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ABSTRACT. The main result of the present paper consists in a quanti-
tative estimate of unique continuation at the boundary for solutions to
the wave equation. Such estimate is the sharp quantitative counterpart
of the following strong unique continuation property: let u be a solution
to the wave equation that satisfies an homogeneous Robin condition on
a portion S of the boundary and the restriction of ujg on S is flat on
a segment {0} x J with 0 € S then ujg vanishes in a neighbourhood of
{0} x J.
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1. Introduction

The strong unique continuation properties at the boundary and the related
quantitative estimates have been well understood in the context of second or-
der elliptic equations, [1, 22], and in the context of second order parabolic
equations [16, 17, 32]. For instance, in the framework of elliptic equations, the
doubling inequality at the boundary and three sphere inequality are the typi-
cal forms in which such quantitative estimates of unique continuation occur [4].
Similar forms, like three cylinder inequality or two-sphere one cylinder inequal-
ity, occur in the parabolic case [32]. In the context of hyperbolic equation,
strong properties of unique continuation at the interior and the related quanti-
tative estimates are less studied [6, 24, 25, 31]. Also, we recall here the papers
[11, 12, 26] in which unique continuation properties are proved along and across
lower dimensional manifolds for the wave equation. We refer to [8, 9, 23] for
recent result of quantitative estimate for hyperbolic equations. Such results are
the quantitative counterpart of the unique continuation properties for equation
with partially analytic coefficients proved in [19, 27, 30], see also [20].
Quantitative estimates of strong unique continuation at the boundary are
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one of most important tool which enables to prove sharp stability estimates for
inverse problems for PDE with unknown boundaries or with unknown boundary
coefficients of Robin type, [3, 29] (elliptic equations), [5, 10, 14, 32] (parabolic
equations), [33] (hyperbolic equations). In the context of elliptic and parabolic
equations, the stability estimates that were proved are optimal [2, 13, 14].

To the authors knowledge there exits no result in the literature concern-
ing quantitative estimates of strong unique continuation at the boundary for
hyperbolic equations.

In order to make clear what we mean, we illustrate our result in a particular
and meaningful case. Let A(z) be a real-valued symmetric n x n, n > 2, matrix
whose entries are functions of Lipschitz class satisfying a uniform ellipticity
condition. Let u be a solution to

Otu — div (A(x)V,u) =0, in By x J, (1)

where B = {z = (2/,2,) € R" : |z| < 1,2, > 0} and J = (—T,T) is an inter-
val of R. Assume that u satisfies the following Robin condition

A2, 0)Vu(x',0,t) - v+ y(z")u(z',0,t) =0, in B} X J, (2)

where B/ is the R"~! ball of radius 1 centred at 0, v denotes the outer unit
normal to Bj and +, the Robin coefficient, is of Lipschitz class. The quantitative
estimate of strong unique continuation that we provide here may be briefly
described as follows. Let r € (0,1) and assume that

ig?”u('aoat)”L?(B;) <e and ”u(?O)HHQ(Bf) < 1, (3)

where € < 1. Then

—x

Hu('7070)||L2<BgO) < Cllog ()] (4)
where sg € (0,1), C > 1, a > 0 are constants independent of u and r and
0 = |logr|™*. (5)

For the precise statement of our result we refer to Theorem 2.1. Roughly speak-
ing, in such a Theorem the half ball Bf is replaced by the region {(2', z,,) € B :
xp > ¢(z')} where ¢ € OB (B)) satisfies ¢(0) = |V ¢(0)| = 0. In addition, u
satisfies the Robin condition (2) on S; x J where Sy = {(2/, ¢(z)) : 2’ € By}.
The estimate (4) is a sharp estimate from two points of view:
(i) The logarithmic character of the estimate cannot be improved as it is
shown by a well-known counterexample of John for the wave equation, [21];
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(ii) The sharp dependence of 6 by r. Indeed it is easy to check that the
estimate (4) implies that the following strong unique continuation property at
the boundary holds true. Let u satisfy (1) and (2) and assume that

ilelg ||u(~,0,t)||L2(B’,r) = O(T‘N>, VN eN,asr —0

then we have
u(x’,0,t) =0 for every (z/,t) €U,

where U is a neighbourhood of {0} x J.

In order to prove the quantitative estimate (4), we have mainly refined the
strategy developed in [31] in which the author, among various results, proved
that if

sup Hu(~,t)||L2(B;r) <e and Hu(.70)||H2(Bl+) <1,
teJ
then

(e, )l sy < C flog (7)]°, (6)

where 0 = |logr|~!, s9 € (0,1), C > 1 are constants independent of u and
r and an homogeneous Neumann boundary condition applies instead of (2).
To carry out our proof, we first adapt an argument used in [28] in the elliptic
context which enable to reduce the Robin boundary condition into a Neumann
boundary one. Subsequently we need a careful refinement of some arguments
used in [31]. Actually, to fulfil our proof it is not sufficient to apply the above
estimate (6). In order to illustrate this point, a comparison with the analogue
elliptic context (i.e. u is time independent) could be useful. In such an elliptic
context [28] instead of (3) we would have

||u(’0)||L2(BWIA S 9 and ||UHH2(BT) S 1.

Thus, from stability estimates for the Cauchy problem [4] and regularity result
we would obtain the following Holder estimate

||U’HL2(B )SCEBa

WIS+

where C' and 8 € (0,1) are independent on w and r. By using the above
estimate, the three sphere inequality at the boundary and standard regularity
results we would have
9
el () < <",

where 0 < p < 1 and ¥ ~ |logr|~! as 7 — 0. Finally, by trace inequality we
would obtain

Hu”Lz (32/2) < 0519-
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The application of the same argument in the hyperbolic case would lead to a
loglog type estimate instead of the desired single log one (4). In fact, opposite
to the elliptic case, in the hyperbolic context the dependence of the interior
values of the solution upon the Cauchy data is logarithmic. As a consequence,
by combining such a log dependence with the logarithmic estimate in (6) we
would obtain a loglog type estimate for ||u(-,0, 0)HL2(B;U).

The plan of the paper is as follows. In Section 2 we state the main result
of this paper. In Section 3 we prove our main theorem, in Section 4 we discuss
some auxiliary results and in Section 5 we conclude by summarizing the main
steps of our proof.

2. The main result

2.1. Notation and Definition

In several places within this manuscript it will be useful to single out one
coordinate direction. To this purpose, the following notations for points =z € R™
will be adopted. For n > 2, a point € R™ will be denoted by x = (a/,x,),
where 2’ € R"~! and z,, € R. Moreover, given r > 0, we will denote by
B,, B!, B, the ball of R*, R"~! and R"*! of radius r centred at 0. For
any open set  C R™ and any function (smooth enough) u we denote by
Vit = (O, u, - -+, 0, u) the gradient of uw. Also, for the gradient of u we use
the notation D,u. If j = 0,1,2 we denote by DJu the set of the derivatives
of u of order j, so D%u = u, Dlu = V,u and D2?u is the Hessian matrix
{0z,2;u}} j—;. Similar notation are used whenever other variables occur and €2
is an open subset of R"~! or a subset of R"*1. By H*(Q), £ =0, 1,2 we denote
the usual Sobolev spaces of order ¢, in particular we have H°(Q2) = L?(Q).
For any interval J C R and () as above we denote

W (J;9Q) ={ueC’(J;H*(Q)) : dju € C° (J; H**(Q)) ,£ = 1,2} .

We shall use the letters C, Co, C1, - - - to denote constants. The value of the
constants may change from line to line, but we shall specified their dependence
everywhere they appear.

2.2. Statements of the main results

Let A(z) = {aij(x)}?jzl be a real-valued symmetric n X n matrix whose
entries are measurable functions and they satisfy the following conditions for

given constants pg > 0, A € (0,1] and A > 0,

A |£|2 <A(z)E-e <At \§|27 for every z,£ € R", (7a)
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A
|A(z) — A(y)| < o |z —y|, forevery z,y € R". (7b)
0
Let ¢ be a function belonging to C1:! (B;O) that satisfies

$(0) = [Vr$(0)] =0, (8a)
19l (s, ) < Epo, (8b)

where

2 2
10l (sy,) = 191 (sy,) 20 Vet Bl ;) + AEINDZ S e,
For any r € (0, pg] denote by
K, :={(z',x0) € B, : 2, > §(a')}

and
S, :={(2',¢9(z")) : 2’ € B.}.
We assume that the Robin coefficient v belongs to C%1(S,,) and for a given
4 > 0 is such that
Mlgoags,y) <7 - 9)
Let U € W ([=Apo, Apo); K ) be a solution to

OfU — div (A(x)V,U) =0, in K,, x (—\po, A\po), (10)

satisfying the following Robin condition
AV, U -v+~U =0, on S, x (=Apo, Apo), (11)

where v denotes the outer unit normal to S, .
Let ro € (0, po] and denote

1/2
€= sup p&"“/ U%(o,t)do (12)
te(—=Apo,Apo) S

70

and
1/2

2
H= Zp{f"/ |DIU(2,0)da | . (13)
§=0

PO
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THEOREM 2.1. Let (7) be satisfied. Let U € W ([=Apo, Apol; Kp,) be a solution
to (10) satisfying (12) and (13). Assume that w satisfies (11). There exist
constants Sg € (0,1) and C > 1 depending on A\, A and E only such that for
every 0 < 1o < p < Sgpo the following inequality holds true

C (pop_l)c (H + e¢)

<9~1og (%))1/6

TG0l z2(s,) < ; (14)

where
~ log(po/Cp)
0= log(po/r0) 15)

From now on we shall refer to the a priori bounds as the following set of
quantities: A\, A, pg, E, 7.

3. Proof of Theorem 2.1

In what follows we use the following

PROPOSITION 3.1. There exists a radius r1 > 0 depending on the a priori data
only, such that the problem

div(AVY) =0, in Ky, , (16)
AVYy - v+yp =0, inS, ,
admits a solution v € H*(K,,) satisfying
Y(x) > 1 for every z € K,,. (17)

Moreover, there exists a constant 1 > 0 depending on the a priori data only,
such that

[Yller k) <O - (18)
Proof. See Section 4 O

Let r; and ¥ be the radius and the function introduced in Proposition 3.1.
Denoting with

U
ut = —, 19
” (19)
it follows that u* € W ([—Ar1, Ar1]; K, ) is a solution to

wz(x)ﬁf *—div(A*(2)Vyu*) =0, in K, x (=Ary, Ary), (20)
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satisfying the following Neumann condition
AVu*-v=0, onS, x(=Ary,Ar), (21)

where v denotes the outer unit normal to S,, and A*(z) = ¥?(x)A(z). Re-
peating the arguments in [31, Subsection 3.2] (partly based on the techniques
introduced in [1]), we can assume with no loss of generality that A*(0) = I

with I identity matrix n X n and we infer that there exist pi, p2 and a function
¢ € CH1(B,,,R") such that

P2
®(By,) C By, (22a)

(y,0) = (v, o)), (22b)

C~' < |detD®(y)| < C, for every y € B,,. (22¢)

Let us define the matrix A(y) = {a(y)}},;-, as follows (below (D®~!)!"
denotes the transposed matrix of (D®71))

A(y) = |det DO (y)[(DE)(D(y))A* (B (y)) (D) (2(y)),
2(y,t) = u*(2(y), 1), (23)
u(yat) :Z(yla‘ynLt)a (24)
and hence we get that u is a solution to
a()dfu — div (Ay)Vu) =0, in By, x (~Ap2, Apa), (25)
where for every y € B,,, we denote
q(y) = |det DR (Y, [yn]) [ (¥, lynl)
and A(y) = {ai;j(y)}7 ;=1 is the matrix whose entries are given by
aij (Y yn) = @i (Y, lynl), if either 4,5 € {1,...,n—1},ori=j=n, (26a)

Qnj (ylayn) = &jn(y/,yn) = Sgn(yn)ﬁm (y', |yn|)7 if1<j<n-1 (26b)

From (7a), (7b), (22c), (17) and (18) there exist constants A, X > 0 depend-
ing on the a priori data only such that

MNP < Ay)e-€ <A7L[e]?, foreveryy € B,,, £ €R",  (27a)

. A
Ayr) — Ay2)| < o ly1 —yo|, for every y1,y € B, (27b)

and ~ ~
A<qly) <\, foreveryye B, , (28a)
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A
lq(y1) — q(y2)| < o ly1 —y2|, for every y1,y2 € B,,. (28b)

Let us recall that, by construction, the function w in (24) is even w.r.t. the
variable y,, and moreover with no loss of generality we may assume that u (up
to replacing it with its even part w.r.t the variable ¢ as in [31]) is even w.r.t. ¢
also. From now for the sake of simplicity we shall assume that p, = 1.

By (12) and by (13) we have that there exist C7, Co > 0 constants depending
on the a priori data only such that

1/2
€= sup (/ uz(y’70,t)dy’> < Cie, (29)
te(—=A,A) !
) 1/2
=Y [ |piuwofay| <can. (30)
j=0"751

As in [31], let %y be an even extension w.r.t. y, of the function ug := u(-,0)
such that uy € H? (Bg) N H} (Bz) and

ol 2B, < CHi, (31)

where C'is an absolute constant.
Let us denote by Aj, with 0 < Ay < Ay < --- < Aj < --- the eigenvalues
associated to the Dirichlet problem

{ div (A(y)vyv) +wq(y)v =0, in By, (32)

(NS Hé (BQ) .
and by e;(-) the corresponding eigenfunctions normalized by
/ e (y)a(y)dy = 1. (33)
B>
Let us stress that we may choose the eigenfunctions e; to be even w.r.t y,

(see Remark 4.1 in Section 4). By (7a), (28) and Poincaré inequality we have
for every j € N

y= [ Vi) Vedn = o [ Sy =, G
2 2
where c¢ is an absolute constant. Denote by

aj = /B To(y)e; (9)a(y)dy, (35)
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and let
oo
u(y,t) == Z aje;(y) cos /A t. (36)
j=1
By Proposition 3.3 in [31] we have that
> (1+)%} < CHY (37)
j=1

where C' > 0 depends on A and A only.
Moreover, as a consequence of the uniqueness for the Cauchy problem for
the equation (25) (see (3.9) in [31] for a detailed discussion) we have that

a(y,t) = u(y,t) for |y|+ X*lm <1. (38)

We define for any p € (0,1] and for any k& € N the following mollified form
of the Boman transformation of @(y,-) [7]

Tn(z) = /R (s gy (t)dt, for @ € By, (39)

where {¢,, 1 }72 is a suitable sequence of mollifiers, [31, Section 3.1], such that

Supp $puk {—WW]

Jg Puk(t)dt = 1.
From now on we fix 1 := k=5 for k > 1 and we denote

» ©uk > 0, ¢, even function and such that

Up = U k- (40)
By Proposition 3.3 im [31], it follows that
||’LL(,0) _Eﬂ’kHL%Bl) < CHk_l/G. (4]_)
Let

Puk(T) = / ¢ﬁ7k(t)e_i7tdt = / op,k(t) cosTtdt, T € R.
R R

Let us introduce now, for every k € N an even function g € CY!(R) such that
if |z| < k then we have gi(z) = cosh z, if |z] > 2k then we have g;(z) = cosh 2k
and such that it satisfies the condition

|9k ()] + 19k (2)] + |gi (2)] < ce®*, for every z € R, (42)

where ¢ is an absolute constant.
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Let us introduce the following quantities

hi(z) = €2* min {1, (471')\_1|z|)2k} , z€R, (43a)

ZAQJ‘Puk( ) <9k< \/)‘73'>_9k (Z\/)Tj>)€j(y)’
yeBy,z€R, (43b)
Fi(y.t,2) Zaj\/»% (z+/Aj) sin(y/Ajt)ej(y), y € By ,t,z € R, (43c)
M (2V/A) = gi (/) — gr(2/N;), z €R. (43)

ProrOSITION 3.2. Let
Zozjgouk ( )gk (y\/ )ej , for (y,z) € Bo xR, (44)

We have that vy (-, 2) belongs to H? (B2) N H} (Bz) for every y € R, vi(y, 2) is
an even function with respect to z and it satisfies

(0ot div(AW)Varn) = fuly2) BB
’Uk(-,O) Zﬂk, m BQ.

Moreover we have
Z ||3J11k 2) || m2-i(By) < CHe* | for every z € R, (46)

1 (s )|l L2(Bs) < CHe®* min {1, (47T)\_1|z|)2k} , for every z € R, (47)

HFk(aoatvz)HH%(Bi)

where C' depends on X and A only.

< CHihi(z), for every t,z € R, (48)

Proof. Except for the inequality (48) which is discussed below, the proofs of
the remaining results follow along the lines of Proposition 3.4 in [31]. From the
arguments in Proposition 3.4 in [31] we deduce that

(2 v/ A7)] < cha(2) (49)
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where ¢ > 0 is an absolute constant constant, which in turn implies that
o0
IF(-,0,t,2) | L2(Ba) < chi Y adX; < CHRE(2), (50)
j=1

with C' > 0 constant depending on \.
From (27a) we have

A / |V, Fr(y,t, 2)|*dy < A(y)VyFi(y,t,2) - VyFi(y,t,2)dy (51
Bz B2

:Zaj\/rjsin(\/yjt)vk(z\/rj)/]g A(y)Vye;(y) - VyFily, t,2)dy
= 20/ A f/Bquw () Fu(y.1,2)dy

D”ﬂg Ik

2/\?(sin(\/)\jt)vk Z ch;€ 2 < CH?hi(2),

<.
I
—

where C > 0 is a constant depending on A and A only.
Combining (50) and (51) we get

5% (st 2) | 1 (By) < CHihg(2) (52)
which in view of standard trace estimates leads to

HFk(’ 0,2, Z)H 1

1 () < CHihy(z) . (53)

Let us now consider a function ® € L?(By ) and let us define for any
(t,z2) € R={(t,z) e R2: [t| < \,|2| < 1}
wi(t,z) = [ Wily',0,t,2)2(y')dy’, (54)
By,

where
Wi (y,t, z) Za] cos(v/Ajt)gr(zy/Aj)e;(y) - (55)
Note that from (44) we have

oe(y,2) = / k(O Wiy, t, 2)dt (56)
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PROPOSITION 3.3. We have that wi(-,-) belongs to H' (R) is a weak solution
to

Ay wi(t, 2) = —0pFi(t, 2) (57)
satisfying
|wi(t,0)] < €| @l L2(By,) (58a)
0, wi(t,0) =0, (58b)
where
Ft2)= [ R/ 0.62900)d (59)
ro

Moreover, for any (t,z) € R we have that
|wg (£, 2)] < CH162’“||<I>HL2(B;VO) , (60a)
|E3(t,2)] < CHihy(2) 19|25, ) (60D)

where C' > 0 is a constant depending on X and A only.

Proof. We start by proving (57). To this aim we consider a test function
¢ € H}(R) and by integration by parts we get

/ Vi wy, - Vodtdy (61)
R

- Z/RAJ”J' < ey ® > (ge(2v/N)) = gil(23/A))) cos(v/ A1) (¢, 2)dt dz
=2 _/Rat (\/rjo‘i <ej, ® > (zv/A) Sin(\/Tjt)) o(t, z) didz

where we mean < e;, ® >= fB, e;(y,0)®(y'))dy’ . Again by integration by
o

parts with respect to the variable ¢ we get

[ e voy = [ ( /

and hence (57) follows.
Let us now prove (58a) and (58b). We have that by (36)

Fk(y',O,Lz)(I)(y')dy’) O, dtdz (62)

’
70

wg(t,0) :// u(y',0,t)p(y")dy" . (63)

ro
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Hence by (38) and (29) we have that

i (£,0)]| < (/B

By (55) we also get that

2

|ﬂ(y’70,t)|2dy’> ||(I)||L2(B':'0) < €||(I)||L2(B':'o) . (64)

’
0

. wi(t,0) = Wi(y',0,t,2)].=0®(y")dy’ =0 . (65)
By

Let us now prove (60a). By a standard trace inequality, by (37) and by (42)
we have

lwi(t, 2)| < Wil ()@l L2 (B7ro)

1

o0 2

< C€2k Z(l + )\j)a? ||q)||L2(B’T0) < CHlerH(PHLZ(B/TO) . (66)
j=1
Finally (60b) follows from (48). O

PROPOSITION 3.4. Let wy, be the function introduced in (54), then we have that

1 A r
lwi(t, 2)| < Cré UkH‘I)HL?(B;O) for any |t| < 5 |z] < §O7 (67)
where
B

o = (e + Hy(Cro)™)” (Hy(Cro)® + Hye?*)'™ (68)

Proof. We notice that by (57) and by a standard local boundedness estimate
it follows that for any to € (—%, %) we have

1
||wk||L°°(Bg(to,0)) < %”wkHLQ(Bg(tO,O))’ (69)
5 T

where we denote Bﬁz)(to, 0) ={(t,2) € R? : |t —to|*> + |2]? < r?} for any r > 0.
Let wy, € Hl(B(,é) (to, 0)) be the solution to the following Dirichlet problem
Aoy = —0;Fy(t,z) in BY(to,0),
8
@) (70)
wr =0 on 0By (t,0) .
8

We observe that being 9, F(t, z) odd with respect the variable z, we have
that wy is odd with respect the variable z as well. Moreover, we have that
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0, Wi (t,z) = 0 on Bg-i,) where we denote B\") = (to — ryto + 1) x {0} for any
r > 0. ’
Now denoting

Wy = Wy, — W , (71)

we have that
Ayt =0 in B (t0,0),
8

Wy =0 on B(ri]).

8

(72)

By the argument in Proposition 3.5 of [31], which in turn are based on well-
known stability estimates for the Cauchy problem (see for instance [4]), it
follows that

1-8 B
Lowniiese( Lo we) ([ ) o
B%(to,o) B%l(tmo) B%(to,o)

Furthermore we have that by (58a), (60b) and (60a)

1968 a2 o ) < Ol + H(Cro) )] sy (74a)
16
Hu}kH[g(B(ﬂQl) (t0,0)) <C (Hlezk + HI(OTO)Qk) ||(I)HL2(Bj.O) ’ (74b)
3

where C > 0 is a constant depending on the a priori data only. Inserting (74a)
and (74b) in (73) we get the thesis. O

PROPOSITION 3.5. Let vy, be defined in (44), then we have

/B k(4. 0, 2)Pdy’ < (Cry Fop)? | (75)

"o
where C' > 0 depends on X and A only.

Proof. From (54), (67) and the dual characterization of the norm, we have that

/B/ [Wi(y',0,t, 2)2dy’ < (CTO_%JIQ)Q , (76)

70
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for [t < %, |z] <% . On the other hand by using equality (56), we have that

M@ty 2
k(¥ 0,2) < | | oar®Wi(y,0,t,2)dt
7A(Z+1)
i<ﬁ4+1) i<ﬁ4+1)
2 e(t)dt s WY, 0,8, 2)|2dt
L 200t | | [ pra@Wit00.2)

A(a+1)
4

= Ca k() Wi(y',0,t,2)2dt | . (77)

—A(A+1)
4

Hence from (76) we have

J

A(a+1)

4

ok (y',0,2)[Pdy’ S/mm dt (wﬁ,k(t)/ |Wk(y/,o,t,z)|2dy/>
"o —i o

A1) o o
P,k (t)dt (07020k> S(CTOQUI@) . (78)

—A(a+1)
4

O

We are now in position to conclude the proof of Theorem 2.1. We observe
that since the eigenfunctions e; introduced in (33) are even with respect y,
and since by (26b) we have

ain(y,0)=0 for 1<i<n-—1, (79)

it follows that for any |y'| < 2

Ay, 0)Vug - v

= —ann(y,0) Y a;0uk(VA) (2 A) Dy, 65(y,0) = 0, (80)

Jj=1

where v = (0,...,0,—1). Hence by (45), (75) and (80)

a)0vx + div (A(W)Voor ) = fily,2), Iyl < ro,l2] < %,
_1
[0k(0,2) | L2 (mr, ) < Crg 2o, 2| < e, (81)

Ay, 0)Vu - v =0, Y| <o, 2] <R
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Finally combining (46), (47), quantitative estimates for the Cauchy prob-
lem (81) (see Theorems 3.5 and 3.6 in [31]), we obtain the following

2 1_432
10kl 2,y < C (€ + Hi(Cro)™)” (Hie®* + Hi(Cro)™) ™", (82)
32

where C' > 0 depends on A and A .

Let us observe that the above inequality replace Theorem 3.6 in [31]. The
same arguments discussed in [31] from Theorem 3.7 and on go through for the
present case and lead to the desired estimate (14).

4. Auxiliary results
Proof of Proposition 3.1. Let ¥ € C''(B,,) be the map defined as

Uy yn) = (s yn + 0(y')) - (83)

For any r € (0, ) we have that

__po

V2(C+1)
m - lIJ(B’I‘_) c Kﬂ(EJrl)ra (84)

where B, = {y € R" :|y/| <r ,y, <0} and furthermore we get

|detD¥| =1 . (85)

Denoting by

o(y) = (DY) (W(y)A(T(y) (DY) T (¥(y)), (86)
Y (y) =1(¥(y)), (87)
Y =7'00), (88)
it follows that
o(0) = A(0), (89)
loislcorimr oy <% forij=1,....n, (90)
19 llcon (B 20 (o)) S A, (91)

V2(C+1)

where X, A’ are positive constants depending on E, A, pg only.
Dealing as in Proposition 4.3 in [28] we look for a solution to (16) of the
form

U(a',zn) =9 (T2 20)) (92)
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where 1)’ is a solution to

div(e(y)Vy') =0, in B, ,
oV - v+~ =0, on B!

ry )

(93)

. . —n/2
with 72 = min{po, )‘"17}

And in turn, as in Claim 4.4 of [28], we search for a solution ¢’ to (93) such
that ¢’ = 1y — s, where 1) is a solution to

div(A(0)Vh) =0, in B, , 94)
A(0)Vipo - V' + 750 =0, on B, (

T )

satisfying 19 > 2 in B;, and where s € H'(B;) is a weak solution to the
problem

div(cVs) = —div((c — A(0))Vibo) , in B, ,
oVs- v +v's=(c—A(0)Viyg -V + (v —70)%0 , on By, , (95)
5=0, on |yl =ra,

such that s(y) = O(]y|?) near the origin. The proof of the latter relies on a
slight adaptation of the arguments in Claim 4.4 of [28].

In order to construct ¥y, we introduce the following linear change of variable
L={(l;;)ij=1,.n (see also [18])

L: R™ — R" (96)
§ = LE= R\ ATH0)¢ (97)
where R is the planar rotation in R™ that rotates the unit vector ‘L where

ofl?

v = 4/A(0)e, to the nth standard unit vector e, and such that
R|(7T)L = Id|(ﬂ.)L,

where 7 is the plane in R™ generated by e,,, v and (7)* denotes the orthogonal
complement of 7w in R™. For this choice of L we have

i) A(0)=L""-(L7HT,
i) (L) en = & - en.

which means that L=! : 2 — £ is the linear change of variables that maps I
into A(0).
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By defining L as the (n — 1) x (n — 1) matrix such that L = (I); j=1... n_1
we have that the function

_ T1—1./ ~
$(€) = 8e 1AL 08 cog (et L |det ]~ €19h) (98)
is a solution to
AY=0, in B, ,
V¢ -/ + |detL||detL| *vjb =0, on By,
where r3 = EETQ .
2 po
Finally we observe that by setting
bo(y) = ¥(Ly) (100)

we end up with a weak solution to (94) such that

|o| >2 in B (0). (101)
Hence the thesis follows by choosing r; = \/§(TE2+1) (' x,) =P (0712, 2,))
and )/ = g — s. O

PROPOSITION 4.1. There exists a complete orthonormal system of eigenfunc-

tions e; in L% (Ba, qdy) = {f € L*(Ba,qdy) s.t. f(y',yn) = f(y',—yn)} associ-
ated to the Dirichlet problem (31).

Proof. Let us start by observing that from (26) and since
ani(y',0) =@ (y',0) =0, for i€ {l,...,n—1}, (102a)

ann(0) =1, (102b)
it follows that

div(A(y)Vy (uly’, =yn))) = div(A(2) V. (u(2) =y, ~y) (103)
for any smooth function .
We set
/ r_
u+(y) — u(y 7yn) + u(y ’ yn) (104)

2

and we observe that being ¢ even with respect to y, then we have that if u is
a solution to (32) then u™ is a solution to (32) as well.
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Let us denote by A;, with 0 < Ay < Ay < ... A; < ... the eigenvalues asso-
ciated to the Dirichlet problem (32) and let {S,Ss,...,S;,...} be a complete
orthonormal system of eigenfunctions in L?(Bs, qdy) .

Let us now fix j € N and let {S;,,S;,,. .., Sjkj} be such that they span the
eigenspace corresponding to the eigenvalue A;. We restrict our attention to the
non trivial functions Sjt, SjJ; ey Sjtj among Sjt, Sjt, ey Sj+k_ with h; < kj.

Using a Gram-Schmidt orthogonalization procedure in the Hilbert space
L% (B,,qdy) we may find our desired eigenfunctions e;,, ..., €jn, such that

(e50r€50) = / )i W)es W)y = 65,5, (105)

B>
and e;, are even in y,, for [ =1,...,h;.
It turns out that the system of eigenfunctions

S:{611,...,€1h1,€217...,62’12,...7€j1,...76jhj,...} (106)

is an orthonormal system by construction. Finally we wish to prove that S is
complete in Lf_ (B, qdy) . To this end we assume that f € L2 (Bo, qdy) is such
that

; fWeqy)dy=0 VeeS (107)

and we claim that f =0.

In order to prove the claim above, we observe that by (107) we have
that for any j € N the function f in (107) is orthogonal with respect the
L?% (B,, qdy) scalar product to the span{e;,,... ,ejhj} and as a consequence to

the Span{S;17 RN ka} as well. In particular the following holds

: FWa@)Siw)dy =0, j=1,....k; . (108)

On the other hand since ¢ and f are even w.r.t. y, we have that
; FW)a(y)S (y)dy = ; fWaw)Si(w)dy , j=1,...,k . (109)
2 2

Finally we observe that being the system {Si,S2,...,S;,...} complete in
L?(By, qdy) then f =0 as claimed above. O

5. Conclusions

Let us conclude by summarizing the main steps of our strategy.
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e We first introduce in Proposition 3.1 a strictly positive solution 1 to the

elliptic problem (16) such that by the change of variable
u == (110)

we reformulate our original problem for a Robin boundary condition (10)-
(11) in terms of a new one (20)-(21) where a Neumann condition arises
instead.

Second, in (39) we take advantage of the Boman transform [7] in order to
perform a suitable transformation of the wave equation in a nonhomoge-
neous second order elliptic equation (45). Furthermore, we observe that
the solution vg to (45) may be represented as

vy, 2) = / o (OWi(y. 1, 2)dt (111)

where g 1 is a suitable sequence of mollifiers and W (y',0,-,-) is a solu-
tion to the following two dimensional Cauchy problem for a nonhomoge-
neous elliptic equation

Ay WY, 0,8, 2) = 0 Fr(y'0, t, 2),

Wi(y',0,t,0) = 3272, aj cos(y/Ajt)e;(y',0) = a(y', 0, 1), (112)
82Wk(y,7 Oa t’ O) = 07

for any y € By .

We furthermore, observe that the Dirichlet datum of the above problem
can be controlled from above by € in view of (38) and (29), whereas
the Neumann datum vanishes in view of the specific choice discussed
in Proposition 4.1 for the eigenfunctions e;. The right hand side of the
elliptic equation in (112), although is in divergence form, it can be handled
as well by gathering a refinements of the arguments in Proposition 3.6
of [31] and in Theorem 1.7 of [4], in order to get the following estimate

/ (Wi(y',0,t,2)|dy’ < (Créak)2 . (113)
B

’
70

Finally, by combining the latter with (56) and again the special choice
for the eigenfunctions e; we end up with the Cauchy problem (81) which
in turn leads to the desired estimate (82).
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