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1 Introduction

The LHC discovery of the Higgs-boson resonance at 125 GeV [1, 2] has definitely strength-

ened our confidence in the Higgs mechanism as the origin of the electroweak (EW) sym-

metry breaking (EWSB) and fermion mass generation [3–6]. All present data are well

consistent with the Standard Model (SM) expectations for the Higgs boson [7, 8], although

there is still room for potential New Physics (NP) effects.

At the same time, the absence of any NP signal at the LHC Run I is causing consid-

erable concern about the applicability of the naturalness criteria. The latter would require

new phenomena at the TeV scale to stabilize the SM Higgs scalar potential against poten-

tially large radiative corrections coming from NP energy thresholds. The SM is also facing

the Flavor problem, which is related to the unexplained huge hierarchy in the fermion mass

spectrum or, analogously, in the Higgs Yukawa couplings.

On another front, there is increasing evidence from astrophysical and cosmological

observations of the existence of Dark Matter (DM) in the Universe [9, 10], which is not

predicted in the SM. Independently of naturalness criteria, there might then be NP above

the EW scale that explains DM and, in some cases, could be tested at the LHC.

A common origin for DM and Flavor is also conceivable. One can postulate the ex-

istence of a hidden (dark) sector, where all these issues are addressed, which is composed

of new fields that are SM singlets. The Higgs boson can then act as a portal to the dark

sector [11]. The Flavor and EWSB structures are indeed restricted to the Higgs couplings

and mass, and are not related to other SM couplings. On the other hand, NP could well

affect the Higgs-boson characteristics by smaller amounts than the present LHC sensitivity

in Higgs-boson data.
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Figure 1. Higgs decays H → γ γ̄ , Z γ̄ , γ̄ γ̄ , via mediator loops.

In this connection, in [12] a new paradigm has been proposed to generate exponentially-

spread Yukawa couplings from gauge quantum numbers in the dark sector. In this class

of models, the Flavor and chiral symmetry breaking (ChSB) take place in a dark sector,

and are transmitted by radiative corrections to the observable sector through Higgs-portal

type of interactions. The Yukawa couplings arise radiatively as effective couplings at low

energy. The hidden sector consists of (stable) massive dark fermions (that are SM singlets

and potential DM candidates), and a massless dark photon, the gauge boson of an un-

broken U(1)F gauge group in the dark sector. Chiral symmetry is spontaneously broken,

and dark fermions obtain non-vanishing (Flavor-dependent) masses via a non-perturbative

mechanism involving U(1)F gauge interactions. The resulting chiral-symmetry and Flavor

breaking in the dark sector is then transferred to the Yukawa-coupling sector at one-loop

via scalar messenger fields that are charged under both SM and U(1)F gauge interactions.

A similar framework has also been explored in [13–15], although no unbroken U(1) gauge

sector is introduced in that case.

The new unbroken U(1) gauge group (and the corresponding massless dark photon) is

a crucial dynamical component of the model in [12], but is also a common feature of various

theories of new physics, including models with gauge-symmetry breaking of compact gauge

groups, string-theory motivated phenomenological models, and models of interacting dark

matter [16–28]. It is indeed conceivable that a hidden sector contains an extra long-range

force. Remarkably, being massless, an on-shell dark photon can be fully decoupled from

the SM quark and lepton sector at any order in perturbation theory [16]. This is not

true for a massive dark-photon, due to a potential tree-level mixing with the photon field.

Most of present astrophysical and accelerator constraints [29–34] apply to massive dark-

photon couplings, and can be evaded in a massless dark-photon scenario. This allows

for potentially large dark-photon couplings to the dark sector, that might also lead to

observable new signatures at colliders [12].

The Higgs boson can interact with dark photons radiatively. In the framework proposed

in [12], this occurs at one loop by the exchange of scalar messenger fields (figure 1).

As a consequence, the Higgs boson can act as a portal toward the dark sector, giving

rise to new Higgs-boson decays such as [35]

H → γ γ̄ , Z γ̄ , γ̄ γ̄ , (1.1)

where the symbols γ and γ̄ stand for the usual QED photon and dark photon, respectively,

and Z is the neutral vector boson. The corresponding decay rates can in principle be large,

even for very heavy messenger fields. As in the H → γ γ, Zγ, gg decays in the SM, the
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Figure 2. Diagrams for e+e− → Hγ̄.

non-decoupling Higgs properties guarantee non-vanishing decay widths even in the large-

mass limit for particles exchanged in the loop, provided the virtual (messenger) fields carry

the same SU(2)L quantum numbers of quarks and leptons.

Being fully decoupled at tree level from the SM sector, a single massless dark pho-

ton will give rise in the Higgs final state to same amount of missing energy and missing

momentum, while the two dark-photon channel will contribute to the invisible Higgs rate.

Extra contributions to the widths of the SM channels H → γ γ, Zγ, gg are also expected

in general.

The H → γ γ̄ decay gives rise to a new spectacular signature at the LHC in γ +�
�ET

final states, with a photon plus missing transverse energy �
�ET resonating at the Higgs

mass. In [35], a parton-level study shows that the LHC Run-1 data set could be sensitive

to BR(H → γγ̄) values as low as 0.5%, while a minimal-model prediction for BR(H → γγ̄)

can be as large as 5%.

The aim of the present study is to analyze the phenomenological implications of the

Higgs effective couplings to dark photons at future e+e− colliders [36–39]. Apart from the

new signatures corresponding to the Higgs-boson exotic decays in eq. (1.1) (that we do not

address here), effective Hγ̄γ and Hγ̄Z interactions involving dark photons will give rise

to final states with a Higgs boson and a dark photon,

e+e− → H γ̄ , (1.2)

via s-channel exchange of either a photon or a Z vector boson (figure 2). This channel,

although kinematically similar to the SM one-loop channel e+e− → Hγ [40–43], gives rise

to a completely new signature, since the final massless γ̄ goes undetected.

We will focus on the b b̄ γ̄ final state corresponding to the main Higgs decay channel

H → bb̄, although even more rare Higgs decays will be of relevance in the clean e+e− envi-

ronment [44, 45]. The e+e− → Hγ̄ final state will then be characterized by an unbalanced

b b̄ system resonating at the Higgs mass mH, the dark photon γ̄ giving rise to “monochro-

matic” missing energy ��E and momentum �p (for fixed initial c.m. collision energy
√
s).

Contrary to what occurs in the main irreducible SM bb̄νν̄ background, at parton level the

invariant mass of the invisible system Mmiss = (��E
2 − �p

2)1/2 vanishes. This feature will

provide a crucial handle for background suppression.

Since the messenger fields are expected to be quite heavy with respect to the charac-

teristic energy of the e+e− → Hγ̄ process, the Hγγ̄ and HZγ̄ vertices can be considered
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Figure 3. Effective coupling approximation for the vertices Hγ γ̄ , HZ γ̄.

as effective interactions, and described by a model-independent parametrization [35]. The

ratio of the Hγ̄Z and Hγ̄γ couplings will in general depend on the spin and the SM

gauge-group representation of the new particles running in the loop. For simplicity, we will

focus here on scenarios where the Hγ̄Z vertex is induced by scalar messenger fields in the

SU(2)L × SU(3)c fundamental representation [12], which gives a definite prediction for the

Hγ̄Z and Hγ̄γ coupling ratio.

The paper is organized as follows. In section 2, we provide a model-independent

parametrization of the effective couplings controlling the Higgs exotic decays H → γγ̄,

Zγ̄, γ̄γ̄, and the SM-like decays H → γγ, Zγ, and express the relevant Higgs BR’s in

terms of the model-independent coefficients. In section 3, we study the sensitivity of

future e+e− colliders to the e+e− → Hγ̄ associated production by analyzing the signal and

corresponding backgrounds. In section 4, we discuss the NP model in [12] that aims to

solve the Flavor hierarchy problem. We also present the corresponding predictions for the

Higgs-dark-photon effective couplings, and for the Higgs branching ratios (BR’s) relative

to the decays H → γγ̄, and H → Zγ̄. Finally, our conclusions are discussed in section 5.

In the appendix, we describe some U(1)F coupling properties of the model in [12], that are

needed to discuss its phenomenological consequences.

2 Effective dark-photon couplings to the Higgs boson

We now introduce the dark-photon effective couplings to the Higgs boson that enter the

e+e− → Hγ̄ cross section. In general, Higgs-dark-photon effective couplings can arise at

one loop due to the exchange of messenger fields that are charged under both the SM and

the U(1)F gauge groups (figure 3). In case the messenger masses are much larger than both

mH and
√
s, one can use the effective theory approximation. The corresponding effective

Lagrangian LHiggs
eff can be split as

LHiggs
eff = LDPH

+ LSMH
, (2.1)

where LDPH
contains the dark-photon effective interactions with the Higgs boson, while

LSMH
presents the extra (that is messenger-induced) contributions to the SM Higgs effective

interactions with two photons, one photon and a Z, and two gluons.

By retaining only the relevant low-energy operators, LDPH
can be expressed in terms

of dimensionless (real) coefficients Ci j (with i, j = γ̄, γ, Z, g) as

LDPH
=
α

π

(
Cγγ̄
v
γµν γ̄µνH +

CZγ̄
v
Zµν γ̄µνH +

Cγ̄γ̄
v
γ̄µν γ̄µνH

)
, (2.2)
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where α is the SM fine structure constant, and γµν , Zµν , γ̄µν are the field strentghs of

photon, Z boson, and dark photon, respectively (γµν ≡ ∂µAν − ∂νAµ for the photon field

Aµ). Then, LSMH
can be written as

LSMH
=
α

π

(
Cγγ
v
γµνγµνH +

CZγ
v
ZµνγµνH

)
+
αS

π

Cgg
v
GaµνGaµνH , (2.3)

where αS is the SM strong coupling constant, Gaµν stands for the gluon field strength, and

a sum over the color index a is understood.

As usual, the Ci j coefficients in eqs. (2.2)–(2.3) can be computed in the complete theory

by evaluating one-loop amplitudes for relevant physical processes, and by matching them

with the corresponding results obtained at tree level via the effective Lagrangian in eq. (2.1).

In particular, in order to express the coefficients Cγγ̄ , CZγ̄ , Cγ̄γ̄ in eq. (2.2) in terms of the

fundamental parameters of the model, one can match the tree-level widths, based on the

parametrization in eq. (2.2), for the Higgs decays H → γγ̄, H → Zγ̄, H → γ̄γ̄, respectively,

with the corresponding one-loop results computed in the full model (as sketched in figure 3).

This will be discussed in section 4, after introducing a particular NP framework.

On the other hand, one can perform a phenomenological study of the e+e− → Hγ̄

process just on the basis of the model-independent parametrization in eq. (2.2), which we

will do in the next section.

Before proceeding, we connect the basic Ci j coefficients in eq. (2.2) to the correspond-

ing H → i j decay widths. The H → γγ̄ width has been computed in [35], and, taking into

account the parametrization in eq. (2.2), one has

Γ(H → γγ̄) =
m3

H

64πΛ2
γγ̄

, 1/Λγγ̄ = Cγγ̄/(πv). (2.4)

Analogous results can be obtained for the H → γ̄γ̄, H → Zγ̄, H → γγ widths replacing

1/Λγγ̄ by 1/Λγ̄γ̄ = Cγ̄γ̄/(πv), 1/ΛZγ̄ = CZγ̄/(πv), 1/Λγγ = (CSM
γγ +Cγγ)/(πv), respectively.

Figure 4 shows the branching ratios for H → γγ̄ and H → Zγ̄, normalized to the SM

BR(H → γγ) and BR(H → Zγ), respectively, versus the corresponding Ci j coefficients.

The Ci j ranges shown in the plot include values well allowed by the model described in

section 4. One can then get for the Higgs decays into a dark photon an enhancement

factor O(10) with respect to the SM Higgs decays where the dark photon is replaced by

a photon. This makes the corresponding phenomenology quite relevant for both LHC and

future-collider studies.

It is also useful to express the BR’s for H → γγ̄, γ̄γ̄, γγ as a function of the relative

exotic contribution ri j to the H → i j decay width, as the ratio

rij ≡
Γm
i j

ΓSM
γγ

, (2.5)

with Γm
i j generically indicating the pure messenger contribution to H → i j, with i, j = γ, γ̄.
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Figure 4. BR’s for H → γγ̄ and H → Zγ̄, normalized to the SM values for BR(H → γγ) and

BR(H → Zγ), respectively, versus Cγγ̄ and CZγ̄ .

Then, one obtain the following model-independent parametrization of the H → γγ̄,

γ̄γ̄, γγ BR’s as functions of rij [35]

BRγγ̄ = BRSM
γγ

rγγ̄

1 + rγ̄γ̄BRSM
γγ

,

BRγ̄γ̄ = BRSM
γγ

rγ̄γ̄

1 + rγ̄γ̄BRSM
γγ

,

BRγγ = BRSM
γγ

(
1 + χ

√
rγγ
)2

1 + rγ̄γ̄BRSM
γγ

, (2.6)

where χ = ±1 parametrizes the relative sign of the SM and exotic amplitudes, and BRij

stands for BR(H → i j).

Analogously, the relative deviation for the H → gg decay width will be defined as

rgg ≡
Γm
gg

ΓSM
gg

. (2.7)

3 Sensitivity study for e+e− → Hγ̄

We focus now on the γ̄ production in association with a Higgs boson in e+e− collisions.

The e+e− → Hγ̄ total cross section versus
√
s is shown in figure 5 for three different

coupling assumptions: Cγγ̄ = 1, CZγ̄ = 0 (blue line); Cγγ̄ = 0, CZγ̄ = 1 (green line);

Cγγ̄ = 1, CZγ̄ = 0.79 Cγγ̄ (red line). The coupling ratio CZγ̄/Cγγ̄ ' 0.79 is typical for

scenarios where the Hγ̄Z vertex is induced by scalar messenger fields in the SU(2)L×SU(3)c
fundamental representation (see section 4). The corresponding cross sections at

√
s ' 1 TeV

(relevant for linear colliders at larger collision energy) are 43 ab, 15 ab, 55 ab, respectively.

Cross sections can be easily extrapolated to coupling set-up obtained just by globally

rescaling these set of couplings.
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Figure 5. Total e+e− → Hγ̄ cross section as a function of the c.m. collision energy, for different

sets of effective couplings.

The e+e− → Hγ̄ cross sections grow with c.m. energy thanks to the nature of the

dimension-five operators in the effective Lagrangian in eq. (2.2). Hence, at constant inte-

grated luminosity, higher-energy colliders will have a higher potential, since the dominant

background is expected to scale down with energy as 1/s. On the other hand, lower
√
s

may allow larger integrated luminosity, as is the case of the e+e− Future Circular Collider

(FCC-ee) (also called TLEP) [38, 39], where an integrated luminosity of 10 ab−1 is expected

at
√
s = 240 GeV. At linear colliders, either ILC [36] or CLIC [37], one typically foresees

integrated luminosities of a few hundreds fb−1 in the initial energy of
√
s ∼ 250 GeV or

350 GeV, and a few ab−1 at the larger-
√
s stages [46]. Here, we assume the minimal energy

setup of
√
s = 240 GeV that is relevant for Higgs-boson studies, and study the sensitivity

to e+e− → Hγ̄ production versus integrated luminosities foreseen at different machines.

Using the effective Lagrangian eq. (2.2) implemented by FeynRules [47], we have gener-

ated e+e− → Hγ̄ → bb̄γ̄ events with MadGraph5 aMC@NLO [48], and passed these events

to PYTHIA to account for parton showering, and hadronization. We checked that the inclu-

sion of effects from initial state radiation, that tends to degrade the c.m. energy in a circular

e+e− colliders, would moderately affect the results of the present analysis. We neither in-

clude beamstrahlung effects that can be of some relevance at linear colliders. We account

for finite detector resolution by applying the jet-energy smearing σ(E)/E = 30%/
√
E,

which is typical for ILC-kind of detectors [49] .

The dark photon escapes the experimental apparatus undetected, and the final signal

consists of two b quarks and large missing energy ��E and momentum �p. In our simula-

tion we reconstruct the missing momentum from the vector sum of all visible final-state

particle momenta, after applying PYTHIA. In a lepton collider a H → b b̄ final state is

not swamped by large QCD backgrounds, as occurs in hadronic collisions. Therefore, b b̄

final states are the best channel to search for Hγ̄ production, thanks to the H → b b̄ large

rate. After showering and hadronization, we reconstruct jets (and b-jets) according to the

basic PYTHIA jet-cone algorithm, assuming a quite large cone aperture Rj = 1.5, which

– 7 –
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optimizes mass reconstruction [50]. The basic event selection is given by

pbT > 20 GeV , |ηb| < 2.5 , ∆R(bb) > 0.4 , ��E > 40 GeV, (3.1)

where ∆R(bb) =
√

∆η2 + ∆φ2 is the angular distance between two b-tagged jets. We

assume a b-tagging efficiency of 80%, and a corresponding fake b-jet rejection factor of 100

for light jets.

The main SM background for the b b̄ +��E final state is given by the νν̄bb̄ production.

This includes the on-shell processes ZZ → νν̄bb̄, ZH → νν̄bb̄, which give an almost

monochromatic bb̄-pair system (similarly to the signal), and the vector boson fusion channel

Hνν̄. A subdominant contribution comes from νν̄qq̄ (mostly from on-shell Z pairs), where

both light jets are mis-tagged as b jets.

There are two kinematical variables that turn out to be particularly efficient in sepa-

rating the signal from the background. First, we introduce the variable Mjj as the invariant

mass of the two jets with largest pT . This is directly connected to the b-pair invariant mass,

and can be used to pinpoint events with b-quarks coming from Higgs decays, out of the

smaller-Mjj events arising from Z → bb̄. There is anyway part of the νν̄bb̄ background that

goes through the ZH production resonating at Mjj ∼ mH, just as in the signal case. This

is well illustrated by figure 6, where the normalized invariant-mass distributions of the bb̄

system are compared for signal and backgrounds. Second, we introduce the missing-mass

variable Mmiss, defined as

Mmiss =

√
��E2 −�p

2, (3.2)

where ��E =
√
s −∑Evisible and �p = −∑pvisible are the final-state missing energy and

missing three-momentum vector, respectively (the sum over visible objects here includes

both jets and lower-energy particles escaping jet reconstruction). The Mmiss variable is

expected to approximately vanish in the partonic description of e+e− → Hγ̄, corresponding

to the massless invisible dark photon. A cut on Mmiss then proves to be remarkably efficient

in further separating the signal from the main background, where Mmiss mostly matches

an invisible Z-boson decaying into neutrinos.

The Mmiss spectrum of the signal and background processes are compared in figure 7,

after applying PYTHIA showering, jet reconstruction and jet-energy resolution effects on

top of parton-level simulation (right panel). The parton-level spectrum, shown in the

left panel of the same figure, shows a distinct peak at Mmiss ' 0 for the signal, and at

Mmiss ∼MZ for the background processes. No energy-resolution effect has been applied in

the latter case, and the smearing of the peaks is just due to the presence of neutrinos from

b decays, and to the possible off-shellness of the νν̄ system in the background. Applying

the parton showering, jet reconstruction and energy-resolution effects (as in the right panel

of the figure) degrades the Mmiss spectrum of the signal quite a lot, shifting the peak away

from zero and smearing it. Hence, an optimal detector resolution would be particularly

crucial in this analysis.

On the basis of the Mjj and Mmiss distributions in figures 6 and 7, we set a suitable

event selection. We require the invariant mass Mjj to be within 10% of the Mjj peak value

of the simulated signal events, and then impose the missing mass to be below 40 GeV. The
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line) and νν̄qq̄ (dot-dashed line) after parton level simulation (left) and after PYTHIA showering,

hadronization and jet energy resolution effect (right). All distributions are normalized to 1.

latter cuts make the νν̄qq̄ background negligible. The νν̄bb̄ background can still be slightly

reduced after these cuts by making a further cut on the missing energy ��E. The ��E spectrum

is shown in figure 8 for the signal and background events satisfying the previous Mjj and

Mmiss cuts. Both the signal and background distributions peak at around the same value,

with the background moderately shifted to larger ��E values. Thus we require the missing

energy to be below 100 GeV. Including the initial event selection criteria, we altogether

impose that the missing energy satisfies the condition 40 GeV <��E < 100 GeV.

Table 1 shows the cross sections and the acceptances for the signal and the νν̄bb̄

background after applying the cut-flow just described, for
√
s = 240 GeV. The signal

acceptance is practically insensitive to to a change in the relative contribution of the Cγγ̄
and CZγ̄ couplings. The corresponding acceptance for the νν̄qq̄ background is negligible.

On the basis of the table 1 acceptances, we can work out the expected sensitivity

to the signal for given values of the Cγγ̄ , CZγ̄ couplings. As usual, we define the signal
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Figure 8. �E distributions for the the signal (solid line) and the background νν̄bb̄ (dashed line)

after PYTHIA showering, hadronization and jet-energy resolution effect, and after applying the

Mjj and Mmiss cuts described in the text. All distributions are normalized to 1.

Process Cross section (fb) Acceptance after cuts (%)

Hγ̄ (CZγ̄ = 0) 10.1× 10−3 C2
γγ̄ 17.3

Hγ̄ (Cγγ̄ = 0) 4.8× 10−3 C2
Zγ̄ 17.3

Hγ̄ (CZγ̄ = 0.79 Cγγ̄) 13.8× 10−3 C2
γγ̄ 17.3

SM νν̄bb̄ 115. 0.08

Table 1. Cross sections (in fb) and corresponding acceptances after kinematical cuts on signal and

SM background at
√
s = 240 GeV. Applied cuts include the initial event selection in eq. (3.1), Mjj

to be within 10% of the Mjj peak value of signal events, Mmiss < 40 GeV, and �E < 100 GeV. Cross

sections include BR(H → bb̄) ' 0.58.

significance as S/
√
S +B, being S and B the event numbers for signal and background,

respectively. Figure 9 shows the integrated luminosity needed to make a 5 σ observation

of the Hγ̄ production in e+e− collisions at
√
s = 240 GeV, for any given value of the

Cγγ̄ , CZγ̄ couplings (shown on the y-axis) when Cγγ̄ = 0 (green line), CZγ̄ = 0 (blue line)

and CZγ̄ = 0.79Cγγ̄ (red line).

For an integrated luminosity of 10 ab−1 at
√
s = 240 GeV (a typical value for FCC-

ee), figure 10 shows the signal significance as a function of the couplings, with the same

color convention as in figure 9. The horizontal gray lines show the 5 σ-discovery bound on

couplings, and the 2 σ level approximating the 95% confidence-level exclusion.

Then, at 95% C.L., one can exclude the ranges Cγγ̄ > 1.9 (for CZγ̄ = 0), CZγ̄ > 2.7

(for Cγγ̄ = 0), and Cγγ̄ > 1.6 (for CZγ̄ = 0.79 Cγγ̄). The interval Cγγ̄ > 1.9 corresponds

to a Higgs BR into γγ̄ that is more than 3 times the SM BR(H → γγ), while CZγ̄ > 2.7

corresponds to a Higgs BR into Zγ̄ that is more than 9 times the SM BR(H → Zγ).

The corresponding sensitivities on the Cγγ̄ and CZγ̄ couplings at the ILC (foreseeing

an initial
√
s = 250 GeV phase, with a typical integrated luminosity of 250 fb−1) can be
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Figure 10. Signal significance S/
√
S +B for e+e− → Hγ̄ as a function of the couplings Cγγ̄ , CZγ̄ ,

for Cγγ̄ = 0 (green), CZγ̄ = 0 (blue), and CZγ̄ = 0.79 Cγγ̄ [with Cγγ̄ shown on the horizontal axis]

(red), for an integrated luminosity of 10 ab−1, at
√
s = 240 GeV. The horizontal gray lines show

the 5σ-discovery bound, and the 2 σ (' 95% C.L. exclusion) level.

estimated from figure 9, and are about a factor 3 lower than the FCC-ee ones. The latter

match sensitivities on the corresponding BR(H → γγ̄) and BR(H → Zγ̄) that are smaller

than the FCC-ee ones by an order of magnitude.

4 A model of Flavor with dark photons

In this section, we review the main aspects of the model proposed in [12], that provides

a theoretical framework for the effective description given by the Lagrangian in eq. (2.1).

Correspondingly, we will obtain predictions for the Higgs BR’s for H → γγ̄ and H → Zγ̄

(and relevant effective couplings) in terms of the fundamental parameters of the model.
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4.1 The Lagragian

The basic assumptions of the model introduced in [12] are the following. For each SM

fermion there exists a dark fermion with same Flavor in a hidden sector, that is an heavier

fermion replica which is a singlet under the SM gauge group. The chiral- and Flavor-

symmetry spontaneus breaking is realized in the dark sector as described in the following,

and communicated to the SM fermions via renormalizable and Flavor universal interactions

mediated by messenger fields. The Yukawa couplings are radiatively generated, preserving

approximately the same Flavor hierarchy structure of the dark-fermion sector. A similar

approach has been proposed in [13–15], although in this case the dynamics responsible of

the dark-fermion spectrum has not been discussed.

A simple choice for the messenger sector consists of a set of scalar messenger fields

that, due to gauge invariance, have to be charged under the SM gauge group with the same

quantum numbers as quarks and leptons. The relevant Lagrangian is [12]

L = LY=0
SM + Lmes + LDS, (4.1)

where LY=0
SM stands for the SM Lagrangian without tree-level Higgs Yukawa couplings, Lmes

is the Lagrangian containing the messenger sector with its couplings to the SM and dark

fields, and LDS is the dark-sector Lagrangian including the dynamics responsible of the

Flavor hierarchy.

Dark fermions acquire an exponentially-spread mass spectrum from non-perturbative

dynamical effects. In fact, the Lagrangian LDS, containing dark fermions and a dark

photon, is given by [12],

LDS = i
∑
i

(
Q̄UiDµγµQUi + Q̄DiDµγµQDi

)
− 1

4
FµνF

µν +
1

2Λ2
∂µFµα∂νF

να, (4.2)

where QUi , QDi are the dark fermion fields, partners in the hidden sector of the up (Ui)

and down (Di) quarks, Dµ = ∂µ + igQ̂Āµ is the covariant derivative related to the U(1)F
gauge field Āµ which is associated to the dark-photon, with Fµα the corresponding field

strength, and Q̂ the charge operator acting on the dark fermion fields. LDS can be extended

to include also the SM leptonic sector in a straightforward way.

The last term in LDS, involving only the U(1)F gauge sector, corresponds to the so-

called Lee-Wick term. It is a higher-derivative term, and the Λ scale can be interpreted as

the mass of the associated massive ghost.1 This term can trigger ChSB, and generate a mass

spectrum non-perturbatively [51], by means of the Nambu-Jona-Lasinio mechanism [52, 53].

The following Dirac-fermion mass spectrum can be induced on the true vacuum [51]

MQi = Λ exp

{
− 2π

3 ᾱ(Λ)q2
i

+
1

4

}
, (4.3)

1According to the Lee-Wick argument [54–56], the presence of a massive ghost field in the spectrum does

not spoil unitarity, provided the massive ghost has a finite decay width, which is automatically satisfied in

the present scenario.
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where qi is the U(1)F charge of the Dirac fermion, and ᾱ(Λ) the corresponding fine structure

constant at the Λ energy scale. This solution is manifestely non-perturbative as can be

seen from the ᾱ dependence in MQi .

The Lagrangian Lmes in eq. (4.1) contains the messenger scalar fields,

Lmes = L0
mes + LI

mes , (4.4)

where L0
mes is the kinetic Lagrangian for the messenger fields interacting with the SM

gauge bosons, while LI
mes contains the messenger interactions with the dark fermions and

the Higgs boson, which give rise to the effective Yukawa couplings.

The SM quark quantum numbers set the minimal matter in the messenger sector,

which is given by

• 2Nf complex scalar SU(2)L doublets: Ŝ
Ui
L and Ŝ

Di
L ,

• 2Nf complex scalar SU(2)L singlets: S
Ui
R and S

Di
R ,

• one real SU(2)L ×U(1)Y singlet scalar: S0,

where Ŝ
Ui(Di)

L =

(
cS

Ui(Di)
L1

S
Ui(Di)
L2

)
, Nf = 3, and i (= 1, 2, 3) stands for the Flavor index for three

fermion generations. The Ŝ
Ui,Di
L and S

Ui,Di
R fields carry the SM quark quantum numbers,

and the labels L,R corresponds to the chirality of the associated SM fermions. They couple

to the EW gauge bosons and to the gluons, as do squarks in the minimal supersymmetric

extensions of the SM. Note that a minimal Flavor violation would require this Lagrangian

to be invariant under SU(NF ), where NF = 2Nf is the number of Flavors.

The messenger mass structure can be described by four free universal mass terms in

both the Ŝ
Ui
L,R and Ŝ

Di
L,R sectors. Note that an even more minimal hypothesis of a common

scalar mass for the L and R scalar sectors is also phenomenologically acceptable.

The Lagrangian LImes for the messenger interactions with quarks and SM Higgs boson is

LImes = gL

 Nf∑
i=1

[
q̄iLQ

Ui
R

]
Ŝ

Ui
L +

Nf∑
i=1

[
q̄iLQ

Di
R

]
ŜDi
L

+

+gR

 Nf∑
i=1

[
Ū
i
RQ

Ui
L

]
S

Ui
R +

Nf∑
i=1

[
D̄
i
RQ

Di
L

]
S

Di
R

+

+λSS0

(
H̃†SUi

L S
Ui†
R +H†SDi

L S
Di†
R

)
+ h.c. + V (S0), (4.5)

where S0 is a real singlet scalar, V (S0) its potential, qiL, UiR, DiR, stand for the SM fermions,

and H is the SM Higgs doublet, with H̃ = iσ2H
?. Contractions on color indices are

understood. The two constants gL and gR are Flavor-universal free parameters that are

allowed to be in the perturbative region gL,R < 1.

The Lagrangian for the interaction of messenger scalars with the SM gauge bosons

follows from the universal properties of gauge interactions. We stress that the messenger

fields carry the same U(1)F charges as the corresponding dark fermions.
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Fields Spin SU(2)L U(1)Y SU(3)c U(1)F

Ŝ
Di
L 0 1/2 1/3 3 −qDi

Ŝ
Ui
L 0 1/2 1/3 3 −qUi

S
Di
R 0 0 −2/3 3 −qDi

S
Ui
R 0 0 4/3 3 −qUi

QDi 1/2 0 0 0 qDi

QUi 1/2 0 0 0 qUi

S0 0 0 0 0 0

Table 2. Spin and gauge quantum numbers for the strongly-interacting messenger fields and for

dark fermions. U(1)F is the gauge symmetry in the dark sector.

The messenger and dark-fermion quantum numbers are shown in table 2 (detailed

in [12]). Finally, after the spontaneous symmetry breaking of the discrete H → −H parity

symmetry that prevents tree-level Yukawa couplings, all Yukawa couplings are generated

at one loop, and are finite at any order in perturbation theory [12–15]). Assuming almost

degenerate diagonal messenger masses in the L and R sectors, one finds, from the one-loop

vertex computation, that the effective Yukawa coupling associated to the quark i is [12]

Y i = Y0(xi) exp

(
− 2π

3ᾱ(Λ)q2
i

)
, (4.6)

where the dark-fermion masses MQi have been replaced by eq. (4.3), and the one-loop

function Y0(xi) is given by

Y0(xi) =
(gLgR

16π2

)(µSΛ

m̄2

)
C0(xi) , (4.7)

with µS ≡ λS〈S〉, and xi = M2
Qi
/m̄2. Also, m̄ is the average mass of the messenger fields

running in the loop, and C0(x) = (1− x (1− log x))/(1− x)2.2

4.2 BR(H → γγ̄) predictions

The Cγγ , Cγγ̄ , and Cγ̄γ̄ coefficients entering the effective Lagrangian in eq. (2.1) have been

computed in [35], as a function of the basic parameters of the model described in section 4.1.

In the m̄2
L ' m̄2

R approximation of degenerate messenger masses in the left and right-

handed sectors, corresponding to the mixing angle θ = π/4 (see [12] for notations), the

Flavor-universal messenger mass matrix can be expressed in terms of two parameters, the

average messenger mass m̄2 = (m2
L + m2

R)/2, and the mixing parameter ξ ≡ ∆2/m̄2. We

then define the universal mixing parameters ξq and ξl, corresponding to the messenger

mixing parameters in the quark and lepton sectors, respectively. Note that, in the effective

theory approximation, the Higgs and Z masses can be both set to zero in loop functions,

when terms O(m2
H/m̄

2) are negligible.

2The above results hold for diagonal Yukawa couplings. They can be easily generalized to include the

Cabibbo-Kobayashi-Maskawa (CKM) matrix entering the charged weak interactions as explained in [13, 14].
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Then, one finds3

Cγγ̄ =

√
ᾱ

α

∑
i=q,l

Ri1
12

ξ2
i

1− ξ2
i

,

Cγ̄γ̄ =
ᾱ

α

∑
i=q,l

Ri2
12

ξ2
i

1− ξ2
i

,

CZγ̄ =

√
ᾱ

α

∑
i=q,l

RiZγ
Ri1
12

ξ2
i

1− ξ2
i

,

Cγγ = CSM
γγ

1 +
∑
i=q,l

Ri0ξ
2
i

3F
(
1− ξ2

i

)
 ,

CZγ = CSM
γγ

1 +
∑
i=q,l

RiZγ
Ri0ξ

2
i

3F
(
1− ξ2

i

)
 ,

Cgg = CSM
gg

(
1−

ξ2
q

3Fq
(
1− ξ2

q

)) , (4.8)

where CSM
γγ = 1

4F , CSM
gg = Fq , and the constants Rq,l0,1,2 are given by

Rq0 = 3Nc(e
2
U + e2

D), Rl0 = 3 e2
E ,

Rq1 = Nc

3∑
i=1

(
eUqUi

+ eDqDi

)
, Rl1 = eE

3∑
i=1

(
qEi

)
,

R q
2 = Nc

3∑
i=1

(
q2
Ui

+ q2
Di

)
, R l

2 =
3∑
i=1

(
q2
Ei

+ q2
νi

)
, (4.9)

with eU = 2/3, eD = −1/3, and eE = −1, the electric charges for up-, down-quarks, and

charged leptons, respectively. F and Fq are the usual SM loop factor given by

F = FW (βW ) + FF , FF =
∑
f

NcQ
2
fFf (βf ) , Fq =

∑
f

Ff (βf ) , (4.10)

with Nc = (3)1 for leptons (quarks) respectively, βW = 4m2
W /m

2
H, βf = 4m2

f/m
2
H, and

FW (x) = 2 + 3x+ 3x (2− x) f(x) , Ff (x) = −2x (1 + (1− x)f(x)) , (4.11)

where f(x) = arcsin2
[

1√
x

]
, for x ≥ 1, and f(x) = −1

4

(
log
(

1+
√

1−x
1−√1−x

)
− iπ

)2
, for x < 1.

Including only the W and top-quark loops in F , we get F ' 6.5, Fq ' 1.8 for mH =

3Note that, due to the Bose statistics of the messenger fields, the relative sign with respect to the SM

contribution in the H → gg amplitude is predicted to be negative. Analogously, there is a negative relative

sign with respect to the SM fermion contribution to the H → γγ and H → γZ amplitudes.
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125 GeV. We will elaborate on the R q,l
Zγ constants in eq. (4.8) (parametrizing the ratio of

the messenger couplings to the Z and γ) at the end of this section.4

One can see that in the Higgs couplings in eq. (4.8), there is a clear non-decoupling

effect, since the Ci j coefficients do not vanish when (m̄2,∆)→∞, provided the ratio ∆/m̄2

is finite.

The ratios rij (i, j = γ, γ̄), defined in eq. (2.5), entering the model-independent BR’s

parametrization in eq. (2.6), and rgg, defined in eq. (2.7), are then given by

rγγ̄ = 2

∑
i=l,q

XiR
i
1

2 ( ᾱ
α

)
, rγ̄γ̄ =

∑
i=l,q

XiR
i
2

2 ( ᾱ
α

)2

, (4.12)

rγγ =

∑
i=l,q

XiR
i
0

2

, rgg =
X2
qF

2

F 2
q

, (4.13)

where the extra factor 2 in rγγ̄ comes from statistics and

Xl(q) ≡
ξ2
l(q)

3F (1− ξ2
l(q))

, (4.14)

with Rq,l0,1,2 defined in eqs. (4.9).

The strength of the exotic contribution to H → γγ is directly controlled by two mixing

parameters, ξq and ξl. On the other hand, the H → gg depends only on ξq, and can be

constrained at the LHC by measuring Higgs production rates.

It is useful to connect the messenger-loop impact on the Hgg vertex expressed by

rgg [as defined in eq. (2.7)] with the usual kg anomalous coupling of the Hgg interaction

which enters the relation Cgg = kg C
SM
gg . By eq. (4.8), it is straightforward to see that

kg ' 1−√rgg. Present data constraints kg at 68% of C.L. to be in the ranges kg = 1.00+0.23
−0.16

(ATLAS collaboration [7]), and kg = 0.76+0.15
−0.13 (CMS collaboration [8]). In the following,

we assume rgg to be in the range 0 . rgg . 0.4.

In figure 11, we show BR(H → γγ̄) as a function of the U(1)F fine structure constant

evaluated at the average messenger mass, ᾱ(m̄), for a few values of the ratios rgg and

rγγ . We assume the charge normalization qU3 = 1 and qL3 = 1. The dashed blue lines

correspond to the condition

1

2
BRSM

γγ < BRγγ < 2BRSM
γγ , (4.15)

with BRSM
γγ = 2.28× 10−3. The red dots correspond to fixed BRγ̄γ̄ ' BRinv values, where

BRinv is the Higgs invisible-decay BR. Note that when colored messengers contribute to

the Hγγ̄ effective coupling, BRγγ̄ depends also on the sign of the U(1)F charges, which

are free parameters. Correspondingly, in figure 11, we show cases in which the U(1)F
charge sign in the quark sector gives either destructive or constructive interferences with

4We will neglect the ᾱ running from the m̄ scale to the characteristic low-energy scale entering the

dark-photon vertex in H → γγ̄, γ̄γ̄, Zγ̄.
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Figure 11. Predictions for BR(H → γγ̄) as functions of the U(1)F fine structure constant ᾱ, for

different values of BRinv, rγγ and rgg in the full model; rγγ satisfies the constraint rγγ & 1.9 rgg
(see text).

the electromagnetic charges. The maximum value of ᾱ ' 0.18 corresponds to ᾱ(Λ) ' 1

(see eq. (A.2) in the appendix for details).

In the upper-left plot in figure 11, we show the BRγγ̄ predictions for rgg = 0. The

allowed BRγγ̄ values are at most about 1%, and one has BRγγ̄ > BRSM
γγ only for rγγ & 0.1,

corresponding to a quite large mixing parameter (ξl > 0.82) in the leptonic messenger

sector. The upper-right plot shows the case rgg ' 0.1, assuming constructive U(1)F charge

interferences, corresponding to sign(qUi
/qDi

) = sign(qUi
/qEi

) = −1. In this plot, the mini-

mum rγγ value ∼ 0.2 comes from the constraint rγγ & 1.9 rgg, arising from eqs. (4.13)–(4.14)

as a result of the color and EW quantum numbers of the different amplitudes. BRγγ̄ above

2% are allowed in this case, corresponding to the range ᾱ ∼ 0.10–0.18, with rγγ ∼ 0.4.

The lower-left and lower-right plots match the largest allowed contribution from col-

ored messengers (rgg ' 0.4, with rγγ & 0.76), which corresponds to a mixing parameter

ξq ' 0.88. The left and right plots correspond to the destructive and constructive ef-

fects of the U(1)F charges, that is sign(qUi
/qDi

) = sign(qUi
/qEi

) = 1, and sign(qUi
/qDi

) =

sign(qUi
/qEi

) = −1, respectively. For large colored messenger contributions, the actual

BRγγ̄ value dramatically depends on the charge signs. In the case of constructive interfer-

ences, BRγγ̄ reaches the 3%–4% level, while in the destructive case it is always below 1%.
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Summing up, large BRγγ̄ values up to 1%–4% are possible in this scenario. They

correspond to the ᾱ range expected from naturalness arguments applied to U(1)F charges

(see the appendix for more details). This BRγγ̄ range is equivalent to Cγγ̄ values up to

about 5 in the Lagrangian in eq. (2.2), as shown in figure 4. As we have seen, in section 3,

these Cγγ̄ values could be well inside the domain of sensitivity of the e+e− → Hγ̄ searches

at future e+e− colliders (cf. figures 9–10).

Before closing this section, we elaborate on the general connection between the HZγ̄

and Hγγ̄ couplings, induced at one loop. This will depend on the spin and the SM gauge-

group representation of the particles running in the loop. On the other hand, here the

HZγ̄ and Hγγ̄ vertices are induced by scalar messenger fields in the SU(2)L × SU(3)c
fundamental representation (cf. table 2), which gives a definite prediction for the HZγ̄ and

Hγγ̄ coupling ratio, and for the R q,l
Zγ terms entering the CZγ̄ and CZγ effective couplings

in eq. (4.8).

Then we can now motivate the RZγ ' 0.79 scenario that we considered in the e+e− →
Hγ̄ study of section 3. RZγ can be defined (in absence of scalar mixing between the doublet

and singlet scalars circulating in loops) by the relation

CZX = RZγ CγX , (4.16)

with X = γ, γ̄, for the Higgs effective couplings in eqs. (2.2)–(2.3).

The Z-boson coupling to a scalar particle i is given by

R i
Zγ =

(
1− Y i

Qi

)
− sin2 θW

sin θW cos θW
(4.17)

times the photon coupling to the same scalar, where Y i and Qi are the hypercharge and

the electric charge of the scalar, and sin θW is the Weinberg angle.

If the scalars in the loop are SM particle partners (as happens in SUSY or in the model

in [12]), they will share the quantum numbers of the left- and right-handed SM fermions.

Then, for right-handed fermion partners (Y R = QR), and for left-handed electron

partners (Y ẽL = −1
2 and QẽL = −1), one has, respectively,

RRZγ = − sin θW
cos θW

' −0.55 , RẽLZγ =
1
2 − sin2 θW

sin θW cos θW
' 0.64 . (4.18)

The average Z-to-γ coupling ratio for a pair of mass-degenerate right- and left-handed

leptonic scalars is then

R
˜̀
Zγ =

RRZγ +RẽLZγ
2

' 0.045 . (4.19)

For left-handed up- and down-type squarks (Y ũL = 1
4Q

ũL and Y d̃L = −1
2Q

d̃L , respectively),

one has instead

RũLZγ =
3
4 − sin2 θW

sin θW cos θW
' 1.2, Rd̃LZγ =

3
2 − sin2 θW

sin θW cos θW
' 3.0 . (4.20)

The average contribution from a mass-degenerate pair of right- and left-handed up and

down squarks is then RũZγ = (RRZγ + RũLZγ)/2 ' 0.34, and Rd̃Zγ = (RRZγ + Rd̃LZγ)/2 ' 1.23,
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respectively. Assuming that also the up- and down-type scalars are mass degenerate, the

net result from a squark doublet is then

R q̃
Zγ =

RũZγ +Rd̃Zγ
2

' 0.79 . (4.21)

The same pattern for the RZγ constants can be obtained in the model in [12], in the

approximation of degenerate colored messenger scalars.

In section 3, we include the case CZγ̄ = R q̃
Zγ Cγγ̄ = 0.79Cγγ̄ among the benchmarks for

the analysis of the e+e− → Hγ̄ potential, corresponding to negligible leptonic contributions

in the messenger loops.

5 Conclusions

Hidden sectors extending the SM theory can include an extra unbroken U(1) gauge sym-

metry. The corresponding gauge boson, a massless dark vector boson, can couple to the

Higgs boson through renormalizable interactions involving scalar messengers, giving rise to

effective Hγγ̄, HZγ̄, and Hγ̄γ̄ couplings. Since a massless dark photon is not revealed by

collider detectors, the latter can be probed at the LHC and future colliders via the search

for exotic Higgs decays into a photon or a Z boson plus missing transverse energy, and the

determination of the invisible Higgs decay width.

Another way to investigate the possible existence of the Hγγ̄ and HZγ̄ couplings is

the production at future e+e− colliders of a Higgs boson associated to a dark photon. The

corresponding signature is very distinctive, since there is no irreducible SM background

where the Higgs decay products are accompanied by a massless invisible system.

After introducing an effective Lagrangian description of the new Higgs interactions,

we studied the potential of the e+e− → Hγ̄ production for probing the corresponding Hγγ̄

and HZγ̄ couplings, Cγγ̄ and CZγ̄ . A most useful strategy for enhancing the S/B ratio

turns out to be a selection on the small values of the invisible-system invariant mass. We

found that, at
√
s = 240 GeV, with the integrated luminosity foreseen at the FCC-ee (∼ 10

ab−1), one can exclude at 95% C.L. the ranges Cγγ̄ > 1.9 (for CZγ̄ = 0), CZγ̄ > 2.7 (for

Cγγ̄ = 0), and Cγγ̄ > 1.6 (for CZγ̄ = 0.79 Cγγ̄). The interval Cγγ̄ > 1.9 corresponds to

BR(H → γγ̄) > 3 BRSM(H → γγ), while, excluding CZγ̄ > 2.7, one excludes BR(H →
Zγ̄) > 9 BRSM(H → Zγ). The corresponding BR bounds for the Higgs decay into a dark

photon at the ILC with
√
s = 250 GeV, and ∼ 250 fb−1 of integrated luminosity, are about

an order of magnitude looser than the FCC-ee ones.

Of course, in order to fully assess the e+e− collision potential, one would need an

estimate of the corresponding LHC sensitivity to the Hγγ̄ and HZγ̄ couplings. This would

in particular allow to figure out whether, in case of negative findings at the forthcoming

LHC runs, there will indeed be some unexplored parameter space left that can be covered by

searches in e+e− collisions. Studies to evaluate the LHC sensitivity to the H → γγ̄ channel

at Run 1 have just been started. A parton-level analysis leads to a bound on BR(H →
γγ̄) of about half a percent at 95% C.L. from the 8-TeV data set [35], corresponding

to the exclusion of the range Cγγ̄ > 1.6 (cf. figure 4). On the other hand, since most
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of the background to the H → γγ̄ signal in pp collisions comes from jet- and photon-

mismeasurement effects, a thorough detector simulation would be needed to make a robust

sensitivity statement on the present data set at the LHC. Studies at 13–14 TeV are expected

to increase the sensitivity on a purely signal-statistics basis, but will be affected by harsher

experimental conditions, that make the reconstruction of relatively small missing transverse

energies quite critical. The extrapolation of present 8-TeV results to larger pp c.m. energies

will then require an even more careful analysis. Similar considerations apply to the LHC

searches for a H → Zγ̄ signal, where the expected missing transverse energy is even lower

than in the H → γγ̄ case.

Predictions for the BR(H → γγ̄) in the framework of the Flavor model proposed in [12]

have also been presented. Due to non-decoupling effects, BR(H → γγ̄) turns out to be

directly proportional to the mixing parameters ξq,l in the scalar messenger sector, and to

the U(1)F coupling constant ᾱ, times some SM couplings. Remarkably, quite high ξq,l
mixings are required in order to generate the Yukawa couplings radiatively, and avoid large

fine tuning in the Higgs sector [12]. At the same time, large (but still in the perturbative

range) ᾱ couplings are expected, in order to avoid fine-tuning among the dark fermion

charges. As a consequence, in the scenario [12], BR(H → γγ̄) can be naturally large, and

in the ballpark of sensitivity of the LHC and future colliders.

In conclusion, although realistic LHC sensitivity studies for the Higgs couplings to

dark photons are still to come, one expects quite a lot of complementarity of the LHC and

future e+e− capabilities to probe new exotic Higgs-boson interactions with dark photons,

thanks to the extremely clean e+e− experimental conditions.
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A Coupling strength in the dark sector

One of the most interesting property of the Flavor model in [12] is that the value of the

U(1)F coupling strength in the dark sector, ᾱ, can be connected to the charge splitting

among two dark-fermion generations in the lepton or quark sector. In the following, we

present such a prediction.

A crucial assumption in the model is the one of minimal Flavor violation, implying that

the only source of Flavor violation comes from the U(1)F charges. We first define ᾱ(Λ) by

normalizing to 1 the largest U(1)F charge, which is the one associated to the dark-fermion

partner of the top quark. Then, according to eq. (4.6), we get

1/ᾱ(Λ) ' 3

2π

q2
Qi

1− q2
Qi

log
mt

mi
, (A.1)
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where mt is the top-quark mass, mi stands for another generic quark mass, and qQi
is the

U(1)F charge of the corresponding dark-fermion partner Qi.
5 Then, by fixing the ratio

of two qQi
charges in eq. (A.1), one can predict ᾱ(Λ), as well as all the remaining U(1)F

charges. For instance, by requiring a charge splitting of 10% among the U(1)F charges of

the dark-fermion partners of the third quark generation, namely qU3
' 1 and qD3

' 0.9, we

get ᾱ(Λ) ' 0.13, and also qU2
' 0.87, qD2

' 0.82, and qU1
' 0.78, qD1

' 0.76, where for the

different quark masses we assumed the central values in [57].

On the other hand, in order to obtain a weakly coupled U(1)F theory, with ᾱ(Λ) �
10−2, a charge splitting � 1% is required, leading to an unnatural fine tuning among

the U(1)F charges. Remarkably, the same conclusion holds when extracting ᾱ(Λ) from the

eq. (A.1) applied to the purely EW dark sector. In this case, assuming qE3
= 1 and qE2

= 0.9

for the dark fermions associated to the τ and µ leptons, respectively, one obtains ᾱ = 0.17,

which is of the same order of the coupling strength for dark fermions in the quark sector.

In order to avoid an unnatural fine-tuning among the U(1)F charges, eq. (A.1) suggests a

large, but maybe still perturbative, U(1)F coupling in the dark sector.

Actually, in [12] the scale Λ can be many orders of magnitude above the messenger

mass scale, and it is useful to have the ᾱ value at low energy (for instance, at the average

messenger mass m̄), as a function of the charge splitting of a pair of different dark fermions.

Indeed, it is the low-energy ᾱ that enters BR(H → γγ̄) and BR(H → γ̄γ̄). We then need

first to connect ᾱ(Λ) to ᾱ(m̄) by solving the appropriate renormalization group equations

for the U(1)F β-function. Due to the large energy gap between Λ and m̄, all dark-fermion

and messenger masses can be approximated to a common low-energy scale around m̄,

neglecting the running between different mass thresholds at low energy. Then, including

the dark-fermion and messenger contributions to the one-loop beta-function, as well as the

dark-fermion mass definition in eq. (4.3), one can remove the explicit dependence on the

Λ scale, by the expression

ᾱ(Λ) = ᾱ(m̄)

(
1 +R q

2

(
4 + 3N2

c

9Nc

)
+R l

2

7

9

)
, (A.2)

whereR q,l
2 are defined in eq. (4.9). The peculiar solution in eq. (A.2) arises from reabsorbing

the usual log(Λ/MQi) term into the dark-fermion mass definition in eq. (4.3).

In figure 12, the ᾱ behavior is shown as a function of the U(1)F charge splitting

δ3 associated to the third generation of quarks, with qQD3
= qQU3

(1 − δ3). We assume

the charge normalization qU3 = 1, and also qL3 = 1 for the U(1)F charges of the dark

fermions and messengers of the third-generation leptonic sector. The end point at δ3 = 0.39

corresponds to ᾱ(Λ) = 1.

By requiring a natural charge splitting that is not smaller than 20%, ᾱ turns out to

be quite strong, 0.04 < ᾱ < 0.18, but still in the perturbative regime. Then, one obtains

quite naturally large values for the H → γγ̄ branching ratio.

5We have used the property that the loop function Y0(xi), as defined in eq. (4.7), has a weak dependence

on the dark-fermion mass MQi , and can be approximated to a constant.
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Figure 12. Predictions for ᾱ at the low-energy messenger scale m̄, as a function of the U(1)F
charge splitting in the third generation, defined by qQD3

= qQU3
(1− δ3).
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