ W 2,1
loc [0, β), with u′(0) = 0, if α = 0,

while u ∈W 2,1
loc (α, 1], with u′(1) = 0, if β = 1.

The remaining conclusions of Theorem 1.1 hold too, whenever (f6), or (f6) and (a4), are
assumed.

Remark 1.9. In Theorem 1.4 condition (f10) can be replaced by condition (f8); in this case no
restriction on M is required.

A simple example of functions satisfying (f2), (f4), (f5), (f9) and (f10) is

f(s) = min{2Ls,M},



10 J. LÓPEZ-GÓMEZ, P. OMARI, AND S. RIVETTI

for some L,M > 0.

Our last two theorems provide the existence of multiple solutions, assuming that either F is
superquadratic at 0 and F is sublinear at +∞, or F is subquadratic at 0 and superlinear at +∞.
These multiplicity conclusions basically rely on the critical value informations we have obtained
in Theorem 1.1 and Theorem 1.2. In order to state these results in a plain form, we introduce
a multiplicative parameter λ > 0 into the right hand side of problem (1.1), as follows−

(
u′√

1 + (u′)2

)′
= λa(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0.

(1.10)

Of course, the functional I associated with (1.10) now depends on the parameter λ as well, i.e.,
for u ∈ BV (0, 1),

I(u) = Iλ(u) = J (u)− λ
∫ 1

0
aF (u) dx. (1.11)

The corresponding variational inequality then reads

J (v)− J (u) ≥ λ
∫ 1

0
af(u)(v − u) dx for all v ∈ BV (0, 1). (1.12)

The left and the right pictures in Figure 1 express graphically the contents of Theorem 1.5 and
Theorem 1.6, respectively. In order to keep this paper within a reasonable length, no attempt
is made here to justify such bifurcation diagrams; details in this direction are given in [45].

λ

‖u‖∞

λ

‖u‖∞

Figure 1. The left picture represents a possible diagram when the potential
F is superquadratic at 0 and sublinear at +∞, while the right one provides a
diagram when F is subquadratic at 0 and superlinear at +∞. In both pictures
the parameter λ is plotted, in abscissas, versus ‖u‖∞, in ordinates.

Theorem 1.5. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,
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(f3) there exist p > 2 and L > 0 such that

lim
s→0+

F (s)

sp
= L,

(f8) there exist q ∈ (0, 1) and M > 0 such that

lim
s→+∞

F (s)

sq
= M,

with F defined in (1.3).
Then, there is λ∗ > 0 such that problem (1.10) has, for all λ > λ∗, at least two positive

solutions u1, u2, with Iλ(u1) < 0 < Iλ(u2).

In addition, u1, u2 ∈W 2,1
loc (α, β)∩W 1,1(α, β) for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0

a.e. in (α, β), or a(x) ≤ 0 a.e. in (α, β). Moreover, u1, u2 ∈W 2,1
loc [0, β), with u′1(0) = u′2(0) = 0,

if α = 0, while u1, u2 ∈W 2,1
loc (α, 1], with u′1(1) = u′2(1) = 0, if β = 1.

The remaining conclusions of Theorem 1.1 hold too, whenever (f6), or (f6) and (a4), are
assumed.

A class of nonlinearities satisfying (f2), (f3) and (f8) is given by

f(s) = min
{
sp−1, sq−1

}
,

with p > 2, q ∈ (0, 1).

Theorem 1.6. Assume that

(a3) a ∈ L1(0, 1) is such that

∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

(f2) f ∈ C0[0,+∞) is such that f(s) ≥ 0 for s ≥ 0,

(f4) there exist q > 1 and M > 0 such that

lim
s→+∞

F (s)

sq
= M,

(f5) there exists ϑ > 1 such that

lim
s→+∞

ϑF (s)− f(s) s

s
= 0,

(f7) there exist p ∈ (1, 2) and L > 0 such that

lim
s→0+

F (s)

sp
= L,

with F defined in (1.3).
Then, there is λ∗ > 0 such that problem (1.10) has, for all λ ∈ (0, λ∗), at least two positive

solutions u1, u2, with Iλ(u1) > 0 > Iλ(u2).

In addition, u1, u2 ∈W 2,1
loc (α, β)∩W 1,1(α, β) for each interval (α, β) ⊂ (0, 1) such that a(x) ≥ 0

a.e. in (α, β), or a(x) ≤ 0 a.e. in (α, β). Moreover, u1, u2 ∈W 2,1
loc [0, β), with u′1(0) = u′2(0) = 0,

if α = 0, while u1, u2 ∈W 2,1
loc (α, 1], with u′1(1) = u′2(1) = 0, if β = 1.

Remark 1.10. The regularity conclusions devised in Remark 1.7 extend to the framework of
Theorem 1.6. Like in Theorem 1.2, even in the context of Theorem 1.6 one cannot guarantee
the existence of a strictly positive solution (cf. Remark 1.8).
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A simple prototype of functions satisfying (f2), (f4), (f5) and (f7) is given by

f(s) = sp−1,

with p ∈ (1, 2).

Remark 1.11. It can be proved (see [45]) that in Theorem 1.5 and Theorem 1.6 one of the two
solutions can be chosen to be classical.

The proofs of all the results stated in this paper rely on a perturbation argument, a sort
of ‘penalization’, first introduced in [61], and further developed in [27, 44, 43, 11, 55, 54], for
studying a number of boundary value problems associated with the mean curvature equation.
It is worthy to point out that this approach has so far been limited to discussing cases where
the discontinuities of the solutions may occur only on the boundary of the domain and not, like
here, in the interior. Detecting and describing such lack of interior regularity requires developing
a more refined argument, which for the moment seems to work limited to the one-dimensional
case. The approximating problems are solved by using a minimax technique, in the frame
of Theorem 1.1 and Theorem 1.3, and a minimization method, in the frame of Theorem 1.2
and Theorem 1.4. In all cases the obtention of W 1,1-estimates allow us to pass to the limit
in the approximation scheme to get a bounded variation solution of the original problem. The
multiplicity conclusions of Theorem 1.5 and Theorem 1.6 combines the preceding approaches and
hinges over suitable critical value estimates. A further concavity/convexity argument, combined
with ordinary differential equations techniques, finally permits to conclude the partial regularity
of the obtained bounded variation solutions.

2. Some illustrating examples

First, we present a simple example showing that discontinuities of the solutions of (1.1) in the
interior of the interval [0, 1] may actually occur.

Example 1. Let f : [0,+∞) → [0,+∞) be any continuous function satisfying f(s) > 0 for
s > 0. Then, the function u ∈ BV (0, 1) given by

u(x) =


1 +

√
1
4 − x2 if 0 ≤ x < 1

2 ,

3
4 −

√
1
4 − (x− 1)2 if 1

2 ≤ x ≤ 1,

is a strictly positive solution of problem (1.1), with a ∈ L∞(0, 1) defined by

a(x) = 2 sgn(1
2 − x) (f(u(x)))−1.

Indeed, for any φ ∈ BV (0, 1), with |Dφ|s absolutely continuous with respect to |Du|s, we have∫ 1
2

0
a f(u)φdx = −

∫ 1
2

0

(
u′√

1 + (u′)2

)′
φdx = φ(1

2

−
) +

∫ 1
2

0

u′φ′√
1 + (u′)2

dx,

∫ 1

1
2

a f(u)φdx = −
∫ 1

1
2

(
u′√

1 + (u′)2

)′
φdx = −φ(1

2

+
) +

∫ 1

1
2

u′φ′√
1 + (u′)2

dx

and hence ∫ 1

0
a f(u)φdx =

∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+ φ(1
2

−
)− φ(1

2

+
)

=

∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+

∫ 1

0
sgn

(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s.
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Then the conclusion follows from Remark 1.1.

Next, we show with another simple example how, in the framework of Theorem 1.2, one cannot
guarantee the existence of a strictly positive solution; the lack of uniqueness for the Cauchy
problems associated with the equation in (1.1) may actually produce ‘dead core’ solutions.

Example 2. Let f : [0,+∞)→ [0,+∞) be any continuous function with

f(s) =
√
s for s ∈ [0, 1].

Then, the function u ∈W 2,∞(0, 1) defined by

u(x) =


0 if 0 ≤ x ≤ 1

3 ,

1
144(x− 1

3)4 if 1
3 < x ≤ 2

3 ,

1
144( 2

81 − (x− 1)4) if 2
3 < x ≤ 1,

is a positive solution of (1.1), with a ∈ L∞(0, 1) defined by

a(x) =

−1 if 0 ≤ x ≤ 1
3 ,

−u′′(x) (u(x))−
1
2 (1 + (u′(x))2)−

3
2 if 1

3 < x ≤ 1,

because (sufficiently) smooth solutions of (1.1) solve −u
′′ = a(x)f(u)

(
1 + (u′)2

) 3
2 in (0, 1),

u′(0) = u′(1) = 0.

3. Proof of Proposition 1.1

We point out that, although the conclusion and the proof of Proposition 1.1 is classical in
the semilinear case (see, e.g., [7]), the adaptation to the present context, and in particular to
the present notion of solution, requires a different argument, which relies on a rather delicate
one-sided approximation argument in the space of bounded variation functions proven in [19].

Assume (a1) and (f1), and suppose that (1.1) admits a strictly positive solution u. We first
notice that u cannot be a constant. Indeed, otherwise we get from (1.6)

0 = f(u)

∫ 1

0
a v dx for all v ∈ BV (0, 1)

and hence a = 0, thus contradicting assumption (a1).
We next observe that, since ess inf u > 0 and (f1) holds, 1

f(u) ∈ BV (0, 1) and, due to [19,

Theorem 3.3, p. 370], there exists a sequence (vn)n in W 1,1(0, 1) such that, for all n ≥ 1,

vn ≥ u a.e. in [0, 1], (3.1)

lim
n→+∞

vn = u and lim
n→+∞

1

f(vn)
=

1

f(u)
in L1(0, 1) and a.e. in [0, 1], (3.2)

and

lim
n→+∞

∫ 1

0
|v′n| dx =

∫ 1

0
|Du|, lim

n→+∞
J (vn) = J (u). (3.3)

Then, for any given t > 0, we have

lim
n→+∞

(
vn +

t

f(vn)

)
= u+

t

f(u)
in L1(0, 1)
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and hence, by the lower semi-continuity of J with respect the L1-convergence in BV (0, 1),

J
(
u+

t

f(u)

)
≤ lim inf

n→+∞
J
(
vn +

t

f(vn)

)
.

This entails that, along a subsequence of (vn)n, still labeled by n, we have

J
(
u+

t

f(u)

)
− J (u) ≤ lim

n→+∞

(
J
(
vn +

t

f(vn)

)
− J (vn)

)
. (3.4)

Moreover, by (3.2) and (3.3), the sequence (vn)n is bounded in W 1,1(0, 1), and therefore in
L∞(0, 1), and, by (3.1), vn ≥ u ≥ ess inf u > 0 for all n ≥ 1. Thus, using (f1), we infer the
existence of a constant δ ∈ (0, 1) such that

δ ≤ f ′(vn)

(f(vn))2
≤ 1

δ
for all n ≥ 1.

Hence, for any given t ∈ (0, δ) and all n ≥ 1, the next chain of estimates holds

1

t

(
J
(
vn +

t

f(vn)

)
− J (vn)

)
=

1

t

∫ 1

0

(√
1 +

(
v′n − t

f ′(vn)

(f(vn))2
v′n

)2
−
√

1 + (v′n)2

)
dx

=
1

t

∫ 1

0

(v′n)2
((

1− t f ′(vn)
(f(vn))2

)2
− 1
)

√
1 + (v′n)2

(
1− t f ′(vn)

(f(vn))2

)2
+
√

1 + (v′n)2

dx

≤ 1

t

∫ 1

0

(v′n)2 t δ (tδ − 2)√
1 + (v′n)2

(
1− t f ′(vn)

(f(vn))2

)2
+
√

1 + (v′n)2

dx.

Consequently, since

tδ − 2 < −1 and

√
1 + (v′n)2

(
1− t f

′(vn)

(f(vn))2

)2
≤
√

1 + (v′n)2,

we find that
1

t

(
J
(
vn +

t

f(vn)

)
− J (vn)

)
≤ −δ

∫ 1

0

v′n
2

2
√

1 + v′n
2
dx (3.5)

for all n ≥ 1.
We claim that

lim inf
n→+∞

∫ 1

0

(v′n)2√
1 + (v′n)2

dx > 0. (3.6)

Suppose by contradiction that there exists a subsequence of (vn)n, still labeled by n, such that

lim
n→+∞

∫ 1

0

(v′n)2√
1 + (v′n)2

dx = 0. (3.7)

Since x 7→ x√
1+x2

is increasing, it is clear that

x2

√
1 + x2

≥ x√
2

for x ≥ 1.
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Thus we have

1√
2

∫
{|v′n|≥1}

|v′n| dx ≤
∫
{|v′n|≥1}

(v′n)2√
1 + (v′n)2

dx ≤
∫ 1

0

(v′n)2√
1 + (v′n)2

dx,

and, from (3.7),

lim
n→+∞

∫
{|v′n|≥1}

|v′n| dx = 0. (3.8)

Similarly, since x 7→ 1√
1+x2

is decreasing, it is evident that

x2

√
2
≤ x2

√
1 + x2

for x ∈ [0, 1].

Hence we infer
1√
2

∫
{|v′n|<1}

|v′n|2 dx ≤
∫
{|v′n|<1}

(v′n)2√
1 + (v′n)2

dx. (3.9)

As (∫
{|v′n|<1}

|v′n| dx

)2

≤
∫
{|v′n|<1}

|v′n| dx ≤
∫
{|v′n|<1}

|v′n|2 dx,

by (3.9), we find that

1√
2

(∫
{|v′n|<1}

|v′n| dx

)2

≤
∫
{|v′n|<1}

(v′n)2√
1 + (v′n)2

dx ≤
∫ 1

0

(v′n)2√
1 + (v′n)2

dx.

Consequently, from (3.7) and (3.8) we deduce that

lim
n→+∞

∫ 1

0
|v′n| dx = 0.

Hence, by (3.3), we obtain ∫ 1

0
|Du| = 0,

which is impossible, because u is not a constant. Thus, (3.6) holds, as claimed above. Therefore,
according to (3.4) and (3.5), we get

1

t

(
J
(
u+

t

f(u)

)
− J (u)

)
≤ lim

n→+∞

1

t

(
J
(
vn +

t

f(vn)

)
− J (vn)

)
< 0.

Thus, by taking v = u+ t
f(u) as a test function in (1.6), we conclude that∫ 1

0
a dx ≤ 1

t

(
J
(
u+

t

f(u)

)
− J (u)

)
< 0.

Moreover, since (1.8) holds, that is ∫ 1

0
a f(u) dx = 0,

and ess inf f(u) > 0, the positive part a+ of a must have a support with positive measure. The
proof of Proposition 1.1 is concluded. �
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4. Proof of Theorem 1.1

Since condition (f3) implies f(0) = 0, we can extend f to the whole of R as an odd continuous
function. Then, by (f2), (f3), (f4) and (f5), the following conditions hold for the odd extension
of f , that we still denote by f :

(fo
2 ) f ∈ C0(R) is such that f(s) sgn(s) ≥ 0 for all s ∈ R,

(fo
3 ) there exist p > 2 and L > 0 such that

lim
s→0

F (s)

|s|p
= L,

(fo
4 ) there exist q > 1 and M > 0 such that

lim
|s|→+∞

F (s)

|s|q
= M,

(fo
5 ) there exists ϑ > 1 such that

lim
|s|→+∞

ϑF (s)− f(s) s

s
= 0,

with F defined in (1.3).

Part 1. Solvability. The solvability of the problem will proceed after a series of steps.
First we are going to describe a regularization scheme. Then, we will establish the existence of a
solutions for each of the regularized problems through the mountain pass theorem of Ambrosetti
and Rabinowitz [4, 57]. Since these approximating solutions possess a uniform a priori bound
in W 1,1, by a compactness argument and critical value estimates one can establish the existence
of a non-trivial bounded variation solution for (1.1). Finally, invoking the variational principle
of Ekeland [26] we will be able to prove the existence of a positive solution for (1.1).

Step 1. A regularization scheme. Let us fix a number

ρ ∈ (1, q) . (4.1)

Since in Remark 1.4 we proved that ϑ = q, we have that ρ < ϑ too. Let us consider the odd
C1-diffeomorphism ψ : R→ R given by

ψ(s) =
(
(1 + |s|)ρ−1 − 1

)
sgn(s),

as well as the sequence of odd C1-diffeomorphisms ϕn : R→ R defined by

ϕn(s) =
s√

1 + s2
+

1

n
ψ(s), (4.2)

for all n ∈ N, with n ≥ 1. Subsequently, we set

Ψ(s) =

∫ s

0
ψ(t) dt =

1

ρ

(
(1 + |s|)ρ − 1

)
− |s|, (4.3)

Φn(s) =

∫ s

0
ϕn(t) dt =

√
1 + s2 − 1 +

1

n
Ψ(s), (4.4)

for all s ∈ R, and we consider, for each n ≥ 1, the associated functionals Jn : W 1,ρ(0, 1) → R
defined by

Jn(u) = J (u) +
1

n

∫ 1

0
Ψ(u′) dx,
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where J is given by (1.4), as well as In : W 1,ρ(0, 1)→ R defined by

In(u) = Jn(u)−
∫ 1

0
aF (u) dx.

For each n ≥ 1, the function ϕn is increasing and therefore the functional Jn is convex. Moreover,
as Ψ(s) ≥ 0 for all s ∈ R, it is clear that Jn(u) ≥ J (u) for all u ∈W 1,ρ(0, 1) and hence

In(u) ≥ I(u) for all u ∈W 1,ρ(0, 1). (4.5)

It follows from, e.g., [25, Chapter 2] or [57, Appendix B] that each In is of class C1, with
differential I ′n(u) ∈

(
W 1,ρ(0, 1)

)∗
given by

I ′n(u)(v) =

∫ 1

0

u′ v′√
1 + (u′)2

dx+
1

n

∫ 1

0
ψ(u′) v′ dx−

∫ 1

0
a f(u) v dx

for all u, v ∈ W 1,ρ(0, 1). Clearly, if u ∈ W 1,ρ(0, 1) is a critical point of the functional In, then
ϕn(u′) ∈W 1,1(0, 1) and satisfies−

(
ϕn(u′)

)′
= a(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0.
(4.6)

As u′ ∈ W 1,1(0, 1) (see [17, Theorem 2.24]), the differential equation in (4.6) can equivalently
be written as

−u′′ = a(x)f(u)

ϕ′n(u′)
=

a(x)f(u)(1 + (u′)2)
3
2

1 + 1
n(1 + (u′)2)

3
2 (ρ− 1)(1 + |u′|)ρ−2

. (4.7)

Throughout the proof of this theorem, for every u ∈ L1(0, 1) we set

r =

∫ 1

0
u dx and w = u− r,

so that u can be decomposed in the form

u = w + r, (4.8)

with
∫ 1

0 w dx = 0. Then, for each u ∈ BV (0, 1), we set

‖u‖BV =

∫ 1

0
|Dw|+ |r|

and, if u ∈W 1,σ(0, 1) for some σ ≥ 1,

‖u‖W 1,σ =

(∫ 1

0
|w′|σ dx

) 1
σ

+ |r| = ‖w′‖Lσ + |r|. (4.9)

Using the representation (4.8), we can write, for all u ∈ BV (0, 1), the Poincaré-Wirtinger
inequality [17, p. 102] in the form

‖w‖∞ ≤
∫ 1

0
|Dw|,

and in particular, for all u ∈W 1,1(0, 1),

‖w‖∞ ≤ ‖w′‖L1 . (4.10)

Step 2. Solving the regularized problems. We will find a solution of (4.6) for any given
n ≥ 1, as a critical point of In, via the mountain pass theorem.

The mountain pass geometry will follow from the next two technical results.
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Lemma 4.1. There exist constants δ > 0 and η > 0 such that, setting

Sη = {u ∈W 1,ρ(0, 1) : ‖u‖W 1,1 = ‖w′‖L1 + |r| = η},
one has, for all n ≥ 1,

inf
u∈Sη

In(u) ≥ inf
u∈Sη

I(u) ≥ δ.

Proof. Pick u ∈ W 1,1(0, 1) and use the decomposition (4.8). Due to the convexity of the

function s 7→
√

1 + s2, the Jensen inequality yields√
1 + ‖w′‖2

L1 ≤
∫ 1

0

√
1 + |w′|2 dx

and hence

I(u) =

∫ 1

0

√
1 + (w′)2 dx− 1−

∫ 1

0
aF (w + r) dx

≥
√

1 + ‖w′‖2
L1 − 1−

∫ 1

0
aF (w + r) dx

=
‖w′‖2L1

1 +
√

1 + ‖w′‖2
L1

−
∫ 1

0
a (F (w + r)− L|w + r|p) dx

− L
∫ 1

0
a (|w + r|p − |r|p) dx− L|r|p

∫ 1

0
a dx,

(4.11)

where, according to (fo
3 ),

L = lim
s→0

F (s)

|s|p
> 0,

with p > 2. For any given ε > 0, there is η0 ∈ (0, 1) such that

|F (s)− L|s|p| ≤ ε|s|p, if |s| ≤ η0. (4.12)

Let u ∈W 1,1(0, 1) satisfy ‖u‖W 1,1 ≤ η0. Then, by (4.9) and (4.10), we have

‖w‖∞ + |r| ≤ ‖w′‖L1 + |r| = ‖u‖W 1,1 ≤ η0.

Recall that, for all x, y ∈ R and all p > 0,

|x+ y|p ≤ max{1, 2p−1}(|x|p + |y|p) (4.13)

and hence, for all x, y ∈ R and all p > 1,∣∣|x+ y|p − |x|p
∣∣ ≤ max{1, 2p−2}(p |x|p−1|y|+ |y|p). (4.14)

Indeed, we have∣∣|x+ y|p − |x|p
∣∣ =

∣∣∣∣∫ 1

0
p|x+ ty|p−2(x+ ty)y dt

∣∣∣∣
≤
∫ 1

0
p|x+ ty|p−1|y| dt ≤ pmax{1, 2p−2}

(
|x|p−1|y|+ 1

p
|y|p
)
.

Using (4.12), (4.13), with p > 2, and (4.10), we get∣∣∣∣∫ 1

0
a (F (w + r)− L|w + r|p) dx

∣∣∣∣ ≤ ∫ 1

0
|a| ε |w + r|p dx

≤ ε ‖a‖L12p−1 (‖w‖p∞ + |r|p)
≤ ε ‖a‖L12p−1

(
‖w′‖p

L1 + |r|p
)
.
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Moreover, using (4.14), with p > 2, and (4.10), we obtain∣∣∣∣L∫ 1

0
a (|w + r|p − |r|p) dx

∣∣∣∣ ≤ L‖a‖L1 ‖|w + r|p − |r|p‖∞

≤ L‖a‖L12p−2(p|r|p−1‖w‖∞ + ‖w‖p∞)

≤ L‖a‖L12p−2(p|r|p−1‖w′‖L1 + ‖w′‖p
L1)

≤ p 2p−3L‖a‖L1

(
1

σ
|r|2(p−1) + σ‖w′‖2L1

)
+ 2p−2L‖a‖L1‖w′‖p

L1 ,

for any given σ > 0. Then, from (4.11) we infer that, for all u ∈ W 1,1(0, 1) satisfying ‖w′‖L1 +
|r| = ‖u‖W 1,1 = η0,

I(u) ≥ 1

1 +
√

2
‖w′‖2L1 − p 2p−3L‖a‖L1 σ‖w′‖2L1 − 2p−2(L+ 2ε)‖a‖L1‖w′‖p

L1

−
(

2p−1‖a‖L1 ε+ L

∫ 1

0
a dx

)
|r|p − p 2p−3L‖a‖L1

1

σ
|r|2(p−1).

Hence, taking ε > 0 and σ > 0 sufficiently small and using the condition
∫ 1

0 a dx < 0, assumed
in (a3), we can find constants A,B,C,D > 0 such that

I(u) ≥ A‖w′‖2L1 −B‖w′‖pL1 + C|r|p −D|r|2(p−1).

Let us set x = ‖w′‖L1 and y = |r|. Taking η ∈ (0, η0) sufficiently small and using the condition
p > 2, we see that (

A−Bxp−2
)
x2 + (C −Dyp−2)yp ≥ A

2
x2 +

C

2
yp > 0,

for all x ≥ 0 and y ≥ 0, with x+ y = η. Hence, setting

δ = min
x≥0,y≥0
x+y=η

1

2

(
Ax2 + Cyp

)
> 0,

we infer that, for every n ≥ 1, the estimate

inf
u∈Sη

In(u) ≥ inf
u∈Sη

I(u) ≥ δ

holds. This concludes the proof of Lemma 4.1. �

Lemma 4.2. There exists ζ ∈ W 1,ρ(0, 1), with min ζ ≥ 0 and ‖ζ‖W 1,1 > η, such that, for all
n ≥ 1,

In(ζ) < 0.

Proof. By assumption (a3), there is an interval K ⊂ (0, 1) such that a(x) > 0 a.e. in K. Pick a
function z ∈ C1[0, 1], with supp z ⊂ K, such that z(x) = 1 in an interval K0 ⊂ K. Then, since
F (s) ≥ 0 for all s ∈ R and F (0) = 0, we easily get, for any given t > 0 and all n ≥ 1,

In(t z) = Jn(t z)−
∫
K
aF (t z) dx

= Jn(t z)−
∫
K0

aF (t) dx−
∫
K\K0

aF (t z) dx

≤ Jn(t z)− F (t)

∫
K0

a dx
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and thus, using (4.3) and (4.4),

In(t z) ≤
∫ 1

0

((
1 + (t z′)2

) 1
2 − 1

)
dx+

1

n

∫ 1

0
Ψ(t z′) dx− F (t)

∫
K0

a dx

≤
∫
K
|t z′| dx+

1

ρ

∫
K

(
(1 + |t z′|)ρ − 1

)
dx−

∫
K
|t z′| dx− F (t)

∫
K0

a dx

≤ tq
(
tρ−q

ρ

∫
K

(
t−1 + |z′|

)ρ
dx− F (t)

tq

∫
K0

a dx

)
.

Since we have, by (fo
4 ),

lim
t→+∞

F (t)

tq
= M > 0

and, by (4.1), ρ < q, we derive

lim
t→+∞

(
tρ−q

ρ

∫
K

(
t−1 + |z′|

)ρ
dx− F (t)

tq

∫
K0

a dx

)
= −M

∫
K0

a dx < 0.

Therefore, we conclude that
In(t z) < 0

for all sufficiently large t > 0. By setting ζ = tz, Lemma 4.2 follows. �

The next result establishes the Palais–Smale condition in our framework.

Lemma 4.3. Fix n ∈ N, with n ≥ 1. Let (uk)k be a sequence in W 1,ρ(0, 1) satisfying

sup
k≥1
|In(uk)| < +∞ and lim

k→+∞
I ′n(uk) = 0 in

(
W 1,ρ(0, 1)

)∗
. (4.15)

Then, there is a subsequence of (uk)k, still labeled by k, and u ∈W 1,ρ(0, 1) such that

lim
k→+∞

uk = u in W 1,ρ(0, 1). (4.16)

Proof. We first show that (uk)k is bounded in W 1,ρ(0, 1). By (4.15), there exist a constant
c > 0 and a sequence (εk)k in (0, 1), with lim

k→+∞
εk = 0, such that

In(uk) =

∫ 1

0

√
1 + (u′k)

2 dx− 1 +
1

n

∫ 1

0
Ψ(u′k) dx−

∫ 1

0
aF (uk) dx ≤ c (4.17)

and ∣∣I ′n(uk)(uk)
∣∣ =

∣∣∣∣∣
∫ 1

0

(u′k)
2√

1 + (u′k)
2
dx+

1

n

∫ 1

0
ψ(u′k)u

′
k dx−

∫ 1

0
af(uk)uk dx

∣∣∣∣∣ ≤ εk‖uk‖W 1,ρ

for all k ≥ 1. Hence we get

ϑIn(uk)− I ′n(uk)(uk) =

∫ 1

0

(
ϑ

(√
1 + (u′k)

2 − 1

)
−

(u′k)
2√

1 + (u′k)
2

)
dx

+
1

n

∫ 1

0

(
ϑΨ(u′k)− ψ(u′k)u

′
k

)
dx−

∫ 1

0
a (ϑF (uk)− f(uk)uk) dx

≤ ϑ c+ εk ‖uk‖W 1,ρ

(4.18)

for all k ≥ 1, where the constant ϑ (> ρ) comes from (fo
5 ). Now, observe that there exists a

constant κ > 0 such that the next two elementary inequalities hold

ϑ
(√

1 + s2 − 1
)
− s2

√
1 + s2

≥ 1

2
(ϑ− 1) |s| − κ, (4.19)
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ϑΨ(s)− ψ(s) s ≥ 1

2

(ϑ
ρ
− 1
)
|s|ρ − κ, (4.20)

for all s ∈ R. Moreover, by (fo
5 ), for every ε > 0 there exists cε > 0 such that

|ϑF (s)− f(s)s| ≤ ε|s|+ cε for all s ∈ R. (4.21)

Let us set, for all k ≥ 1,

rk =

∫ 1

0
uk dx and wk = uk − rk. (4.22)

According to (4.19), (4.20) and (4.21), we obtain from (4.9), (4.10) and (4.18) that

ϑ c+ εk (‖u′k‖Lρ + |rk|)

≥ 1

2
(ϑ− 1) ‖u′k‖L1 +

1

2n

(
ϑ

ρ
− 1

)
‖u′k‖

ρ
Lρ − ε‖a‖L1‖uk‖∞ − cε‖a‖L1 − 2κ.

≥ 1

2n

(
ϑ

ρ
− 1

)
‖u′k‖

ρ
Lρ − ε‖a‖L1(‖u′k‖L1 + |rk|)− cε‖a‖L1 − 2κ.

Consequently, as ‖uk‖L1 ≤ ‖uk‖Lρ for all k ≥ 1, we obtain

1

2n

(
ϑ

ρ
− 1

)
‖u′k‖

ρ
Lρ ≤ εk (‖u′k‖Lρ+|rk|)+ε‖a‖L1(‖u′k‖Lρ+|rk|)+cε‖a‖L1 +2κ+ϑc

for all k ≥ 1. As in the previous estimate ϑ
ρ > 1, ε > 0 is arbitrary and lim

k→+∞
εk = 0, we can

find a constant d > 0 such that

‖u′k‖
ρ
Lρ ≤ |rk|+ d for all k ≥ 1. (4.23)

Let us suppose, by contradiction, that the sequence (rk)k is unbounded, e.g., possibly for a
subsequence still labeled by k,

lim
k→+∞

rk = +∞. (4.24)

Then, by (4.23), for sufficiently large k, we obtain

‖u′k‖Lρ
rk

≤ (rk + d)
1
ρ

rk
=
(
r1−ρ
k + dr−ρk

) 1
ρ

and hence, since ρ > 1,

lim
k→+∞

‖u′k‖Lρ
rk

= 0. (4.25)

Owing to (4.22) and (4.10), we have

‖wk‖∞ ≤ ‖w′k‖L1 ≤ ‖w′k‖Lρ = ‖u′k‖Lρ

and hence, due to (4.25),

lim
k→+∞

‖uk − rk‖∞
rk

= lim
k→+∞

‖wk‖∞
rk

= 0,

or, in other words,

lim
k→+∞

uk
rk

= 1 uniformly in [0, 1]. (4.26)

From (4.24) and (4.26), we infer

lim
k→+∞

uk = +∞ uniformly in [0, 1]. (4.27)
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Thus, by (fo
4 ) we also have

lim
k→+∞

F (uk)

uqk
= M > 0 uniformly in [0, 1]. (4.28)

Therefore, by the dominated convergence theorem, from (4.17), (4.26) and (4.28) we find that

0 = lim
k→+∞

c

rqk
≥ lim

k→+∞

In(uk)

rqk

≥ − lim
k→+∞

∫ 1

0
a(x)

F (uk(x))

(uk(x))q

(
uk(x)

rk

)q
dx = −M

∫ 1

0
a dx,

which is impossible, because we are assuming that
∫ 1

0 a dx < 0. As one can get a similar
contradiction assuming that, along some subsequence relabeled by k,

lim
k→+∞

rk = −∞,

we conclude that the sequence (rk)k is bounded. Consequently, by (4.23), the sequence (u′k)k is
bounded in Lρ(0, 1) and therefore, (uk)k is bounded in W 1,ρ(0, 1), which was the first claim of
the theorem.

Accordingly, thanks to the theorem of Eberlein-Shmulyan, there exist a subsequence of (uk)k,
labeled again by k, and a function u ∈W 1,ρ(0, 1) such that

lim
k→+∞

uk = u weakly in W 1,ρ(0, 1) and strongly in L∞(0, 1), (4.29)

because, due to the theorem of Rellich-Kondrachov, the imbedding of W 1,ρ(0, 1) into C0[0, 1] is
compact.

Next, we consider the generalized Dirichlet form

An(u, v) :=

∫ 1

0

u′ v′√
1 + (u′)2

dx+
1

n

∫ 1

0
ψ(u′) v′ dx−

∫ 1

0
|u|ρ−2u v dx,

for all u, v ∈W 1,ρ(0, 1). Since all assumptions of [15, Lemma 3] hold, the condition (S) therein
will guarantee that (uk)k is convergent to u strongly in W 1,ρ(0, 1) provided that

lim
k→+∞

(
An(uk, uk − u)−An(u, uk − u)

)
= 0. (4.30)

Therefore, to complete the proof of the lemma, it suffices to establish (4.30).
As, due to (4.15), lim

k→+∞
I ′n(uk) = 0 in

(
W 1,ρ(0, 1)

)∗
and (uk)k is bounded in W 1,ρ(0, 1), we

find that
lim

k→+∞
I ′n(uk)(uk − u) = 0. (4.31)

Moreover, since from (4.29) lim
k→+∞

uk = u in L∞(0, 1), it is clear that

lim
k→+∞

∫ 1

0
|uk|ρ−2uk(uk − u) dx = 0, lim

k→+∞

∫ 1

0
af(uk)(uk − u) dx = 0. (4.32)

Therefore, since

An(uk, uk − u) = I ′n(uk)(uk − u)+

∫ 1

0
|uk|ρ−2uk(uk − u) dx+

∫ 1

0
a f(uk) (uk − u) dx

for all k ≥ 1, we find from (4.31) and (4.32) that

lim
k→+∞

An(uk, uk − u) = 0. (4.33)
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Similarly, for every k ≥ 1, we have

An(u, uk − u) = I ′n(u)(uk − u) +

∫ 1

0
|u|ρ−2u(uk − u) dx+

∫ 1

0
a f(u) (uk − u) dx.

Since the linear functional I ′n(u) is weakly continuous in W 1,ρ(0, 1), condition (4.29) implies
that

lim
k→+∞

I ′n(u)(uk − u) = 0.

Moreover, since lim
k→+∞

uk = u in L∞(0, 1), we infer

lim
k→+∞

∫ 1

0
|u|ρ−2u(uk − u) dx = 0, lim

k→+∞

∫ 1

0
a f(u) (uk − u) dx = 0.

Consequently, we get
lim

k→+∞
An(u, uk − u) = 0

and combining this with (4.33), (4.30) holds. This ends the proof of Lemma 4.3. �

Subsequently, we consider the set of continuous curves linking the origin to the point ζ con-
structed in Lemma 4.2, i.e.,

Γ = {γ ∈ C0([0, 1],W 1,ρ(0, 1)) : γ(0) = 0, γ(1) = ζ}
and, for every n ≥ 1, we set

cn = inf
γ∈Γ

max
t∈[0,1]

In(γ(t)).

The mountain pass theorem then guarantees the existence, for any given n ≥ 1, of a critical
point un ∈W 1,ρ(0, 1) of the functional In, satisfying

In(un) = cn = inf
γ∈Γ

max
t∈[0,1]

In(γ(t)). (4.34)

As ϕn(u′) ∈W 1,1(0, 1), un is a solution of (4.6) with un ∈W 2,1(0, 1). Morerover, since In+1(v) ≤
In(v) for each n ≥ 1 and every v ∈W 1,ρ(0, 1), we find, using Lemma 4.1 too, that

0 < δ ≤ cn+1 ≤ cn ≤ · · · ≤ c1 (4.35)

for all n ≥ 1.

Step 3. Uniform estimates in W 1,1(0, 1) for the mountain pass solutions. The main
conclusion of this section is the next one.

Lemma 4.4. Let, for each n ≥ 1, un ∈ W 1,ρ(0, 1) be the solution of (4.6) satisfying (4.34).
Then, we have

sup
n≥1
‖un‖W 1,1 < +∞. (4.36)

Proof. We can easily adapt the first part of the proof of Lemma 4.3 to the present setting.
Indeed, according to (4.35), we have

δ ≤ In(un) =

∫ 1

0

(√
1 + (u′n)2 − 1

)
dx

+
1

n

∫ 1

0
Ψ(u′n) dx−

∫ 1

0
aF (un) dx = cn ≤ c1 (4.37)

and

I ′n(un)(un) =

∫ 1

0

(u′n)2√
1 + (u′n)2

dx+
1

n

∫ 1

0
ψ(u′n)u′n dx−

∫ 1

0
af(un)un dx = 0
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for all n ≥ 1. Thus, we get

ϑIn(un)− I ′n(un)(un) =

∫ 1

0

(
ϑ
(√

1 + (u′n)2 − 1
)
− (u′n)2√

1 + (u′n)2

)
dx

+
1

n

∫ 1

0

(
ϑΨ(u′n)− ψ(u′n)u′n

)
dx−

∫ 1

0
a (ϑF (un)− f(un)un) dx ≤ ϑ c1

and hence, using (4.19), (4.20) and (4.21),

ϑc1 ≥
1

2
(ϑ−1)‖u′n‖L1 +

1

2n

(
ϑ

ρ
−1

)
‖u′n‖

ρ
Lρ−ε‖a‖L1(‖u′n‖L1 +|rn|)−cε‖a‖L1−2κ

≥ 1

2
(ϑ−1)‖u′n‖L1−ε‖a‖L1(‖u′n‖L1 +|rn|)−cε‖a‖L1−2κ.

Therefore, for every ε > 0 there exists dε > 0 such that

‖u′n‖L1 ≤ ε|rn|+ dε for all n ≥ 1. (4.38)

Let us suppose by contradiction that the sequence (rn)n is unbounded, e.g., possibly for a
subsequence, relabeled by n,

lim
n→+∞

rn = +∞.

Then, by (4.38), for sufficiently large k, we obtain

‖u′n‖L1

rn
≤ ε+

dε
rn

and hence, letting n→ +∞ ,

lim
n→+∞

‖u′n‖L1

rn
≤ ε.

As ε > 0 is arbitrary, we infer

lim
n→+∞

‖u′n‖L1

rn
= 0.

Then, arguing as in the proof of Lemma 4.3, we find

lim
n→+∞

un
rn

= 1 uniformly in [0, 1],

lim
n→+∞

un = +∞ uniformly in [0, 1],

lim
n→+∞

F (un)

uqn
= M > 0 uniformly in [0, 1].

Therefore, it readily follows from (4.37) that

0 = lim
n→+∞

c1

rqn
≥ lim

n→+∞

In(un)

rqn

≥ − lim
n→+∞

∫ 1

0
a(x)

F (un(x))

(un(x))q

(
un(x)

rn

)q
dx = −M

∫ 1

0
a dx.

which is impossible, because
∫ 1

0 a dx < 0. Consequently, (rn)n is bounded. Condition (4.38)

implies that (u′n)n is bounded in L1(0, 1) and hence (un)n is bounded in W 1,1(0, 1). This ends
the proof of Lemma 4.4. �
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Step 4. Existence of a solution of (1.1). Condition (4.36) implies, by [5, Theorem 3.23,
Proposition 3.13], that there exist a subsequence of (un)n, labeled again by n, and a function
u ∈ BV (0, 1) such that

sup
n≥1
‖un‖∞ < +∞ and lim

n→+∞
un = u in L1(0, 1) and a.e. in [0, 1]. (4.39)

Let us prove that u is a solution of (1.1), i.e., u satisfies (1.6) for all v ∈ BV (0, 1). Since the
functional Jn : W 1,ρ(0, 1)→ R is convex and of class C1 and I ′n(un) = 0 for all n ≥ 1, we have
that ∫ 1

0
af(un)(z − un) dx = J ′n(un)(z − un) ≤ Jn(z)− Jn(un) (4.40)

for every z ∈W 1,ρ(0, 1). Since by (4.39)

sup
n≥1
‖f(un)(z − un)‖∞ < +∞

and

lim
n→+∞

af(un)(z − un) = af(u)(z − u) a.e. in [0, 1],

the dominated convergence theorem implies that∫ 1

0
af(u)(z − u) dx = lim

n→+∞

∫ 1

0
af(un)(z − un) dx.

Thus, by (4.40) and the lower semicontinuity of J with respect to the L1-convergence in
BV (0, 1), we infer∫ 1

0
af(u)(z−u) dx ≤ lim sup

n→+∞
(Jn(z)− Jn(un))

≤ lim
n→+∞

(
J (z) +

1

n

∫ 1

0
Ψ(z′) dx

)
− lim inf

n→+∞

(
J (un) +

1

n

∫ 1

0
Ψ(u′n) dx

)
≤J (z)− J (u).

Since J is a continuous functional on W 1,1(0, 1) and W 1,ρ(0, 1) is dense in W 1,1(0, 1), it is easily
seen that

J (z)− J (u) ≥
∫ 1

0
af(u)(z − u) dx for all z ∈W 1,1(0, 1). (4.41)

Fix now v ∈ BV (0, 1). The approximation property in BV (0, 1) stated in [6, Fact 3.3]
guarantees the existence of a sequence (zn)n in W 1,1(0, 1) such that

lim
n→+∞

zn = v in L1(0, 1) and a.e. in [0, 1]

and

lim
n→+∞

J (zn) = J (v).

The last condition also implies that

sup
n≥1
‖zn‖∞ ≤ sup

n≥1
‖zn‖W 1,1 < +∞

and hence, thanks to the dominated convergence theorem,

lim
n→+∞

∫ 1

0
af(u)zn =

∫ 1

0
af(u)v dx.



26 J. LÓPEZ-GÓMEZ, P. OMARI, AND S. RIVETTI

Therefore, since

J (zn)− J (u) ≥
∫ 1

0
af(u)(zn − u) dx for all n ≥ 1,

letting n→ +∞ in this inequality yields (1.6) for all v ∈ BV (0, 1).

Step 5. A critical value estimate. There is a subsequence of (un)n, still labeled by n, such
that

lim
n→+∞

I(un) = I(u). (4.42)

Since condition (4.39) and the dominated convergence theorem imply that

lim
n→+∞

∫ 1

0
aF (un) dx =

∫ 1

0
aF (u) dx,

it is evident that condition (4.42) will follow, if we prove that

lim
n→+∞

Jn(un) = J (u). (4.43)

We first observe that

lim inf
n→+∞

Jn(un) ≥ J (u). (4.44)

Indeed, we have

Jn(un) = J (un) +
1

n

∫ 1

0
Ψ(u′n) dx ≥ J (un)

and hence, by the lower semicontinuity of J with respect to the L1-convergence in BV (0, 1), we
get (4.44). Next, we show that

lim sup
n→+∞

Jn(un) ≤ J (u). (4.45)

Recall that each un satisfies the variational inequality (4.40) for all z ∈W 1,ρ(0, 1). Hence, using
again (4.39) and the dominated convergence theorem, we infer

lim sup
n→+∞

Jn(un) ≤ lim sup
n→+∞

(
Jn(z)−

∫ 1

0
af(un)(z − un) dx

)
= lim sup

n→+∞

(
J (z) +

1

n

∫ 1

0
Ψ(z′) dx−

∫ 1

0
af(un)(z − un) dx

)
= J (z)−

∫ 1

0
af(u)(z − u) dx.

Pick any w ∈W 1,1(0, 1). By the density of W 1,ρ(0, 1) in W 1,1(0, 1), we find a sequence (zk)k in
W 1,ρ(0, 1) such that lim

k→+∞
zk = w in W 1,1(0, 1). Therefore we have, for all k ≥ 1,

lim sup
n→+∞

Jn(un) ≤ J (zk)−
∫ 1

0
af(u)(zk − u) dx

and hence, letting k → +∞,

lim sup
n→+∞

Jn(un) ≤ J (w)−
∫ 1

0
af(u)(w − u) dx.
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By the approximation property in BV (0, 1 [6, Fact 3.3], we find a sequence (wk)k in W 1,1(0, 1)
such that

lim
n→+∞

wk = u in L1(0, 1) and a.e. in [0, 1],

lim
n→+∞

J (wk) = J (u) and sup
k≥1
‖wk‖∞ < +∞.

This yields, for all k ≥ 1,

lim sup
n→+∞

Jn(un) ≤ J (wk)−
∫ 1

0
af(u)(wk − u) dx

and hence, letting k → +∞ and using the dominated convergence theorem,

lim sup
n→+∞

Jn(un) ≤ J (u),

which is precisely (4.45).

Step 6. Existence of a non-trivial solution of (1.1). Relation (4.42), together with (4.35)
and (4.34), imply that the solution u of (1.1) we have found satisfies

I(u) ≥ δ > 0

and hence, in particular, u 6= 0.

Step 7. Existence of a positive solution of (1.1). In order to prove that actually u provides
us with a positive solution of (1.1) it suffices to show that un ≥ 0 for all n ≥ 1 a.e. in [0, 1]. We
recall that, for each n ≥ 1, un satisfies

In(un) = cn = inf
γ∈Γ

max
t∈[0,1]

In(γ(t))

where
Γ = {γ ∈ C0([0, 1],W 1,ρ(0, 1)) : γ(0) = 0, γ(1) = ζ}.

According to Lemma 4.2, min ζ ≥ 0 and hence |γ| ∈ Γ, whenever γ ∈ Γ. Moreover, since In is
even, we find that, for every n ≥ 1,

In(|γ(t)|) = In(γ(t)) for all t ∈ [0, 1].

Therefore, for every k ≥ 1 there exists γn,k ∈ Γ such that, for each t ∈ [0, 1],

γn,k(t) ≥ 0 a.e. in [0, 1] (4.46)

and

cn ≤ max
t∈[0,1]

In(γn,k(t)) < cn +
1

k
.

Hence, by the Ekeland variational principle [26], for every k ≥ 1, there exist γ∗n,k ∈ Γ and

tn,k ∈ [0, 1] such that

cn ≤ max
t∈[0,1]

In(γ∗n,k(t)) ≤ max
t∈[0,1]

In(γn,k(t)) < cn +
1

k
, (4.47)

max
t∈[0,1]

‖γn,k(t)− γ∗n,k(t)‖W 1,ρ <
1√
k
, (4.48)

cn −
1

k
< In(u∗n,k) < cn +

1

k
with u∗n,k = γ∗n,k(tn,k), (4.49)

and

|I ′n(u∗n,k)(v)| ≤ 1√
k
‖v‖W 1,ρ for all v ∈W 1,ρ(0, 1).
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By the Palais-Smale condition satisfied by In (cf. Lemma 4.3), there exist a subsequence of
(u∗n,k)k, still labeled by k, and a function u∗n ∈W 1,ρ(0, 1) such that

lim
k→+∞

u∗n,k = u∗n in W 1,ρ(0, 1).

Thus, from (4.48) and (4.49) we may infer that

lim
k→+∞

γn,k(tn,k) = lim
k→+∞

γ∗n,k(tn,k) = lim
k→+∞

u∗n,k = u∗n in W 1,ρ(0, 1).

Therefore, thanks to (4.46), we find that u∗n ≥ 0 a.e. in [0, 1]. Moreover, by (4.47) and (4.49),
we get

In(u∗n) = cn.

Finally, reasoning as in Steps 3 and 4, it is plain that we can extract a subsequence of (u∗n)n,
relabeled by n, such that

lim
n→+∞

u∗n = u∗ a.e. in [0, 1],

with u∗ ≥ 0 a.e. in [0, 1] and u∗ 6= 0. This is the positive solution of (1.1) whose existence was
claimed in Theorem 1.1.

Part II. Regularity. Let u be a positive solution of (1.1) and let (un)n be a sequence in
W 2,1(0, 1) of positive solutions of (4.6) such that, for some constant C > 0,

sup
n≥1
‖un‖∞ < C and lim

n→+∞
un = u in L1(0, 1) and a.e. in [0, 1]. (4.50)

By Step 4 of Part I, these conditions hold for the solution constructed in Part I. The proof of
the regularity will be divided into three steps, accordingly to the statement of Theorem 1.1.

Step 1. Behavior on a single interval. Let [α, β] ⊂ [0, 1] be an interval such that a(x) ≥ 0
a.e. in [α, β]. Since, by (f2), we have f(s) ≥ 0 for s ≥ 0, it follows from (4.7) that un is concave
in [α, β] and hence u′n is non-increasing in [α, β]. Consequently, the next simple result holds.

Lemma 4.5. For every n ≥ 1 and δ ∈
(

0, β−α2

)
,

max
[α+δ,β−δ]

|u′n| ≤
C

δ
,

where C > 0 is the constant introduced in (4.50).

Proof: As u′n is non-increasing in [α, β], we have

max
[α+δ,β−δ]

u′n = u′n(α+ δ) and min
[α+δ,β−δ]

u′n = u′n(β − δ).

Thus, it remains to prove that

u′n(α+ δ) ≤ C

δ
and u′n(β − δ) ≥ −C

δ
. (4.51)

By the concavity of un, we have

un(x) ≤ un(α+ δ) + u′n(α+ δ)(x− α− δ) for all x ∈ [α, α+ δ].

In particular, letting x = α yields

0 ≤ un(α) ≤ un(α+ δ)− δu′n(α+ δ) ≤ C − δu′n(α+ δ)

whence the first estimate of (4.51) follows. Similarly, we have

un(x) ≤ un(β − δ) + u′n(β − δ)(x− β + δ) for all x ∈ [β − δ, β]
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and hence, letting x = β, we get

0 ≤ un(β) ≤ C + u′n(β − δ)δ.

Therefore, the second estimate of (4.51) also holds. �

According to Lemma 4.5, from (4.7) we infer the existence of a function Kδ ∈ L1(α+ δ, β− δ)
such that

|u′′n(x)| ≤ Kδ(x) for a.e. x ∈ [α+ δ, β − δ].
This implies that

|u′n(x)− u′n(y)| ≤
∣∣∣ ∫ y

x
Kδ(t) dt

∣∣∣ for all x, y ∈ [α+ δ, β − δ].

Therefore, the sequence (u′n)n is bounded in C0[α + δ, β − δ] and uniformly equicontinuous.
Thus, the theorem of Arzelà-Ascoli yields the existence of a subsequence of (un)n, labeled again

by n, which converges to u in C1[α+ δ, β − δ]. Since δ ∈ (0, β−α2 ) is arbitrary, we may conclude

from (4.7) that (un)n converges to u in W 2,1
loc (α, β). In particular, u satisfies a.e. in (α, β) the

differential equation

−u′′ = a(x) f(u) (1 + (u′)2)
3
2 . (4.52)

As a byproduct, u is concave in (α, β) and the following limits are well defined

u(α+) = lim
x→α+

u(x) ∈ [0, C], u(β−) = lim
x→β−

u(x) ∈ [0, C],

u′(α+) = lim
x→α+

u′(x) ∈ R ∪ {+∞}, u′(β−) = lim
x→β−

u′(x) ∈ R ∪ {−∞}.

Moreover, since un solves (4.6) for all n ≥ 1, we have that u′n(0) = u′n(1) = 0 and hence, if, e.g.,

α = 0, for each δ ∈ (0, β2 ),

max
[0,β−δ]

|u′n| ≤
C

δ
.

Therefore we conclude that u ∈W 2,1
loc [0, β) satisfies (4.52) a.e. in [0, β). Similar conclusions hold

if β = 1.
In a completely similar fashion we can discuss the case where a(x) ≤ 0 a.e. in [α, β].

Step 2. Behavior on adjacent intervals. Now we further assume (f6), that is, f is lo-
cally Lipschitz in [0,+∞); this condition guarantees the uniqueness of solutions of the Cauchy
problems associated with the differential equations in (1.1) and in (4.6).

Let (α, β) and (β, γ) be two adjacent intervals such that a(x) ≥ 0 a.e. in (α, β) and a(x) ≤ 0
a.e. in (β, γ). The case a(x) ≤ 0 a.e. in (α, β) and a(x) ≥ 0 a.e. in (β, γ) can be discussed
similarly. The convexity properties of u guarantee that there exist

u′(β−) ∈ R ∪ {−∞} and u′(β+) ∈ R ∪ {−∞}.

Assume u′(β−) ∈ R. Then, u can be continued to the right of β as a solution of (4.52). The
continuous dependence on initial conditions and parameters [29, Theorem 6, Chapter 1.1] implies
that there exists a neighborhood of β where the approximating sequence (un)n is C1-bounded

and therefore W 2,1-bounded. This entails that u ∈ C1
loc(α, γ) and therefore, u ∈ W 2,1

loc (α, γ).

Similarly, we see that u ∈W 2,1
loc (α, γ) if u′(β+) ∈ R.

The previous argument also shows that u′(β−) = −∞ if, and only if, u′(β+) = −∞. Suppose
this occurs and let us show that

u(β−) ≥ u(β+). (4.53)
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Indeed, if, on the contrary, u(β−) < u(β+), then there exist δ > 0 and n ≥ 1 such that

un(β − δ) < u(β+) + u(β−)

2
< un(β + δ), u′n(β − δ) < 0, u′n(β + δ) < 0.

Thus, the concavity and the convexity of un on [α, β] and [β, γ], respectively, yield

un(β) ≤ un(β − δ) < u(β+) + u(β−)

2
< un(β + δ) ≤ un(β),

which is impossible. Therefore, (4.53) holds.

Step 3. Strict positivity. In order to prove that

ess inf u > 0,

here we assume, in addition to (f6), condition (f7), that is, a(x) changes of sign in [0, 1] finitely
many times, as specified in the statement of Theorem 1.1. Assume that, e.g., a(x) ≤ 0 a.e. in
[α1, β1] = [0, β1], and pick i ∈ {2, . . . , k − 1} such that

a(x) ≤ 0 a.e. in [αi−1, βi−i],

a(x) ≥ 0 a.e. in [αi, βi],

a(x) ≤ 0 a.e. in [αi+1, βi+1].

Let us prove that

inf
(αi,βi)

u > 0. (4.54)

Suppose, by contradiction, that there exists x0 ∈ (αi, βi) such that u(x0) = 0. Then, we have
u′(x0) = 0 and, as f(0) = 0, by uniqueness of solutions of the Cauchy problems associated with
the equation in (1.1), u = 0 in (αi, βi). Thus, we get

lim
n→+∞

un = 0 in C1
loc(αi, βi)

and, due to [38, Lemma 3.1, p. 24], we find that

lim
n→+∞

un = 0 uniformly in [0, 1],

which implies u = 0, a contradiction because u is positive. Therefore, u(x) > 0 for all x ∈ (αi, βi).
Suppose, by contradiction, that u(β−i ) = 0. By concavity, we have u′(β−i ) ≤ 0 and, actually,

u′(β−i ) = −∞. Indeed, if u′(β−i ) ∈ (−∞, 0), then u can be extended to the right of βi as a
solution of (4.52). By continuous dependence, taking a sufficiently large n ≥ 1, we obtain that
un(x) < 0 for some x > βi, which is impossible, because un is positive. Similarly, if u′(β−i ) = 0,
then, arguing as above, we find that u(x) = 0 in (αi, βi], which is again a contradiction. Thus, we
have u′(β−i ) = −∞. As (un)n converges to u in C1

loc(αi, βi), the concavity implies that u′n(βi) < 0
for sufficiently large n and, along some subsequence, we have that

lim
n→+∞

u′n(βi) = −∞,

as otherwise u′(β−i ) should be finite. But this also implies u′(β+
i ) = −∞, because otherwise the

continuous dependence would yield the boundedness of the sequence (u′n(βi))n. Consequently,
we have that

u(β−i ) = 0 and u′(β+
i ) = −∞.

Note that, according to (4.53), we also have that

u(β+
i ) = 0 and u′(β+

i ) = −∞,
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which entails the negativity of u in [βi, βi + η] for some η > 0. As this is impossible, because u
is positive, we get u(β−i ) > 0. Similarly, we can prove that u(α+

i ) > 0. Therefore, (4.54) holds
true.

The previous argument can be easily adapted to cover the case when

a(x) ≥ 0 a.e. in [αi−1, βi−i],

a(x) ≤ 0 a.e. in [αi, βi],

a(x) ≥ 0 a.e. in [αi+1, βi+1],

for some i ∈ {2, . . . , k − 1}.
Finally, the cases i = 1 and i = k can be treated in an analogous way, taking also into account

that, since f(0) = 0 and u′(0) = 0 = u′(1), the uniqueness of the solutions of the associated
Cauchy problems imply u(0) > 0 and u(1) > 0. This ends the proof of Theorem 1.1. �

5. Proof of Theorem 1.2

We begin as in the proof of Theorem 1.1. Since condition (f7) implies f(0) = 0, we can extend
f to the whole of R as an odd continuous function. Then, by (f2), (f7) and (f8), the following
conditions hold for the odd extension of f , that we still denote by f :

(fo
2 ) f ∈ C0(R) is such that f(s) sgn(s) ≥ 0 for all s ∈ R,

(fo
7 ) there exist p ∈ (1, 2) and L > 0 such that

lim
s→0

F (s)

|s|p
= L,

(fo
8 ) there exist q ∈ (0, 1) and M > 0 such that

lim
|s|→+∞

F (s)

|s|q
= M.

with F defined in (1.3).

Step 1. A regularization scheme. Like in the proof of Theorem 1.1, we define a sequence
of approximating problems, taking here ρ = 2; that is, we consider, for each n ∈ N, with n ≥ 1,
the problem −

(
ϕn(u′)

)′
= a(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,
(5.1)

where ϕn : R→ R is given by

ϕn(s) =
s√

1 + s2
+

1

n
s for all s ∈ R. (5.2)

The differential equation in (5.1) can be equivalently written as

−u′′ = a(x) f(u)

ϕn(u′)
= a(x)f(u)

(1 + (u′)2)
3
2

1 + 1
n(1 + (u′)2)

3
2

.

Subsequently, all the notations introduced in the proof of Theorem 1.1 will be kept. For any
fixed n ≥ 1, we will find a positive solution un of (5.1) as a global minimizer of the functional
In : H1(0, 1)→ R, defined by

In(v) = Jn(v)−
∫ 1

0
aF (v) dx,
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with

Jn(v) = J (v) +
1

2n

∫ 1

0
(v′)2 dx.

Step 2. Solving the regularized problems. Let n ≥ 1 be given. We first prove that In is
coercive and bounded from below in H1(0, 1). Indeed, according to (fo

8 ), for every ε > 0 there
exists cε > 0 such that

|F (s)−M |s|q| ≤ ε |s|q + cε for all s ∈ R. (5.3)

Hence, setting, as in (4.8),

r =

∫ 1

0
u dx and w = u− r for every u ∈ H1(0, 1),

it follows from the Jensen inequality that

In(u) =

∫ 1

0

√
1 + (w′)2 dx− 1 +

1

2n

∫ 1

0
(w′)2 dx−

∫ 1

0
aF (w + r) dx

≥
√

1 + ‖w′‖2
L1 − 1 +

1

2n
‖w′‖2L2 −

∫ 1

0
aF (u) dx.

(5.4)

On the other hand, since q ∈ (0, 1), we find from (4.10) that, for all x ∈ [0, 1],

|u(x)|q − |r|q ≤
∣∣|w(x) + r|q − |r|q

∣∣ ≤ |w(x)|q ≤ ‖w‖q∞ ≤ ‖w′‖
q
L1 .

Hence, thanks to (5.3), we get∫ 1

0
aF (u) dx =

∫ 1

0
a (F (u)−M |u|q) dx

+M

∫ 1

0
a (|u|q − |r|q) dx+M |r|q

∫ 1

0
a dx

≤
∫ 1

0
|a| (ε|u|q + cε) dx+M‖a‖L1‖w′‖q

L1 +M |r|q
∫ 1

0
a dx

≤ ‖a‖L1

(
(ε+M)‖w′‖q

L1 + ε|r|q + cε
)

+M |r|q
∫ 1

0
a dx.

Consequently, applying this estimate to (5.4) easily yields

In(u) ≥ 1

2n
‖w′‖2L2 + ‖w′‖L1 − ‖a‖L1(ε+M)‖w′‖q

L1

−M
(∫ 1

0
a dx+ ε‖a‖L1

)
|r|q − cε‖a‖L1 − 1.

Thus, taking ε > 0 so small that ∫ 1

0
a dx+ ε‖a‖L1 < 0,

which is possible because we are assuming that
∫ 1

0 a dx < 0, it is plain that we can find two
positive constants A,B > 0, independent of n, such that

In(u) ≥ 1

2n
‖w′‖2L2 +A

(
‖w′‖L1 + |r|q

)
−B (5.5)

and, in particular,

In(u) ≥ A
(
‖w′‖L1 + |r|q

)
−B. (5.6)
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Condition (5.5) implies that

lim
‖u‖H1→+∞

In(u) = +∞ and inf
u∈H1(0,1)

In(u) > −∞.

Since In is weakly lower semicontinuous in H1(0, 1), it is a classical fact [17] that it possesses
a global minimizer un ∈ H1(0, 1). As In is of class C1, un must be a critical point of In and
hence a solution of (5.1).

Now, we will prove that un is non-trivial. It suffices to show that In(un) < 0. We will follow
the argument used to prove Lemma 4.2. By (a3) there is an interval K ⊂ (0, 1) such that
a(x) > 0 a.e. in K. Then we pick a function z ∈ C1[0, 1], with supp z ⊂ K, such that z(x) = 1
in an interval K0 ⊂ K. Since F (s) ≥ 0 for all s ∈ R and F (0) = 0, we infer from (fo

7 ) that, for
a sufficiently small t > 0,

In(t z) = Jn(t z)−
∫
K0

aF (t) dx−
∫
K\K0

aF (t z) dx

≤
∫ 1

0

t2 (z′)2

1 +
√

1 + t2 (z′)2
dx+

1

2n

∫ 1

0
t2(z′)2 dx− F (t)

∫
K0

a dx

≤ tp
(
t2−p

∫ 1

0
(z′)2 dx − F (t)

tp

∫
K0

a dx

)
< 0,

(5.7)

because 2− p > 0. This implies that there exists a constant η > 0, independent of n, such that

inf
u∈H1(0,1)

In(u) ≤ −η. (5.8)

Finally, we show that un can be chosen positive. Indeed, since

In(|u|) = In(u) for all u ∈ H1(0, 1),

we see that if un is a global minimizer of In, then |un| is a global minimizer too.

Step 3. Existence of a positive solution of (1.1). By (5.6) and (5.8), we have

0 ≥ In(un) ≥ A
(
‖w′n‖L1 + |rn|q

)
−B for all n ≥ 1. (5.9)

Hence, the sequence (un)n is bounded in W 1,1(0, 1) and, therefore, there exist a subsequence of
(un)n, still labeled by n, and a function u ∈ BV (0, 1) such that

sup
n
‖un‖∞ < +∞

and
lim

n→+∞
un = u in L1(0, 1) and a.e. in [0, 1].

This implies in particular that u(x) ≥ 0 a.e. in [0, 1]. As the functional Jn is lower semicontin-
uous with respect to the L1-convergence in BV (0, 1) and

lim
n→+∞

∫ 1

0
aF (un) dx =

∫ 1

0
aF (u) dx,

we conclude by (5.8) that

I(u) = J (u)−
∫ 1

0
aF (u) dx ≤ lim inf

n→+∞

(
J (un)−

∫ 1

0
aF (un) dx

)
≤ lim inf

n→+∞
In(un) ≤ −η.

Therefore, u is non-trivial and hence positive. The fact that u satisfies (1.6) for all v ∈ BV (0, 1)

can be verified as in the proof of Theorem 1.1. Also the W 2,1
loc -regularity of u on every interval
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where a has a constant sign follows as in the proof of Theorem 1.1. This ends the proof of
Theorem 1.2. �

6. Proof of Theorem 1.3

We follow the same steps and patterns of the proof of Theorem 1.1, with the exception of Lemma
4.1, which now requires a few changes, that are reported in Lemma 6.1 below. Since condition
(f9) implies f(0) = 0, we extend, as above, f to the whole of R as an odd continuous function
that we still denote by f . Then, the odd extension of f satisfies conditions (fo

2 ), (fo
4 ), (fo

5 ) and

(fo
9 ) there exists L > 0 such that

lim
s→0

F (s)

s2
= L.

Lemma 6.1. There exist constants L∗ > 0, δ > 0 and η > 0 such that, if (fo
9 ) holds with

L ∈ (0, L∗), then, setting

Sη = {u ∈ H1(0, 1) : ‖u‖W 1,1 = ‖w′‖L1 + |r| = η},

one has, for all n ≥ 1,

inf
u∈Sη

In(u) ≥ inf
u∈Sη

I(u) ≥ δ.

Proof. Pick u ∈ W 1,1(0, 1) and use the decomposition (4.8). As in Lemma 4.1, using the
Jensen inequality we get

I(u) =

∫ 1

0

√
1 + (w′)2 dx− 1−

∫ 1

0
aF (w + r) dx

≥
√

1 + ‖w′‖2
L1 − 1−

∫ 1

0
aF (w + r) dx

=
‖w′‖2L1

1 +
√

1 + ‖w′‖2
L1

−
∫ 1

0
a
(
F (w + r)− L(w + r)2

)
dx

− L
∫ 1

0
a
(
(w + r)2 − r2

)
dx− Lr2

∫ 1

0
a dx,

where

L = lim
s→0

F (s)

s2
> 0.

For any given ε > 0, there is η ∈ (0, 1) such that

|F (s)− Ls2| ≤ εs2, if |s| ≤ η.

Let u ∈W 1,1(0, 1) satisfy ‖u‖W 1,1 ≤ η and hence

‖w‖∞ + |r| ≤ ‖w′‖L1 + |r| = ‖u‖W 1,1 ≤ η.

Using elementary inequalities, we obtain∣∣∣∣∫ 1

0
a
(
F (w + r)− L(w + r)2

)
dx

∣∣∣∣ ≤ ∫ 1

0
|a| ε (w + r)2 dx

≤ 2ε ‖a‖L1

(
‖w‖2∞ + r2

)
≤ 2ε ‖a‖L1

(
‖w′‖2L1 + r2

)
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and, for any σ > 0,∣∣∣∣L∫ 1

0
a
(
(w + r)2 − r2

)
dx

∣∣∣∣ ≤ L‖a‖L1

∥∥(w + r)2 − r2
∥∥
∞

≤ L‖a‖L1(2|r|‖w‖∞ + ‖w‖2∞)

≤ L‖a‖L1(2|r|‖w′‖L1 + ‖w′‖2L1)

≤ L‖a‖L1

(
σr2 +

1

σ
‖w′‖2L1

)
+ L‖a‖L1‖w′‖2L1 .

Therefore, for all u ∈W 1,1(0, 1) satisfying ‖u‖W 1,1 = η, we have

I(u) ≥
(

1

1 +
√

2
− 2ε‖a‖L1 −

(
1 +

1

σ

)
L‖a‖L1

)
‖w′‖2L1

+ L

(
− 2

L
ε‖a‖L1 − σ‖a‖L1 −

∫ 1

0
a dx

)
r2.

Since
∫ 1

0 a dx < 0, we can fix

σ ∈
(

0,−‖a‖−1
L1

∫ 1

0
a dx

)
and

L∗ ∈
(

0,
1

1 +
√

2

σ

1 + σ
‖a‖−1

L1

)
.

Then, for any given L ∈ (0, L∗) we can find ε > 0 and η > 0 so small that, for all u ∈W 1,1(0, 1)
satisfying ‖u‖W 1,1 = η,

I(u) ≥ A‖w′‖2L1 +Br2,

for some constants A,B > 0. Therefore, setting

δ = min
x≥0,y≥0
x+y=η

(
Ax2 +By2

)
> 0

and using (4.5), we infer that, for all n ≥ 1, the estimate

inf
u∈Sη

In(u) ≥ inf
u∈Sη

I(u) ≥ δ

holds. This ends the proof of Lemma 6.1. �

7. Proof of Theorem 1.4

We basically repeat the argument of the proof Theorem 1.2 with only few minor changes. Like
there we extend f to the whole of R as an odd continuous function that we still denote by f .
Then, the odd extension of f satisfies conditions (fo

2 ), (fo
9 ) and

(fo
10) there exists M > 0 such that

lim
|s|→+∞

F (s)

|s|
= M.

A first change occurs for proving that, for any fixed n, the functional In is coercive and
bounded from below in H1(0, 1). Indeed, according to (fo

10), for every ε > 0 there exists cε > 0
such that

|F (s)−M |s|| ≤ ε |s|+ cε for all s ∈ R.
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Hence, for every u = w + r ∈ H1(0, 1), we get∫ 1

0
aF (u) dx =

∫ 1

0
a (F (u)−M |u|) dx

+M

∫ 1

0
a (|u| − |r|) dx+M |r|

∫ 1

0
a dx

≤
∫ 1

0
|a| (ε|u|+ cε) dx+M‖a‖L1‖w′‖L1 +M |r|

∫ 1

0
a dx

≤ ‖a‖L1

(
(ε+M)‖w′‖L1 + ε|r|+ cε

)
+M |r|

∫ 1

0
a dx.

Consequently, applying this estimate we easily obtain

In(u) =

∫ 1

0

√
1 + (u′)2 dx− 1 +

1

2n

∫ 1

0
(u′)2 dx−

∫ 1

0
aF (u) dx

≥
√

1 + ‖w′‖2
L1 − 1 +

1

2n
‖w′‖2L2 −

∫ 1

0
aF (u) dx

≥ 1

2n
‖w′‖2L2 + (1− ‖a‖L1(ε+M)) ‖w′‖L1

−M
(∫ 1

0
a dx+ ε‖a‖L1

)
|r| − cε‖a‖L1 − 1.

Fix M∗ ∈ (0, ‖a‖−1
L1 ) and pick M ∈ (0,M∗). Thus, taking ε > 0 so small that

(ε+M)‖a‖L1 < 1 and

∫ 1

0
a dx+ ε‖a‖L1 < 0,

which is possible because we are assuming that
∫ 1

0 a dx < 0, we can find two positive constants
A,B > 0, independent of n, such that

In(u) ≥ 1

2n
‖w′‖2L2 +A

(
‖w′‖L1 + |r|

)
−B (7.1)

and therefore

lim
‖u‖H1→+∞

In(u) = +∞ and inf
u∈H1(0,1)

In(u) > −∞.

A second change is needed for proving the existence of η > 0 such that, for all n ≥ 1,

inf
u∈H1(0,1)

In(u) ≤ −η.

Indeed, by (a3) there is an interval K ⊂ (0, 1) such that a(x) > 0 a.e. in K. Then, we pick
a function z ∈ C1[0, 1], with supp z ⊂ K, such that z(x) = 1 in an interval K0 ⊂ K. Since
F (s) ≥ 0 for all s ∈ R and F (0) = 0, we have, for all n ≥ 1 and t > 0,

In(t z) = Jn(t z)−
∫
K0

aF (t) dx−
∫
K\K0

aF (t z) dx

≤
∫ 1

0

t2 (z′)2

1 +
√

1 + t2 (z′)2
dx+

1

2n

∫ 1

0
t2(z′)2 dx− F (t)

∫
K0

a dx

≤ t2
(∫ 1

0
(z′)2 dx − F (t)

t2

∫
K0

a dx

)
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and hence, using (fo
9 ),

lim sup
t→0+

In(t z)

t2
≤
∫ 1

0
(z′)2 dx − L

∫
K0

a dx.

Fix L∗ >
(∫

K0
a dx

)−1 ∫ 1
0 (z′)2 dx and set η =

∫ 1
0 (z′)2 dx−L∗

∫
K0
a dx > 0. Then, the conclusion

follows for all L > L∗.

The last change occurs in (5.9) which, due to (7.1), now reads

0 ≥ In(un) ≥ A
(
‖w′n‖L1 + |rn|

)
−B for all n ≥ 1,

but this modification, clearly, does not affect the remainder of the argument. �

8. Proof of Theorem 1.5

Similarly as in the previous proofs, we extend f to the whole of R as an odd function still
denoted by f . The corresponding assumptions for such an extension are indicated by (fo

2 ), (fo
3 )

and (fo
8 ). Along this proof, which is divided into two steps, we make use, like in the proof of

Theorem 1.2, of the regularized problems−
(
ϕn(u′)

)′
= λa(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,
(8.1)

with ϕn given by (5.2) for each n ≥ 1. The functional associated with (8.1) is defined in H1(0, 1).
As it depends on the parameter λ, it is convenient to denote it by In,λ, i.e., we set

In,λ(u) = Jn(u)− λ
∫ 1

0
aF (u) dx, (8.2)

for all u ∈ H1(0, 1).

Step 1. Existence of a positive solution u1 with Iλ(u1) < 0. The existence of a first
positive solution u1, with Iλ(u1) < 0, is obtained following the patterns of the proof of Theorem
1.2. However, since (f7) is not anymore assumed, we have to slightly modify the argument used
therein to obtain condition (5.8). Indeed, our aim here is to prove that there are constants
λ∗ > 0 and η > 0 such that, for all n ≥ 1 and all λ > λ∗,

inf
u∈H1(0,1)

In,λ(u) ≤ −η. (8.3)

Pick a point t0 > 0 such that F (t0) > 0 and let z ∈ C1[0, 1] and K0 ⊂ K be like in the proof of
Theorem 1.4; as there, we have

In,λ(t0 z) = Jn(t0 z)− λ
∫
K0

aF (t0) dx− λ
∫
K\K0

aF (t0 z) dx

≤
∫ 1

0

t20 (z′)2

1 +
√

1 + t20 (z′)2
dx+

1

2n

∫ 1

0
t20 (z′)

2
dx − λF (t0)

∫
K0

a dx

≤ t20
∫ 1

0
(z′)

2
dx − λF (t0)

∫
K0

a dx.

Hence we immediately derive the existence of λ∗ > 0 and η > 0 such that (8.3) holds, for all
n ≥ 1 and all λ > λ∗.
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Step 2. Existence of a positive solution u2 with Iλ(u2) > 0. The existence of a second
positive solution u2, with Iλ(u2) > 0, is obtained following the patterns of the proof of Theorem
1.1. However, since (f4) and (f5) are not anymore assumed, the argument used there requires a
few changes. As already noticed, we are now working in H1(0, 1) with the regularized problems
(5.1) and the associated functionals In,λ. It is plain that Lemma 4.1 still holds with η > 0 and
δ > 0 now depending on λ, whereas the conclusion of Lemma 4.2 follows from (8.3), provided
that λ > λ∗. In order to prove Lemma 4.3, we observe that, as assumptions (f8) and (a3) imply
the coercivity condition in H1(0, 1) expressed by (5.5), any sequence (uk)k in H1(0, 1) satisfying
(4.15) must be bounded in H1(0, 1). Therefore we can find a subsequence of (uk)k, labeled again
by k, and u ∈ H1(0, 1) such that (4.29) holds with ρ = 2. Once this conclusion is achieved,
the proof of Lemma 4.3 carries on unchanged. As in the proof of Theorem 1.1, the mountain
pass theorem then applies and yields the existence, for any given λ > λ∗ and for all n ≥ 1, of a
critical point un ∈ H1(0, 1) of the functional In,λ, which satisfies

c1 ≥ In,λ(un) ≥ δ, (8.4)

with c1 and δ > 0 possibly depending on λ, but independent of n. The positivity of each
un is proved without changes. Finally, the coercivity condition in W 1,1(0, 1), expressed by
(5.5), implies that a subsequence of (un)n, still labeled by n, converges to a positive solution
u ∈ BV (0, 1) of (1.1). This solution satisfies Iλ(u) > 0, by the conditions (8.4) and

Iλ(u) = lim
n→+∞

In,λ(un),

which can be proved exactly as (4.42).
From the two previous steps we infer that problem (1.1) has at least of two positive solutions;

the remaining conclusions of Theorem 1.5 then follow as in the proof of Theorem 1.1. �

9. Proof of Theorem 1.6

Similarly as in the proofs of Theorem 1.1 and Theorem 1.5 we extend f to the whole of R as
an odd function still denoted by f . The corresponding assumptions for such an extension are
indicated by (fo

2 ), (fo
4 ), (fo

5 ) and (fo
7 ). We also make use, for each n ≥ 1, of the regularized

problem (8.1), with ϕn given by (4.2). The associated functional, denoted by In,λ, is defined by
(8.2) for all u ∈W 1,ρ(0, 1), with ρ satisfying (4.1).

Step 1. Existence of a positive solution u1 with Iλ(u1) > 0. The existence of a first
positive solution u1, with Iλ(u1) > 0, is obtained following the patterns of the proof of Theorem
1.1. However, since (f3) is replaced by (f7), we have to slightly modify the argument used there
to get Lemma 4.1, whose counterpart now reads as follows.

Lemma 9.1. There exist constants λ∗ > 0 and η > 0 such that, for every λ ∈ (0, λ∗), there is
δλ > 0 for which, setting

Sη = {u ∈W 1,ρ(0, 1) : ‖u‖W 1,1 = ‖w′‖L1 + |r| = η},

one has, for all n ≥ 1,

inf
u∈Sη

In,λ(u) ≥ inf
u∈Sη

Iλ(u) ≥ δλ.
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Proof. Pick u ∈W 1,1(0, 1) and consider the decomposition (4.8). As in Lemma 4.1, we get

Iλ(u) ≥
‖w′‖2L1

1 +
√

1 + ‖w′‖2
L1

− λ
∫ 1

0
a (F (w + r)− L|w + r|p) dx

− λL
∫ 1

0
a (|w + r|p − |r|p) dx− λL|r|p

∫ 1

0
a dx,

where

L = lim
s→0

F (s)

|s|p
> 0, (9.1)

with p ∈ (1, 2). For any given ε > 0, there is η ∈ (0, 1) such that

|F (s)− L|s|p| ≤ ε|s|p, if |s| ≤ η.

Therefore, still arguing as in Lemma 4.1, we obtain, for every u ∈W 1,1(0, 1) satisfying ‖w′‖L1 +
|r| = ‖u‖W 1,1 = η, we get∣∣∣∣∫ 1

0
a (F (w + r)− L|w + r|p) dx

∣∣∣∣ ≤ ε ‖a‖L12p−1
(
‖w′‖p

L1 + |r|p
)

and, for any σ > 0,

∣∣∣∣L∫ 1

0
a (|w + r|p − |r|p) dx

∣∣∣∣ ≤ L‖a‖L1(p|r|p−1‖w′‖L1 + ‖w′‖p
L1)

≤ p

2
L‖a‖L1

(
σ|r|2(p−1) +

1

σ
‖w′‖2L1

)
+ L‖a‖L1‖w′‖p

L1 .

Accordingly, we obtain

I(u) ≥
(

1

1 +
√

2
− λp

2
L‖a‖L1

1

σ

)
‖w′‖2L1 − λ(L+ 2p−1ε)‖a‖L1‖w′‖p

L1

− λ
(

2p−1‖a‖L1 ε+ L

∫ 1

0
a dx

)
|r|p − λp

2
L‖a‖L1 σ|r|2(p−1),

for any σ > 0. Hence, using the condition
∫ 1

0 a dx < 0 and taking ε > 0 and η > 0 sufficiently
small, we can find constants A,B,C,D,E > 0 such that

Iλ(u) ≥
(
A− λB 1

σ

)
‖w′‖2L1 − λC‖w′‖pL1 + λD|r|p − λσE|r|2(p−1),

for every u ∈W 1,1(0, 1) with ‖u‖W 1,1 = η. Let us set x = ‖w′‖L1 and y = |r|. We want to show
that, for a suitable choice of σ > 0, there is λ∗ > 0 such that, for every λ ∈ (0, λ∗),

min
x≥0,y≥0
x+y=η

((
A− λB 1

σ

)
x2 − λCxp + λDyp − λσEy2(p−1)

)
> 0. (9.2)

Indeed, if σ > 0 is taken sufficiently small, there exists x∗ ∈ (0, η) such that

−Cxp +D(η − x)p − σE(η − x)2(p−1) > 0, for all x ∈ [0, x∗],

and then, for every λ > 0 small enough,(
A− λB 1

σ

)
x2 + λ

(
−Cxp +D(η − x)p − σE(η − x)2(p−1)

)
> 0, for all x ∈ [0, x∗].
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On the other hand, possibly further reducing λ > 0, we have

Ax2 + λ

(
−B 1

σ
x2 − Cxp +D(η − x)p − σE(η − x)2(p−1)

)
> 0, for all x ∈ [x∗, η].

Hence, we conclude that there exists λ∗ > 0 such that (9.2) holds, for all λ ∈ (0, λ∗). Then,
setting, for each λ ∈ (0, λ∗),

δλ = min
x≥0,y≥0
x+y=η

((
A− λB 1

σ

)
x2 − λCxp + λDyp − λσEy2(p−1)

)
> 0,

we infer from (4.5) that, for every n ≥ 1, the estimate

inf
u∈Sη

In,λ(u) ≥ inf
u∈Sη

Iλ(u) ≥ δλ

holds. �
The remainder of the proof of the existence of a positive solution u, with Iλ(u) > 0, of problem

(1.1) then proceeds, without changes, as that of Theorem 1.1.

Step 2. Existence of a positive solution u2 with Iλ(u2) < 0. The existence of a second
positive solution u2, with Iλ(u2) < 0, is obtained following the patterns of the proof of Theorem
1.2. However, since (f8) is not presently assumed, the argument used there requires a few
changes. Indeed, the existence, for each n ≥ 1, of a second solution of the regularized problem
(8.1), is now proved by minimizing the functional In,λ in the open set

Ωη = {u ∈W 1,ρ(0, 1) : ‖u‖W 1,1 = ‖w′‖L1 + |r| < η},

where ρ satisfies (4.1) and η comes from Lemma 9.1.
We first observe that, for each n ≥ 1 and every λ ∈ (0, λ∗), In,λ is bounded from below in

Ωη. Indeed, we have

inf
u∈Ωη

In,λ(u) ≥ inf
u∈Ωη

Iλ(u) ≥ inf
u∈Ωη

(
−λ
∫ 1

0
aF (u) dx

)
≥ −λ∗‖a‖L1 max

|s|≤η
|F (s)|.

Moreover, assumptions (a3) and (f7) imply, for each λ > 0, the existence of a constant κλ > 0,
independent of n, such that

inf
u∈Ωη

In,λ(u) < −κλ. (9.3)

Indeed, let z ∈ C1[0, 1] and K0 ⊂ K be chosen as in the proof of Theorem 1.2. We have, for all
t > 0,

In,λ(t z) = Jn(t z)− λ
∫
K0

aF (t) dx− λ
∫
K\K0

aF (t z) dx

≤
∫ 1

0

((
1 + (t z′)2

) 1
2 − 1

)
dx+

1

n

∫ 1

0
Ψ(t z′) dx− F (t)

∫
K0

a dx

≤ tp
∫ 1

0

(
1 + (t z′)2

) 1
2 − 1

tp
dx+

∫ 1

0

Ψ(t z′)

tp
dx − λ

F (t)

tp

∫
K0

a dx

 .

where, as p ∈ (1, 2),

lim
t→0+

∫ 1

0

(
1 + (t z′)2

) 1
2 − 1

tp
dx = 0 and lim

t→0+

∫ 1

0

Ψ(t z′)

tp
dx = 0.
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Hence we infer

lim
t→0+

In,λ(t z)

tp
= −λ lim

t→0+

F (t)

tp

(∫
K0

a dx

)
< 0,

which implies (9.3).
Next, fix n ≥ 1 and let (un,k)k be a minimizing sequence of In,λ in Ωη. Condition (9.3) implies

in particular that
In,λ(un,k) < 0,

for all sufficiently large k. Hence, the elementary inequality,

Ψ(s) ≥ 1

ρ
(|s|ρ − 1), for all s,

and the structure of the functional In,λ yield

1

nρ
(‖u′n,k‖Lρ − 1) ≤ Jn(un,k) ≤ λ∗‖a‖L1 max

|s|≤η
|F (s)|,

thus implying that (un,k)k is bounded in W 1,ρ(0, 1). Therefore, there exist a subsequence of
(un,k)k, still labeled by (un,k)k, and a function un ∈W 1,ρ(0, 1) such that

lim
k→+∞

un,k = un weakly in W 1,ρ(0, 1).

Since In,λ is weakly lower semicontinuous in W 1,ρ(0, 1), we conclude that

In,λ(un) ≤ inf
u∈Ωη

In,λ(u) < 0. (9.4)

Notice that the set
{u ∈W 1,ρ(0, 1) : ‖u‖W 1,1 = ‖w′‖L1 + |r| ≤ η}

is closed and convex in W 1,ρ(0, 1) and hence it is weakly closed. Accordingly, we have ‖un‖W 1,1 ≤
η and actually, from (9.4) and Lemma 9.1,

un ∈ Ωη.

As un is a local minimizer of In,λ and In,λ is differentiable in W 1,ρ(0, 1), we conclude that un is
a solution of (8.1).

The proof of the existence of a positive solution u of problem (1.1), with Iλ(u) < 0, then
proceeds as that of Theorem 1.2 without any change.

From the two previous steps we infer that problem (1.1) has at least of two positive solutions;
the remaining conclusions of Theorem 1.5 then follow as in the proof of Theorem 1.1. �

References

[1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial
Differential Equations 1 (1993), 439–475.

[2] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal. 141
(1996), 159–215.
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[28] M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrara 18

(1973), 79–94.
[29] A.F. Filippov, Differential Equations with Discontinuouis Right-hand Sides, Kluwer Academic Publishers,

Dordrecht, 1988.
[30] R. Finn, The sessile liquid drop. I. Symmetric case, Pacific J. Math. 88 (1980), 541–587.
[31] R. Finn, Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1986.
[32] C. Gerhardt, Boundary value problems for surfaces of prescribed mean curvature, J. Math. Pures Appl. 58

(1979), 75–109.
[33] C. Gerhardt, Global C1,1-regularity for solutions of quasilinear variational inequalities, Arch. Rational Mech.

Anal. 89 (1985), 83–92.
[34] E. Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann. Sc.

Norm. Super. Pisa Cl. Sci. 3 (1976), 501–548.
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