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We consider the electrostatic inverse boundary value problem also known as 
electrical impedance tomography (EIT) for the case where the conductivity is a 
piecewise linear function on a domain Ω ⊂ R

n and we show that a Lipschitz stability 
estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds 
true.
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r é s u m é

On s’intéresse au problème électrostatique inverse également connu comme
Tomographie d’Impédance Electrique pour le cas où le conductivité est une fonction 
linéaire par morceaux sur un domaine Ω ⊂ R

n. On établit une estimation de stabilité 
lipschitzienne pour le conductivité en relation avec l’opérateur Dirichlet–Neumann.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the inverse boundary value problem (IBVP) associated with the elliptic equation for an 
electric potential, where the objective is to recover electrical resistivity, or conductivity, from partial data. 
We focus our attention on the stability of this inverse problem, in particular, when the conductivity is 
isotropic. We obtain a Lipschitz stability result if the conductivity is known to be piecewise linear on a 
given domain partition.

We let Ω be a bounded domain in Rn, n ≥ 2. In the absence of internal sources, the electric potential, u, 
satisfies the elliptic equation 
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div(γ∇u) = 0 in Ω, (1.1)

where the function γ signifies the conductivity in Ω; γ is a bounded measurable function satisfying the 
ellipticity condition, 

0 < λ−1 ≤ γ ≤ λ, almost everywhere in Ω, (1.2)

for some positive λ ∈ R. The inverse conductivity problem consists of finding γ when the so-called Dirichlet-
to-Neumann (DtoN) map 

Λγ : u|∂Ω ∈ H
1
2 (∂Ω) −→ γ∇u · ν|∂Ω ∈ H− 1

2 (∂Ω) (1.3)

is given for any weak solution u ∈ H1(Ω) to (1.1). Here, ν denotes the unit outward normal to ∂Ω. If 
measurements can be taken on a portion Σ of ∂Ω only, then the relevant map is referred to as the local 
DtoN map. And in fact this will be the point of view that we will adopt in this paper. Details of the rigorous 
definition of a local map are given later on in Definition 2.3.

This inverse problem has different appearances, namely, as electrical impedance tomography (EIT) and 
direct current (DC) method or electrical resistivity tomography (ERT) in geophysics (belonging to the class 
of potential field methods). Although the mathematical framework of this paper is the one described by 
(1.1)–(1.3), the application we have in mind is the determination of the resistivity ρ = γ−1 in DC or ERT 
methods corresponding with the following type of experiment or “sounding”: a current is injected into the 
ground through a pair of electrodes at the boundary while the voltage is measured with another pair of 
electrodes. Thus the data, viewed as an operator, can be identified with the so-called Neumann-to-Dirichlet 
(NtoD) map. We note that in the mathematical literature the use of the DtoN map as the data is more 
common. The DtoN map is invertible on its range. Indeed the applied boundary current fluxes must have 
a vanishing average. We note that the solution is defined up to an additive (grounding potential) constant. 
Whereas it is well known that, at a theoretical level, the knowledge of either of the two maps is equivalent, 
matters may be more complicated when, in different applications, the physical settings provide different 
discrete and noisy samples of such maps. The NtoD map, upon applying it to a particular subset of currents, 
provides the so-called apparent resistivity. To be precise, the apparent resistivity is a geometrical (acquisition) 
factor multiplied by the ratio of voltage (potential difference) over current.

The first mathematical formulation of this inverse problem is due to Calderón in the context of EIT in 
[26], where he addressed the problem of whether it is possible to determine the (isotropic) conductivity from 
the DtoN map. To be precise, Calderón investigated the injectivity of the map 

Q : γ −→ Qγ ,

where Qγ(φ) is the quadratic form associated to Λγ , by linearizing the problem. As main contributions in 
this respect we mention the papers by Kohn and Vogelius [51,52], Sylvester and Uhlmann [76], and Nachman 
[67]. We wish to recall the uniqueness results of Druskin who, independently from Calderón, dealt directly 
with the geophysical setting of the problem in [33–35]. We also refer to [22,30] and [77] for an overview of 
recent developments regarding the issues of uniqueness and reconstruction of the conductivity.

It is well known that the IBVP of determining the conductivity γ from the DtoN map is ill-posed. Indeed, 
regarding the stability of this inverse problem, Alessandrini [1] proved that, assuming n ≥ 3 and an a-priori
bound on γ in Hs(Ω), for some s > n

2 + 2, γ depends continuously on Λγ with a modulus of continuity of 
logarithmic type. We also refer to [2,3], which improve the result in [1] for conductivities γ ∈ W 2,∞(Ω). 
See also [27] for the most recent advances on minimal regularity assumptions. We refer to [12,13,59] and 
[31] for the two-dimensional case, where logarithmic type stability estimates have been established too. 
The common logarithmic type of stability cannot be avoided [4,66]. However, the ill-posed nature of this 
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problem can be modified to be conditionally well-posed by restricting the conductivity to certain function 
subspaces. Well-posedness is here expressed by Lipschitz stability.

A first result of this kind was established by Alessandrini and Vessella [8], to which we refer, together 
with [4], for an in-depth description and analysis. The result of [8] is a Lipschitz stability estimate in which 
the conductivity is piecewise constant on a given domain partition.

Such a result was extended to different types of problems, for example, in [17,18] for the Schrödinger and 
the Helmholtz equations, respectively, in [19] for the inverse conductivity problem with complex conductivity, 
and in [20,21] for the determination of the Lamé parameters in the elastostatic problem. All of these papers 
have in common the stable determination of coefficients that are piecewise constant on a fixed partition.

We wish to recall, here, that the uniqueness result obtained by Druskin [34] was in the context of piecewise 
constant conductivities too. Another relevant uniqueness result is due to S.E. Kim [48] who treated piecewise 
smooth conductivities with polyhedral boundaries.

In the present paper, we achieve Lipschitz stability for conductivities which are piecewise linear.
This accounts to iteratively determine boundary values and normal derivatives of the conductivity at the 
various interfaces of the domain partition. In turn, this involves the use of singular solutions of higher order 
in comparison to those used in [8] and subsequent papers. It may be worth noticing here, that the analysis 
could be adapted easily to piecewise linear resistivities.

In dimension n ≥ 3 – which we consider in geophysics – uniqueness has been established by Haberman 
and Tataru for conductivities in C1 [46] and more recently for Lipschitz conductivities in [28], both assuming 
full boundary data. The original uniqueness result by Sylvester and Uhlmann [76] required the conductivity 
to be C∞. For the two-dimensional case we refer to [25] and the breakthrough paper [9] where uniqueness 
has been proven for conductivities that are merely L∞.

The class of conductivities considered in this paper consists of piecewise linear functions on a given 
domain partition, which are possibly discontinuous at the interfaces of this partition.

This partition needs to satisfy certain geometric conditions. The allowable partitions include models of 
layered media and bodies with multiple inclusions.

At the same time the piecewise linear parametrizations tie in well with the finite elements method for 
computations. In fact, we can use the stability result to estimate and incorporate an approximation error 
in the DtoN map.

The Lipschitz stability estimate we provide requires a direct proof. (Indeed, the uniqueness result of 
[28] (n ≥ 3) does not apply; in fact, in the case of partial data, the result of [9] does not apply either.) 
We reiterate this estimate is given in terms of the local DtoN map. Note also that with a slight modification, 
our arguments can apply when the local NtoD map is available instead, see for instance the discussion 
in [7].

With a Lipschitz stability estimate at hand, we can apply certain iterative methods for reconstruction 
within a subspace of piecewise linear functions with a starting model at a distance less than the radius 
of convergence to the unique solution [36,56]. This radius is roughly inversely proportional to the stability 
constant appearing in the estimate. More importantly, we can iteratively construct the best piecewise linear 
approximation for a given domain partition. Since the stability constant will grow at least exponentially 
with the number of subdomains in the partition [72], the radius of convergence shrinks accordingly. One can 
expect accurate piecewise linear approximations with relatively few subdomains to describe the subsurface, 
noting that the domain partition need not be uniform and may show a local refinement, and hence our result 
provides the necessary insight for developing a practical approach with relatively minor prior information. 
Whether we can recover, also, an unknown domain partition (such as one of tetrahedral type) is a current 
subject of research.

As we mentioned earlier, the application we have in mind here is the DC acquisition and method, which 
were introduced by Schlumberger in 1920 [73]. Initial DC deep resistivity studies of Earth’s crust were carried 
out as early as in 1932 [74]. Many studies have followed. We mention, in particular, the experiments and 
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results by Constable, McElhinny and McFadden [32] carried out in central Australia in 1984. For a general 
description and the history of the DC method (and the closely related induced electrical polarization (IP) 
method) we refer to the textbooks by Koefoed [49], Zhdanov and Keller [79], and Kaufman and Anderson 
[50]; for a concise tutorial and review, see Ward [78]. For a finite-element method and solver for and 
computational studies of the DC method, see Li and Spitzer [56]. Here, we consider isotropic conductivities 
(and therefore resistivities); however, Earth’s materials can certainly be anisotropic, which was already 
recognized by Mallet and Doll [65]. We refer to [5–7,10,16,38,41,42,57] and [54] for results concerning the 
anisotropic case.

Through recent decades, electromagnetic methods have been widely used in geothermal prospecting 
[23]. Amongst different geophysical exploration methods, in geothermal prospecting, resistivity methods 
have been demonstrated to be the most effective. The reason is that the electrical resistivity of rocks is 
controlled by important geothermal parameters including temperature, fluid type and salinity, porosity, 
permeable pathways, fracture zones and faults (structural), the composition of the rocks, and the presence 
of alteration minerals. In this context, we mention the work of Hersir, Björnsson and Eysteinsson [47] and, 
more recently, of Flóvenz et al. [40].

We briefly mention how the acquisition – essentially probing the NtoD map – is carried out (see, 
for example, [14,15]). The original acquisition was designed for two-dimensional configurations (n = 2). 
The Schlumberger array consists of four collinear electrodes. The outer two electrodes are current (bound-
ary source) electrodes and the inner two electrodes are the potential (receiver) electrodes. The potential 
electrodes are installed at the center of the electrode array with a small separation. The current electrodes 
are gradually increased to a greater separation during the survey – while the potential electrodes remain 
in the same position until the observed voltage becomes too small to measure – for the current to probe 
deeper into the earth. Indeed, the depth resolution of the DC method is sensitive to the separation between 
current electrodes [69]. There is also the (crossed) square-array acquisition which is designed to be more 
sensitive to anisotropy than the Schlumberger array [45,44].

There are different types of electrode configuration that are commonly used. In two-dimensional config-
urations, the dipole-dipole array is widely being used because of the low electromagnetic coupling between 
the current and potential circuits. In three-dimensional configurations, the pole-pole electrode configuration 
is commonly used. (In practice, the ideal pole-pole array, with only one current and one potential electrode 
does not exist. To approximate the pole-pole array, the second current and potential electrodes must be 
placed at a large distance.) For convenience the electrodes are arranged in a square grid with the same unit 
electrode spacing in orthogonal (coordinate) directions. (We mention the E-SCAN method [55,37].) It can 
be very time-consuming to make such a large number of measurements. To reduce the number of measure-
ments required without seriously degrading the resolution, “cross-diagonal survey” method was introduced; 
here, the potential measurements are only made at the electrodes along two orthogonal directions and the 
45 degrees diagonal lines passing through the current electrode (extracted from Loke’s tutorial: 2-D and 
3-D electrical imaging surveys, [63]).

The inverse problem pertaining to resistivity interpretation was reported as early as the 1930s (e.g. 
Slichter, 1933; Stevenson, 1934; Ejen, 1938; Pekeris, 1940 [71]). Slichter [75] published a method of interpre-
tation of resistivity data over a planarly layered earth using Hankel’s Fourier–Bessel inversion formula. It 
gives a unique solution if the resistivity is a continuous function of electrode spacings. A substantial num-
ber of papers have been written on approaches based on partial boundary data “fitting” or optimization 
to estimate the resistivity, without knowledge of uniqueness or convergence [80]. Narayan, Dusseault and 
Nobes [68] give an extensive overview. In the context of data fitting, Parker [70] indicates and illustrates in 
planarly layered models the ill-posedness of the IBVP. Interestingly, various studies and implementations 
have resorted to “blocky” (and pseudo-layered) representations of resistivity [64,39,11] and, hence, fit the 
class of functions for which Lipschitz stability estimates have been obtained. Finally, we mention the comple-
mentary frequency-dependent transient electromagnetic (TEM), magnetotelluric (MT) and electroseismic 
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methods. The hybrid inverse problem of electroseismic conversion was analyzed by Chen and De Hoop [29]. 
The further analysis of TEM/MT [43] is a subject of current research.

In recent years, there has been a renewed and growing interest in the application of electrostatic and 
diffuse electromagnetic inverse boundary value problems in geophysics driven by the idea of combining 
different probing fields, including acousto-elastic waves, to identify the (poro-elastic) rock properties in 
Earth’s interior within a particular geological structure in an integrated fashion. These properties certainly 
will not vary smoothly. We capture the geological structure in a domain partition, let the properties be 
discontinuous across subdomain boundaries of geological significance, and approximate the parameters, 
here conductivity in the electrostatic problem, in each subdomain by linear interpolation. (From a rock 
physics point of view, this interpolation should be obtained from a nonlinear upscaling, which is still an 
active area of research.) This approach, and the generality of these approximations, analyzed in the context 
of conditional well-posedness are the novelty of this paper.

The outline of the paper is as follows. Our main assumptions and our main result (Theorem 2.3) are given 
in section 2. Section 3 contains the proof of the main result, as well as two intermediate results (Theorem 3.2
and Proposition 3.3) needed to build the necessary machinery. Theorem 3.2 provides original asymptotic 
estimates for the Green’s function of the conductivity equation, its gradient and a mixed derivatives, for 
conductivities that are linear on each domain Dj of a given partition {Dj} of Ω. These asymptotic estimates 
are given at the interfaces between the domains Dj, where the conductivity is discontinuous. Proposition 3.3
provides estimates of unique continuation of the solution to the conductivity equation for piecewise linear 
conductivities. Section 4 is devoted to various technical proofs. First we prove Theorem 3.2. Next we recall 
Proposition 3.3. Here the proof is based on arguments introduced in [8, proof of Proposition 4.4], therefore 
only the main differences in the two proofs are highlighted. Finally we provide a proof of the initial step 
of Theorem 2.3 which boils down to stability estimates at the boundary for γ and ∂γ

∂ν . These are minor 
variants of well known results and are provided here for the sake of completeness.

2. Main result

2.1. Notation and definitions

In several places within this manuscript it will be useful to single out one coordinate direction. To this 
purpose, the following notations for points x ∈ R

n will be adopted. For n ≥ 3, a point x ∈ R
n will be 

denoted by x = (x′, xn), where x′ ∈ R
n−1 and xn ∈ R. Moreover, given a point x ∈ R

n, we will denote with 
Br(x), B′

r(x′) the open balls in Rn, Rn−1 respectively centered at x and x′ with radius r and by Qr(x) the 
cylinder 

Qr(x) = B′
r(x′) × (xn − r, xn + r).

We will also denote

R
n
+ = {(x′, xn) ∈ R

n|xn > 0}; R
n
− = {(x′, xn) ∈ R

n|xn < 0};

B+
r = Br ∩ R

n
+; B−

r = Br ∩ R
n
−;

Q+
r = Qr ∩ R

n
+; Q−

r = Qr ∩ R
n
−,

where we understand Br = Br(0) and Qr = Qr(0).
In the sequel, we will make a repeated use of quantitative notions of smoothness for the boundaries of 

various domains. Let us introduce the following notation and definitions.
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Definition 2.1. Let Ω be a domain in Rn. We say that a portion Σ of ∂Ω is of Lipschitz class with constants 
r0, L > 0 if there exists P ∈ Σ and there exists a rigid transformation of Rn under which we have P = 0
and

Ω ∩Qr0 = {x ∈ Qr0 : xn > ϕ(x′)},
Σ ∩Qr0 = {x ∈ Qr0 : xn = ϕ(x′)},

where ϕ is a Lipschitz function on B′
r0 satisfying 

ϕ(0) = 0; ‖ϕ‖C0,1(B′
r0

) ≤ Lr0.

It is understood that ∂Ω is of Lipschitz class with constants r0, L as a special case of Σ, with Σ = ∂Ω.

Definition 2.2. Let Ω be a domain in Rn. We say that a portion Σ of ∂Ω is a flat portion of size r0 if there 
exists P ∈ Σ and there exists a rigid transformation of Rn under which we have P = 0 and

Σ ∩Qr0/3 = {x ∈ Qr0/3|xn = 0}
Ω ∩Qr0/3 = {x ∈ Qr0/3|xn > 0}

(Rn \ Ω) ∩Qr0/3 = {x ∈ Qr0/3|xn < 0}. (2.1)

We rigorously define the local D–N map.

Definition 2.3. Let Ω be a domain in Rn with Lipschitz boundary ∂Ω and Σ a non-empty (flat) open portion 
of ∂Ω. We introduce the subspace of H 1

2 (∂Ω)

H
1
2
co(Σ) =

{
f ∈ H

1
2 (∂Ω) | supp f ⊂ Σ

}
(2.2)

and its dual H− 1
2

co (Σ). Assume that γ ∈ L∞(Ω) satisfies

λ−1 ≤ γ(x) ≤ λ, for almost every x ∈ Ω, (2.3)

then the local Dirichlet-to-Neumann map associated to γ and Σ is the operator 

ΛΣ
γ : H

1
2
co(Σ) −→ H

− 1
2

co (Σ) (2.4)

defined by 

〈ΛΣ
γ g, η〉 =

∫
Ω

γ(x)∇u(x) · ∇φ(x) dx, (2.5)

for any g, η ∈ H
1
2
co(Σ), where u ∈ H1(Ω) is the weak solution to{

div(γ(x)∇u(x)) = 0, in Ω,

u = g, on ∂Ω,

and φ ∈ H1(Ω) is any function such that φ|∂Ω = η in the trace sense. Here we denote by 〈·, ·〉 the 

L2(∂Ω)-pairing between H
1
2
co(Σ) and its dual H− 1

2
co (Σ).
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Note that, by (2.5), it is easily verified that ΛΣ
γ is selfadjoint. We will denote by ‖ · ‖∗ the norm on the 

Banach space of bounded linear operators between H
1
2
co(Σ) and H

− 1
2

co (Σ).

Remark 2.1. Note that the space H
1
2
00(Σ) [58, Chapter 1] is the closure of H

1
2
co(Σ) in H

1
2 (∂Ω), therefore the 

local DN map could be equivalently given by replacing in Definition 2.3 the spaces H
1
2
co(Σ), H− 1

2
co (Σ) with 

H
1
2
00(Σ) and its dual H− 1

2
00 (Σ) respectively and by continuing to use the notation 〈·, ·〉 for the L2(∂Ω)-pairing 

between H
1
2
00(Σ) and H

− 1
2

00 (Σ).

Definition 2.4. Let N , r0, L, λ be given positive numbers with N ∈ N. We will refer to this set of numbers, 
along with the space dimension n, as to the a-priori data. Several constants depending on the a-priori data
will appear within the paper. In order to simplify our notation, we shall denote by C, C1, C2, . . . any of 
these constants, avoiding in most cases to point out their specific dependence on the data which may vary 
from case to case.

2.2. Assumptions

2.2.1. Assumptions about the domain Ω
1. We assume that Ω is a domain in Rn with boundary of Lipschitz class with constants r0, L according 

to Definition 2.1 and satisfying 

|Ω| ≤ Nrn0 , (2.6)

where |Ω| denotes the Lebesgue measure of Ω.
2. We fix an open non-empty subset Σ of ∂Ω (where the measurements in terms of the local D–N map are 

taken).
3.

Ω̄ =
N⋃
j=1

D̄j ,

where Dj , j = 1, . . . , N are known open sets of Rn, satisfying the conditions below.
(a) Dj , j = 1, . . . , N are connected and pairwise nonoverlapping polyhedrons.
(b) ∂Dj , j = 1, . . . , N are of Lipschitz class with constants r0, L.
(c) There exists one region, say D1, such that ∂D1 ∩ Σ contains a flat portion Σ1 of size r0 and for 

every i ∈ {2, . . . , N} there exists j1, . . . , jK ∈ {1, . . . , N} such that 

Dj1 = D1, DjK = Di. (2.7)

In addition we assume that, for every k = 1, . . . , K, ∂Djk ∩ ∂Djk−1 contains a flat portion Σk of 
size r0 (here we agree that Dj0 = R

n \ Ω), such that 

Σk ⊂ Ω, for every k = 2, . . . ,K,

and, for every k = 1, . . . , K, there exists Pk ∈ Σk and a rigid transformation of coordinates under 
which we have Pk = 0 and

Σk ∩Qr0/3 = {x ∈ Qr0/3|xn = 0}
Djk ∩Qr0/3 = {x ∈ Qr0/3|xn > 0}

Djk−1 ∩Qr0/3 = {x ∈ Qr0/3|xn < 0}. (2.8)
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2.2.2. A-priori information on the conductivity γ
We will consider a conductivity function γ of type

γ(x) =
N∑
j=1

γj(x)χDj
(x), x ∈ Ω, (2.9a)

γj(x) = aj + Aj · x, (2.9b)

where aj ∈ R, Aj ∈ R
n and Dj , j = 1, . . . , N are the given subdomains introduced in section 2.2.1. We also 

assume that 

λ−1 ≤ γj ≤ λ, a.e. in Ω, for any j = 1, . . . n, (2.10)

for some positive constant λ.

Remark 2.2. Observe that the class of functions of the form (2.9a)–(2.9b) is a finite dimensional linear space. 
The L∞-norm ||γ||L∞(Ω) is equivalent to the norm 

‖|γ‖| = maxj=1,...,N {|aj | + |Aj |}

modulo constants which only depend on the a-priori data.

From now on for simplicity we will write 

Λi = ΛΣ
γ(i) , i = 1, 2.

Theorem 2.3. Let Ω, Dj, j = 1, . . . , N and Σ be a domain, N subdomains of Ω and a portion of ∂Ω as in 
section 2.2.1 respectively. Let γ(i), i = 1, 2 be two conductivities satisfying (2.10) and of type 

γ(i) =
N∑
j=1

γ
(i)
j (x)χDj

(x), x ∈ Ω, (2.11)

where 

γ
(i)
j (x) = a

(i)
j + A

(i)
j · x,

with a(i)
j ∈ R and A(i)

j ∈ R
n, then we have 

||γ(1) − γ(2)||L∞(Ω) ≤ C||Λ1 − Λ2||∗, (2.12)

where C is a positive constant that depends on the a-priori data only.

Remark 2.4. In this paper we are assuming that the conductivity γ is a piecewise linear function. However, 
the case where the resistivity function ρ = γ−1 is piecewise linear, could be treated equally well.
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3. Proof of the main result

The proof of our main result (Theorem 2.3) is based on an argument that combines asymptotic type of 
estimates for the Green’s function of the operator

L = div (γ(x)∇) in Ω , (3.1)

associated to homogeneous Dirichlet boundary condition (Theorem 3.2), with γ satisfying (2.9a)–(2.10), 
together with a result of unique continuation (Proposition 3.3) for solutions to 

Lu = 0, in Ω.

Our idea in estimating γ(1) − γ(2) exploits, on one hand, an estimate from below of the blow up of some 
singular solutions (which we will introduce below) SU and some of its derivatives if γ(1) − γ(2) is large at 
some point. On the other hand, we will use estimates of propagation of smallness to show that SU needs to 
be small if Λ1 − Λ2 is small. We will give the precise formulation of these results in what follows.

3.1. Singular solutions

We find convenient to introduce Green’s function not precisely for the physical domain Ω but for an 
augmented domain Ω0.

We recall that by assumption 3(c) of Subsection 2.2.1 we can assume that there exists a point P1 such 
that up to a rigid transformation of coordinates we have that P1 = 0 and (2.1) holds with Σ = Σ1.

Denoting by 

D0 =
{
x ∈ (Rn \ Ω) ∩Br0

∣∣∣∣ |xi| <
2
3r0, i = 1, . . . , n− 1,

∣∣∣xn − r0
6

∣∣∣ < 5
6r0

}
,

and recalling that ∂Ω is of Lipschitz class with constant r0 and L, as assumed in Definition 2.1, it turns out 
that the augmented domain Ω0 = Ω ∪D0 is of Lipschitz class with constants r03 and L̃, where L̃ depends 
on L only.

3.1.1. Green’s function
We consider the operator Li given by 

Li = div
(
γ̃(i)(x)∇

)
in Ω0, i = 1, 2, (3.2)

where γ̃(i) is the extension on Ω0 of γ(i) obtained by setting γ̃(i)|D0 = 1, for i = 1, 2.
If Li is the operator given in (3.2), then for every y ∈ Ω0, the Green’s function G̃i(·, y) is the weak 

solution to the Dirichlet problem {
div(γ̃(i)∇G̃i(·, y)) = −δ(· − y) , in Ω0,

G̃i(·, y) = 0 , on ∂Ω0,
(3.3)

where δ(· − y) is the Dirac measure at y. We recall that G̃ satisfies the properties [60]

G̃i(x, y) = G̃i(y, x) for everyx, y ∈ Ω0, x 
= y, (3.4)

0 < G̃i(x, y) < C|x− y|2−n for everyx, y ∈ Ω, x 
= y, (3.5)
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where C > 0 is a constant depending on λ and n only. Moreover, the following result holds true.

Proposition 3.1. For any y ∈ Ω0 and every r > 0 we have that∫
Ω0\Br(y)

|∇G̃i(·, y)|2 ≤ Cr2−n (3.6)

where C > 0 depends on λ and n only.

Proof. The proof can be obtained in a straightforward fashion by combining Caccioppoli inequality with 
(3.5). �
3.1.2. The S̃Uk

singular solutions
For any number r ∈

(
0, 2

3r0
)

we also denote 

(D0)r = {x ∈ D0 | dist(x,Ω) > r} .

Let K ∈ {1, . . . , N} be such that the subdomain DK of Ω satisfies

E = ‖γ(1) − γ(2)‖L∞(Ω) = ‖γ(1) − γ(2)‖L∞(DK). (3.7)

Recall that there exist j1, . . . , jK ∈ {1, . . . , N} with Dj1 , . . . DjK satisfying assumption 3(c) of Subsec-
tion 2.2.1. For simplicity, let us rearrange the indices of these subdomains so that the above mentioned 
chain is simply denoted by D1, . . . , DK , K ≤ N . We also denote

Wk =
k⋃

i=0
Di, Uk = Ω0 \Wk, for k = 0, . . . ,K (3.8)

and for any y, z ∈ Wk we define

S̃Uk
(y, z) =

∫
Uk

(γ̃(1) − γ̃(2))∇G̃1(·, y) · ∇G̃2(·, z), for k = 0, . . . ,K. (3.9)

It is a relatively straightforward matter to see that for every y, z ∈ Wk with k = 0, . . . , K we have that 
S̃Uk

(·, z), S̃Uk
(y, ·) ∈ H1

loc(Wk) are weak solutions to

div
(
γ̃(1)(·)∇S̃Uk

(·, z)
)

= 0, inWk (3.10)

div
(
γ̃(2)(·)∇S̃Uk

(y, ·)
)

= 0 , inWk. (3.11)

It is expected that S̃Uk
(y, z) blows up as y, z approach simultaneously one point of ∂Uk.

We will denote with

Γ(x, y) = 1
(n− 2)ωn

|x− y|2−n, (3.12)

the fundamental solution of the Laplace operator (here ωn/n denotes the volume of the unit ball in Rn). 
If Di, i = 1, . . . , N are the domains introduced in section 2.2.1 and L is the operator given by (3.1), we will 
give asymptotic estimates for the Green’s function of L, with respect to (3.12) at the interfaces between the 
domains Di, i = 1, . . . N . These estimates are given below. In what follows let G̃ be the Green’s function 
associated to the operator L in Ω0.
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3.1.3. Asymptotics at interfaces
Theorem 3.2. Let Ql+1 be a point such that Ql+1 ∈ B r0

8
(Pl+1) ∩ Σl+1 with l ∈ {1, . . . , N − 1}. There exist 

constants θ1, θ2, 0 < θ1 < 1, 0 < θ2 < 1 and C > 0 depending on the a priori data only such that following 
inequalities hold true for every x̄ ∈ B r0

16
(Ql+1) ∩Djl+1 and every ȳ = Ql+1 − ren, where r ∈ (0, r016 )

∣∣∣∣G̃(x̄, ȳ) − 2
γjl(Ql+1) + γjl+1(Ql+1)

Γ(x̄, ȳ)
∣∣∣∣ ≤ C|x̄− ȳ|3−n, (3.13)∣∣∣∣∇xG̃(x̄, ȳ) − 2

γjl(Ql+1) + γjl+1(Ql+1)
∇xΓ(x̄, ȳ)

∣∣∣∣ ≤ C|x̄− ȳ|θ1+1−n, (3.14)∣∣∣∣∇y∇xG̃(x̄, ȳ) − 2
γjl(Ql+1) + γjl+1(Ql+1)

∇y∇xΓ(x̄, ȳ)
∣∣∣∣ ≤ C|x̄− ȳ|θ2−n . (3.15)

3.2. Quantitative unique continuation

We introduce for any number b > 0, the concave non-decreasing function ωb(t), defined on (0, +∞),

ωb(t) =
{

2be−2| log t|−b, t ∈ (0, e−2),
e−2, t ∈ [e−2,+∞).

We recall (see (4.34) and (4.35) in [8]) that for any β ∈ (0, 1) we have that

(0,+∞) � t → tωb

(
1
t

)
is a nondecreasing function (3.16)

and

ωb

(
t

β

)
≤ | log eβ−1/2|bωb(t) , ωb(tβ) ≤

(
1
β

)b

ωb(t) . (3.17)

Furthermore, we set ω(0)
α (t) = tα with 0 < α < 1 and we shall denote the iterated compositions

ω
(1)
b = ωb , ω

(j)
b = ωb ◦ ω(j−1)

b j = 2, 3, . . . . (3.18)

The following parameters will also be introduced

β = arctan 1
L
, β1 = arctan

(
sin β

4

)
, λ1 = r0

1 + sin β1

ρ1 = λ1 sin β1, a = 1 − sin β1

1 + sin β1

λm = aλm−1, ρm = aρm−1, for everym ≥ 2,

dm = λm − ρm, m ≥ 1.

Note in particular that dm = r0a
m, 0 < a < 1.

For k = 1, . . . , K and a fixed point ȳ ∈ Σk+1, denote

wm(ȳ) = ȳ − λmν(ȳ), for every m ≥ 1, (3.19)

where ν(ȳ) is the exterior unit normal to ∂Dk.
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For a given r ∈ (0, d1] we denote

h̄(r) = min{m ∈ N | dm ≤ r}. (3.20)

We notice that h̄(r) is such that

log
(r0
r

)C

≤ h̄(r) ≤ log
(r0
r

)C

+ 1. (3.21)

The following estimate for S̃Uk
(y, z) holds true, for k = 1, . . . , K.

Proposition 3.3 (Estimates of unique continuation). Let k = 1, . . . , K. If, for a positive number ε0, we have ∣∣S̃Uk
(y, z)

∣∣ ≤ r2−n
0 ε0, for every (y, z) ∈ (D0) r0

4
× (D0) r0

4
, (3.22)

then the following inequalities hold true for every r ∈ (0, d1]

∣∣S̃Uk
(wh̄(Qk+1), wh̄(Qk+1))

∣∣ ≤ r−n+2
0 C h̄

1 (E + ε0)
(
ω

(2k)
1/C

(
ε0

E + ε0

))(1/C)h̄

, (3.23)

∣∣∂yj
∂zi S̃Uk

(wh̄(Qk+1), wh̄(Qk+1))
∣∣ ≤ r−n

0 C h̄
2 (E + ε0)

(
ω

(2k)
1/C

(
ε0

E + ε0

))(1/C)h̄

, (3.24)

for any i, j = 1, . . . , n, where Qk+1 ∈ Σk+1 ∩B r0
8

(Pk+1), wh̄(r)(Qk+1) = Qk+1 −λh̄(r)ν(Qk+1), λm has been 
introduced above, ν is the exterior unit normal to ∂Dk and C1, C2 > 0 depend on the a-priori data only.

3.3. Lipschitz stability

Proof of Theorem 2.3. Let DK be the subdomain of Ω satisfying (3.7) and let D1, . . . , DK be the chain 
of domains satisfying assumption 4(d). For any k = 1, . . . , K we will denote by DT f and ∂νf the n − 1
dimensional vector of the tangential partial derivatives of a function f on Σk and the normal partial 
derivative of f on Σk respectively. We also simplify our notation by replacing ΛΓ

γ(i) with Λi, for i = 1, 2. 
We will also denote 

ε0 = ||Λ1 − Λ2||∗, δl = ||γ̃(1) − γ̃(2)||L∞(Wl), l = 1, 2, . . . , δ0 = 0.

We begin by noticing that for each l = 1, 2, . . . ||γ̃(1)
l − γ̃

(2)
l ||L∞(Dl) can be evaluated in terms of the 

quantities

||γ̃(1)
l − γ̃

(2)
l ||L∞(Σl∩B r0

4
(Pl)) (3.25)∣∣∣∂ν(γ̃(1)

l − γ̃
(2)
l )(Pl)

∣∣∣ . (3.26)

where r0 > 0 is the constant introduced in subsection 2.1. In fact, let us denote 

αl + βl · x = (γ̃(1)
l − γ̃

(2)
l )(x), x ∈ Dl (3.27)

and choose {ej}j=1,...,n−1 orthonormal vectors starting at Pl and generating the hyperplane containing the 
flat part of Σl. By computing γ̃(1)

l − γ̃
(2)
l on the points Pl, Pl + r0

5 ej , j = 1, . . . , n − 1 and taking their 
differences we obtain 
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|αl + βl · Pl| +
n−1∑
j=1

|βl · ej | ≤ C||γ̃(1)
l − γ̃

(2)
l ||L∞(Σl∩B r0

4
(Pl)). (3.28)

Next we notice that 

|βl · ν| =
∣∣∣∂ν(γ(1)

l − γ
(2)
l )(Pl)

∣∣∣ . (3.29)

Hence each of the components of βl can be estimated and eventually also |αl|. In conclusion 

|αl| + |βl| ≤ C
(
||γ̃(1)

l − γ̃
(2)
l ||L∞(Σl∩B r0

4
(Pl)) +

∣∣∣∂ν(γ(1)
l − γ

(2)
l )(Pl)

∣∣∣) . (3.30)

Hence our task will be to estimate 

||γ̃(1)
l − γ̃

(2)
l ||L∞(Σl∩B r0

4
(Pl)) and

∣∣∣∂ν(γ(1)
l − γ

(2)
l )(Pl)

∣∣∣
iteratively with respect to l.

When l = 1 this correspond to a stability estimate at the boundary for the conductivity and its normal 
derivatives. Such estimates are well-known under slightly varying hypotheses [3,6,24,8,7]. Indeed we have 

||γ̃(1)
l − γ̃

(2)
l ||L∞(Σl∩B r0

4
(Pl)) +

∣∣∣∂ν(γ(1)
l − γ

(2)
l )(Pl)

∣∣∣ ≤ C(ε0 + E)ω(0)
1/C

(
ε0

ε0 + E

)
. (3.31)

A proof under the current hypotheses is relegated to section 4. We proceed to estimate δ2 by proving

||γ̃(1)
2 − γ̃

(2)
2 ||L∞(Σ2∩B r0

4
(P2)) ≤C(ε0 + E)

(
ω

(3)
1/C

(
ε0

ε0 + E

)) 1
C

, (3.32)

∣∣∣∂ν(γ(1) − γ(2))(P2)
∣∣∣ ≤ C(ε0 + E)

(
ω

(4)
1/C

(
ε0

ε0 + E

)) 1
C

. (3.33)

The proofs of (3.32), (3.33) are similar. The one of (3.33) contains some new elements (in comparison to 
previous results such as [8]) and therefore we concentrate on (3.33) only, assuming (3.32) proven.

We recall that for every y, z ∈ D0 we have

〈(Λ1 − Λ2)G̃1(·, y), G̃2(·, z)〉

= S̃U1(y, z) +
∫
W1

(γ̃(1) − γ̃(2))(·)∇G̃1(·, y) · ∇G̃2(·, z) (3.34)

and

〈(Λ1 − Λ2)∂ynG̃1(·, y), ∂znG̃2(·, z)〉

= ∂yn
∂zn S̃U1(y, z) +

∫
W1

(γ̃(1) − γ̃(2))(·)∂yn
∇G̃1(·, y) · ∂zn∇G̃2(·, z). (3.35)

From (3.34) we obtain

|S̃U1(y, z)| ≤ C ≤ ε0||G̃1(·, y)||H1/2
co (Σ)||G̃2(·, z)||H1/2

co (Σ)

+ δ1||∇G̃1(·, y)||L2(W1)||∇G̃2(·, z)||L2(W1)

≤ C(ε0 + δ1)r2−n
0 , for every y, z ∈ (D0)r0/3. (3.36)
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Let ρ0 = r0
C , where C is the constant introduced in Theorem 3.2, let r ∈ (0, d2) and denote 

w = P2 + σν, whereσ = ah̄−1λ1,

then 

∂yn
∂zn S̃U0(w,w) = I1(w) + I2(w), (3.37)

where

I1(w) =
∫

Bρ0 (P2)∩D2

(γ(1) − γ(2))(·)∂yn
∇G̃1(·, w) · ∂zn∇G̃2(·, w),

I2(w) =
∫

Ω\(Bρ0 (P2)∩D2)

(γ(1) − γ(2))(·)∂yn
∇G̃1(·, w) · ∂zn∇G̃2(·, w)

and by (3.6)

|I2(w)| ≤ CEρ−n
0 . (3.38)

We have

|I1(w)| ≥

∣∣∣∣∣∣∣
∫

Bρ0 (P1)∩D2

(∂ν(γ(1)
2 − γ

(2)
2 )(P2))(x− P2)n∂yn

∇G̃1(·, w) · ∂zn∇G̃2(·, w)

∣∣∣∣∣∣∣
−

∫
Bρ0 (P2)∩D2

|(DT (γ(1)
2 − γ

(2)
2 )(P2)) · (x− P2)′||∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|

−
∫

Bρ0 (P2)∩D2

|(γ(1)
2 − γ

(2)
2 )(P2)||∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|.

Noticing that up to a transformation of coordinates we can assume that P2 coincides with the origin 0
of the coordinates system and by Theorem 3.2, this leads to

|I1(w)| ≥ |∂ν(γ(1)
2 − γ

(2)
2 )|C

{ ∫
Bρ0 (0)∩D2

|∂yn
∇xΓ(x,w)|2|xn|

− E

∫
Bρ0 (0)∩D2

|∂yn
∇xΓ(x,w)||x− w|−n+θ2 |xn|

− E

∫
Bρ0 (0)∩D2

|x− w|−2n+2θ2 |xn|
}

−
∫

Bρ0 (0)∩D2

|DT (γ(1)
2 − γ

(2)
2 )| |x′| |∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|

−
∫

|(γ(1)
2 − γ

(2)
2 )(O)| |∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|, (3.39)

Bρ0 (0)∩D2
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therefore, by combining (4.50) together with (4.48) and (4.49), we obtain

|I1(w)| ≥ |∂ν(γ(1)
2 − γ

(2)
2 )|C

{ ∫
Bρ0 (0)∩D2

|x− w|1−2n

− E

∫
Bρ0 (0)∩D2

|x− w|1−2n+θ2 − E

∫
Bρ0 (0)∩D2

|x− w|1−2n+2θ2

− (ε0 + E)
(
ω

(3)
1/C

(
ε0

ε0 + E

))1/C ∫
Bρ0 (0)∩D2

|x− w|1−2n

− (ε0 + E)
(
ω

(3)
1/C

(
ε0

ε0 + E

))1/C ∫
Bρ0 (0)∩D2

|x− w|−2n
}
,

which leads to 

|∂ν(γ(1)
1 − γ

(2)
1 )|σ1−n ≤ |I1(w)| + C

{
(ε0 + E)

(
ω

(3)
1/C

(
ε0

ε0 + E

))1/C

σ−n + E
σ1−n+θ2

ρθ20

}
, (3.40)

and 

|I1(w)| ≤ |∂yn
∂zn S̃U0(w,w)| + CEρ−n

0 . (3.41)

Thus by combining the last two inequalities we get

|∂ν(γ(1)
1 − γ

(2)
1 )|σ1−n ≤ |∂yn

∂zn S̃U0(w,w)| + C

{
Eρ−n

0

+ (ε0 + E)
(
ω

(3)
1/C

(
ε0

ε0 + E

))1/C

σ−n + E
σ1−n+θ2

ρθ20

}
(3.42)

and by recalling that by Proposition 3.3 we have 

∣∣∂yj
∂zi S̃U1(w,w)

∣∣ ≤ r−n
0 C h̄(r)(ε0 + δ1 + E)ω(2)

1/C

(
ε0 + δ1

E + δ1 + ε0

)(1/C)h̄(r)

,

we obtain

|∂ν(γ(1)
1 − γ

(2)
1 )| ≤ C h̄(r)(ε0 + δ1 + E)

(
ω

(2)
1/C

(
ε0 + δ1

E + δ1 + ε0

))(1/C)h̄(r)

σn−1

+ σ−1(ε0 + E)
(
ω

(3)
1/C

(
ε0

ε0 + E

))1/C

+ CE
σθ2

ρθ20
. (3.43)

We need to estimate C h̄ and 
(

1
C

)h̄

in terms of r. Recalling (3.21), it turns out that

(
d1

r

)C1

≤ C h̄ ≤ C2

(
d1

r

)C1

, (3.44)

therefore for any r ∈ (0, d2)
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|∂ν(γ(1)
2 − γ

(2)
2 )| ≤ C(ε0 + E)

{(
r

d1

)−C (
ω

(2)
1
C

(
ε0 + δ1

E + δ1 + ε0

))(
r
d1

)C

+
(

r

d1

)−1 (
ω

(3)
1/C

(
ε0

ε0 + E

))1/C

+
(

r

d1

)θ2 }
. (3.45)

From (3.31) we trivially obtain 

ε0 + δ1
E + δ1 + ε0

≤ Cω
(0)
1/C

(
ε0

ε0 + E

)
(3.46)

and by combining (3.46) together with (3.45) we obtain 

|∂ν(γ(1)
2 − γ

(2)
2 )| ≤ C(ε0 + E)

{(
r

d1

)−C (
ω

(3)
1
C

(
ε0

E + ε0

))(
r
d1

)C

+
(

r

d1

)θ2 }
(3.47)

and optimizing with respect to r we obtain 

|∂ν(γ(1)
1 − γ

(2)
1 )| ≤ C(ε0 + E)

(
ω

(4)
1/C

(
ε0

ε0 + E

)) 1
C

. (3.48)

Proceeding by iteration to estimate γ(1)
l − γ

(2)
l for l = 2, . . . , K, we replace (3.34) and (3.35) by

〈(Λ1 − Λ2)G̃1(·, y), G̃2(·, z)〉

= S̃Ul−1(y, z) +
∫

Wl−1

(γ̃(1) − γ̃(2))(·)∇G̃1(·, y) · ∇G̃2(·, z) (3.49)

and

〈(Λ1 − Λ2)∂yn
G̃1(·, y), ∂znG̃2(·, z)〉

= ∂yn
∂zn S̃Ul−1(y, z)

+
∫

Wl−1

(γ̃(1) − γ̃(2))(·)∂yn
∇G̃1(·, y) · ∂zn∇G̃2(·, z) (3.50)

respectively. By noticing that (3.49) and Proposition 3.1 imply

|S̃Ul
(y, z)| ≤ ε0||G̃1(·, y)||H1/2

co (Σ)||G̃2(·, z)||H1/2
co (Σ)

+ δl−1||∇G̃1(·, y)||L2(Wl−1)||∇G̃2(·, z)||L2(Wl−1)

≤ C(ε0 + δl−1)r2−n
0 , for every y, z ∈ (D0)r0/3, (3.51)

where C depends on L, λ, n and by repeating the same argument applied for the special case l = 2 and 
observing that

||γ̃(1)
2 − γ̃

(2)
2 ||L∞(Σl∩B r0

4
(Pl)) ≤C(ε0 + E)

(
ω

(2l−1)
1/C

(
ε0

ε0 + E

)) 1
C

, (3.52)

∣∣∣∂ν(γ(1) − γ(2))(Pl)
∣∣∣ ≤ C(ε0 + E)

(
ω

(2l)
1/C

(
ε0

)) 1
C

, (3.53)

ε0 + E
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δl ≤ δl−1 + ||γ(1)
l − γ

(2)
l ||L∞(Dl),

we obtain for every l = 2, 3, . . .

δl ≤ δl−1 + C(ε0 + δl−1 + E)
(
ω

(2l)
1/C

(
ε0 + δl−1

ε0 + δl−1 + E

)) 1
C

,

hence trivially 

ε0 + δl
ε0 + δl + E

≤ C

(
ω

(2l)
1/C

(
ε0 + δl−1

ε0 + δl−1 + E

)) 1
C

. (3.54)

Using the properties of the logarithmic moduli ω1/C , by (3.46) and using the induction step (3.54) we 
arrive at 

||γ(1) − γ(2)||L∞(Ω) ≤ C(ε0 + E)
(
ω

(K(K+1))
1
C

(
ε0

ε0 + E

)) 1
C

,

therefore 

E ≤ C(ε0 + E)
(
ω

(K(K+1))
1
C

(
ε0

ε0 + E

)) 1
C

. (3.55)

Assuming that E > ε0e
2 (if this is not the case then the theorem is proven) we obtain 

E ≤ C

(
E

e2 + E

)(
ω

(K(K+1))
1
C

(ε0

E

)) 1
C

,

which leads to 

1
C

≤ ω
(K(K+1))
1
C

(ε0

E

)
therefore 

E ≤ 1
ω

(−(K(K+1)))
1
C

( 1
C

) ε0,

where here, with a slight abuse of notation, ω(−(K(K+1)))
1
C

denotes the inverse function of ω(K(K+1))
1
C

. �
4. Technical proofs

4.1. Asymptotic estimates

Theorem 4.1. Let r > 0 be a fixed number. Let U ∈ H1(Qr) be a solution to

div(b(x)∇U) = 0 , (4.1)

where 

b(x) =
{

b+ + B+ · x, x ∈ Q+
r ,

b− + B− · x, x ∈ Q− ,
r
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where b+, b− ∈ R, B+, B− ∈ R
n and 0 < b̄−1 ≤ b(x) ≤ b̄. Then, there exist positive constants 0 < α′ ≤ 1,

C > 0 depending on b̄, r and n only, such that for any ρ ≤ r
2 and for any x ∈ Qr−2ρ, the following estimate 

holds

‖∇U‖L∞(Qρ(x)) + ρα
′ |∇U |α′,Qρ(x)∩Q+

r
+ ρα

′ |∇U |α′,Qρ(x)∩Q−
r

≤ C

ρ1+n/2 ‖U‖L2(Q2ρ(x)) . (4.2)

Proof. For the proof we refer to [53, Theorem 16.2, Chap.3], where the authors obtained piecewise C1,α′

estimates for solutions to linear second order elliptic equations with piecewise Hölder continuous coeffi-
cients and C1,1 discontinuity interfaces (see also [62,61] for more recent results under weaker regularity 
hypotheses). �
Proof of Theorem 3.2. We fix l ∈ {1, . . . , N − 1}. We set γl = γjl(Ql+1) and γl+1 = γjl+1(Ql+1). We will 
denote a+ = γl+1 and a− = γl. Furthermore, we observe that up to a transformation of coordinates we can 
assume that Ql+1 coincides with the origin 0 of the coordinates system.

For any x = (x′, xn) we denote x∗ = (x′, −xn) and we have that a fundamental solution of the operator 
divx(a− + (a+ − a−)χ+∇x) has the following explicit form 

H(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
a+ Γ(x, y) + a+−a−

a+(a++a−)Γ(x, y∗) , if xn, yn > 0,
2

a++a− Γ(x, y) , if xnyn < 0,
1
a− Γ(x, y) + a−−a+

a−(a++a−)Γ(x, y∗) , if xn, yn < 0.

(4.3)

We then define

R(x, y) = G̃(x, y) −H(x, y) . (4.4)

We observe that R in (4.4) satisfies {
divx(γ(·)∇xR(·, y)) = −divx((γ(·) − γ0(·))∇xH(·, y)) , in Ω̃ ,
R(·, y) = −H(·, y) , on ∂Ω̃,

(4.5)

here γ0 = a− + (a+ − a−)χ+. By the representation formula over Ω̃ we have that R in (4.4) satisfies

R(x, y) = −
∫
Ω̃

(γ(ζ) − γ0(ζ))∇ζH(ζ, y) · ∇ζG̃(ζ, x)dζ (4.6)

+
∫
∂Ω̃

γ(ζ)∂νG̃(ζ, x)H(ζ, y)dσ(ζ). (4.7)

We first treat the boundary term on the right hand side of the above equation. We have that∣∣∣∣∣∣∣
∫
∂Ω̃

γ(·)∂ν G̃(·, x)H(·, enyn) dσ

∣∣∣∣∣∣∣ (4.8)

≤ γ̄ ‖∂νG̃(·, x)‖
H− 1

2 (∂Ω̃)
‖H(·, enyn)‖

H
1
2 (∂Ω̃)

(4.9)

≤ γ̄ ‖G̃(·, x)‖H1(Ω̃\B (x)) ‖H(·, enyn)‖H1(Ω̃\B (e y )) . (4.10)

r0/2 r0/2 n n
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Hence, we deduce that ∣∣∣∣∣∣∣
∫
∂Ω̃

γ(·)∂ν G̃(·, x)H(·, enyn) dσ

∣∣∣∣∣∣∣ ≤ C, (4.11)

where C > 0 is a constant depending on the a priori data only.
We observe that

|γ(ζ) − γ0(ζ)| ≤ C|ζ| (4.12)

with C > 0 constant depending on the a priori data only.
Moreover by combining (4.2) and (3.5) we find the following two pointwise bounds

|∇ζG̃(ζ, x)| ≤ C|ζ − x|1−n for every ζ, x ∈ Qr0 , (4.13)

|∇ζH(ζ, y)| ≤ C|ζ − y|1−n for every ζ, y ∈ Qr0 , (4.14)

which in turn together with (4.12) leads to 

|
∫
Ω̃

(γ(ζ) − γ0(ζ))∇ζH(ζ, enyn) · ∇ζG̃(ζ, x) dζ| ≤ C1|x− enyn|3−n . (4.15)

Combining (4.11) and (4.15) we get

|R(x, enyn)| ≤ C|x− enyn|3−n (4.16)

when x ∈ B+
r0 and yn ∈ (−r0, 0).

We now focus on the estimate for ∇xR(x, enyn). Again arguing as in [8, Claim 4.3], we fix x ∈ B+
r0/4 and 

yn ∈ (−r0/4, 0) and let us denote

Q = B′
h/4(x′) ×

(
xn, xn + h

4

)
, (4.17)

where h = |x − y|. We observe that Q ⊂ Q+
r0
2

. Moreover, we have that Q ⊂ Qh
2
(x) and x ∈ ∂Q.

By (3.5), Theorem 4.1 and explicit computation on H(x, y) we get

|∇xG̃(·, enyn)|α′,Q , |∇xH(·, enyn)|α′,Q ≤ Ch−α′+1−n . (4.18)

Hence by (4.4) and (4.18) we get

|∇xR(·, enyn)|α′,Q ≤ Ch−α′+1−n . (4.19)

We recall the following interpolation inequality 

‖∇xR(·, enyn)‖L∞(Q) ≤ C‖R(·, enyn)‖α
′/1+α′

L∞(Q) |∇xR(·, enyn)|1/1+α′

α′,Q . (4.20)

By the above estimate and (4.16) we obtain

|∇xR(x, y)| ≤ Chβ+1−n, (4.21)
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where β = α′ 2

1+α .
Finally, we study the behavior of ∇y∇xR(x, y). We define the cylinder Q̂ = B′

h
8
(0) ×

(
yn − h

8 , yn
)
. 

As before we have that Q̂ ⊂ Q− r0
4
, Q̂ ⊂ Qh

4
(y). In particular, we have that x /∈ Qh

4
(y).

Let k be an integer such that k ∈ {1, . . . , n}. We observe that ∂xk
Γ(x, ·) and ∂xk

G(x, ·) are solutions to

Δy(∂xk
Γ(x, ·)) = 0 in Qh

4
(y) , (4.22)

divy(γ(·)∇y∂xk
G̃(x, ·)) = 0 in Qh

4
(y) (4.23)

respectively.
Again by applying Theorem 4.1, we have that

|∇y∂xk
G̃(x, ·)|α′,Q̂ ≤ Ch−α′−1−n

2 ‖∂xk
G̃(x, ·)‖L2(Qh

4
(y)). (4.24)

We now fix η ∈ Qh
4
(y) and we notice that η /∈ Q h

16
(x). By Theorem 4.1 we have that

‖∇xG̃(·, η)‖L∞(Q h
32

(x)) ≤ Ch−1−n
2 ‖G̃(·, η)‖L∞(Q h

16
(x)) ≤ Ch1−n. (4.25)

Combining (4.24) and (4.25) we have

|∇y∂xk
G̃(x, ·)|α′,Q̂ ≤ Ch−α′−n . (4.26)

By explicit computations we infer that

|∇y∂xk
Γ(x, ·)|α′,Q̂ ≤ Ch−α′−n . (4.27)

From (4.26) and (4.27), we have that

|∇y∂xk
R(x, ·)|α′,Q̂ ≤ Ch−α′−n . (4.28)

Moreover, we observe that by analogous arguments of those discussed above, we can infer that

‖∂xk
R(x, ·)‖L∞(Q̂) ≤ Chβ+1−n, (4.29)

where β = α′ 2

1+α .
By the following interpolation inequality

‖∇y∂xk
R(x, ·)‖L∞(Q̂) ≤ C‖∂xk

R(x, ·)‖
α′

α′+1

L∞(Q̂)|∇y∂xk
R(x, ·)|

1
α′+1

α′,Q̂
(4.30)

and by (4.29) and (4.28) we have that

|∇y∂xk
R(x, y)| ≤ Ch−n+θ, (4.31)

where θ = βα′

1+α′ . �
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4.2. Propagation of smallness

Proof of Proposition 3.3. By repeating the argument in [8, proof of Proposition 4.4] concerning a careful 
analysis of unique continuation argument across K discontinuity interfaces and based on an iterated use of 
the three spheres inequality for elliptic equation, we have that for any y, z ∈ Bρh̄(r)

(wh̄(r)(Qk+1))

|S̃Uk
(y, z)| ≤ r−n+2

0 C h̄(r)(E + ε0)
(
ω

(2k)
1/C

(
ε0

E + ε0

))(1/C)h̄(r)

. (4.32)

Hence (3.23) trivially follows from (4.32).
We now consider S̃Uk

(y, z) as a function of 2n variables where (y, z) ∈ R
2n, hence by (4.32) we have that 

|S̃Uk
(y1, . . . , yn, z1, . . . , zn)| ≤ r−n+2

0 C h̄(r)(E + ε0)
(
ω

(2K)
1/C

(
ε0

E + ε0

))(1/C) ¯h(r)

, (4.33)

for any x = (y1, . . . , yn, z1, . . . , zn) ∈ Bρh̄(r)
(wh̄(r)(Qk+1)) ×Bρh̄(r)

(wh̄(r)(Qk+1)).
Now observing that S̃Uk

(y1, . . . , yn, z1, . . . , zn) is a solution in Dk ×Dk of the elliptic equation

divy(γ(1)(y)∇yS̃Uk
(y, z)) + divz(γ(2)(z)∇zS̃Uk

(y, z)) = 0 (4.34)

we have that by Schauder interior estimates that for any i, j = 1, . . . , n it follows

‖∂xi
∂xj S̃Uk

(x1, . . . , xn, xn+1, . . . , x2n)‖L∞(B ρ
h̄(r)
2

(wh̄(r)(Qk+1))×B ρ
h̄(r)
2

(wh̄(r)(Qk+1)))

≤ C

ρ2
h̄(r)−1

‖S̃Uk
(x1, . . . , xn, xn+1, . . . , x2n)‖L∞(Bρ

h̄(r)
(wh̄(r)(Qk+1))×Bρ

h̄(r)
(wh̄(r)(Qk+1))),

where xi = yi, xi+n = zi for i = 1, . . . , n.
Moreover, we have that being dh̄(r)−1 > r, hence it follows r < d0

aρ0
ρh̄(r), which in turn leads to

‖∂xi
∂xj

S̃UK(x1, . . . , x2n)‖L∞(Q̃ ρ
h̄(r)
2

(wh̄(r)(Qk+1)))

≤ C

r2 ‖S̃UK(x1, . . . , x2n)‖L∞(Q̃ρ
h̄(r)

(wh̄(r)(Qk+1))). (4.35)

Recalling (3.21) we find

r−2 ≤
(

a

r0

)2 ( 1
a2

)h̄(r)

. (4.36)

Finally by combining (4.33), (4.35) and the above inequality we get the desired estimate. �
4.3. Stability at the boundary

Proof of estimate (3.31). We recall that for every y, z ∈ D0 we have

〈
(Λ1 − Λ2)G̃1(·, y), G̃2(·, z)

〉
=

∫
Ω

(γ̃(1) − γ̃(2))(·)∇G̃1(·, y) · ∇G̃2(·, z)

= S̃U0(y, z), (4.37)



G. Alessandrini et al. / J. Math. Pures Appl. 107 (2017) 638–664 659
and 〈
(Λ1 − Λ2)∂yn

G̃1(·, y), ∂znG̃2(·, z)
〉

=
∫
Ω

(γ̃(1) − γ̃(2))(·)∂yn
∇G̃1(·, y) · ∂zn∇G̃2(·, z)

= ∂yn
∂zn S̃U0(y, z). (4.38)

From (4.37) we obtain ∣∣∣∣∣∣
∫
Ω

(γ̃(1) − γ̃(2))(·)∇G̃1(·, y) · ∇G̃2(·, z)

∣∣∣∣∣∣
≤ ε0||G̃1(·, y)||H1/2

co (Σ)||G̃2(·, z)||H1/2
co (Σ)

≤ Cε0 (d(y)d(z))1−
n
2 , for every y, z ∈ D0, (4.39)

where d(y) denotes the distance of y from Ω and C is a constant that depends on L, λ and n. Let ρ0 = r0
C , 

where C is the constant introduced in Theorem 3.2, let r ∈ (0, d2) and denote 

w = P1 + σν, where σ = ah̄−1λ1.

We set y = z = w and obtain∫
Ω

(γ̃(1) − γ̃(2))(·)∇G̃1(·, w) · ∇G̃2(·, w)

=
∫

Bρ0 (P1)∩D1

(γ(1) − γ(2))(·)∇G̃1(·, w) · ∇G̃2(·, w)

+
∫

Ω\(Bρ0 (P1)∩D1)

(γ(1) − γ(2))(·)∇G̃1(·, w) · ∇G̃2(·, w), (4.40)

which leads to

ε0σ
2−n ≥

∣∣∣∣∣∣∣
∫

Bρ0 (P1)∩D1

(γ(1)
1 − γ

(2)
1 )(·)∇G̃1(·, w) · ∇G̃2(·, w)

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣
∫

Ω\(Bρ0 (P1)∩D1)

(γ(1) − γ(2))(·)∇G̃1(·, w) · ∇G̃2(·, w)

∣∣∣∣∣∣∣ . (4.41)

Let x0 ∈ Σ1 ∩B r0
4 (P1) such that 

(
γ

(1)
1 − γ

(2)
1

)
(x0) = ||γ̃(1) − γ̃(2)||L∞(Σ1∩B r0

4 (P1)) and recall that (
γ

(1)
1 − γ

(2)
1

)
(x) = α1 + β1 · x, therefore by combining this with (3.6) we obtain

ε0σ
2−n ≥

∫
Bρ0 (P1)∩D1

(γ(1)
1 − γ

(2)
1 )(x0)∇G̃1(·, w) · ∇G̃2(·, w)

−

∣∣∣∣∣∣∣
∫

β · (x− x0)∇G̃1(·, w) · ∇G̃2(·, w)

∣∣∣∣∣∣∣− Cρ2−n
0 (4.42)
Bρ0 (P1)∩D1
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and then

||γ̃(1)
1 − γ̃

(2)
1 ||L∞(Σ1∩B r0

4 (P1))

∫
Bρ0 (P1)∩D1

∇G̃1(·, w) · ∇G̃2(·, w)

≤
∫

Bρ0 (P1)∩D1

|β| |x− x0| |∇G̃1(·, w)||∇G̃2(·, w)| + Cρ2−n
0 + ε0σ

2−n. (4.43)

By combining (4.43) together with (3.14) we obtain

||γ̃(1)
1 − γ̃

(2)
1 ||L∞(Σ1∩B r0

4 (P1))

∫
Bρ0 (P1)∩D1

|∇Γ(x− w)|2 dx (4.44)

≤ C

⎧⎪⎨⎪⎩
∫

Bρ0 (P1)∩D1

|x− w|2−2n+2θ1 dx +
∫

Bρ0 (P1)∩D1

|x− w|2−2n+θ1 dx

⎫⎪⎬⎪⎭
+

∫
Bρ0 (P1)∩D1

|θ1| |x− w|3−2n dx + Cρ2−n
0 + ε0σ

2−n, (4.45)

which leads to 

||γ̃(1) − γ̃(2)||L∞(Σ1∩B r0
4 (P1)) ≤ σθ1 + σ + σn−2 + Cε0. (4.46)

Letting σ → 0 we then obtain 

||γ̃(1) − γ̃(2)||L∞(Σ1∩B r0
4 (P1)) ≤ Cε0. (4.47)

From (4.38), setting again y = z = w, we obtain 〈
(Λ1 − Λ2)∂yn

G̃1(·, y), ∂znG̃2(·, z)
〉

= I1(w) + I2(w), (4.48)

where

I1(w) =
∫

Bρ0 (P1)∩D1

(γ(1) − γ(2))(·)∂yn
∇G̃1(·, w) · ∂zn∇G̃2(·, w),

I2(w) =
∫

Ω\(Bρ0 (P1)∩D1)

(γ(1) − γ(2))(·)∂yn
∇G̃1(·, w) · ∂zn∇G̃2(·, w)

and by (3.6)

|I2(w)| ≤ CEρ−n
0 . (4.49)

We have

|I1(w)| ≥

∣∣∣∣∣∣∣
∫

(∂ν(γ(1)
1 − γ

(2)
1 )(P1))(x− P1)n∂yn

∇G̃1(·, w) · ∂zn∇G̃2(·, w)

∣∣∣∣∣∣∣
Bρ0 (P1)∩D1



G. Alessandrini et al. / J. Math. Pures Appl. 107 (2017) 638–664 661
−
∫

Bρ0 (P1)∩D1

|(DT (γ(1)
1 − γ

(2)
1 )(P1)) · (x− P1)′||∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|

−
∫

Bρ0 (P1)∩D1

|(γ(1)
1 − γ

(2)
1 )(P1)||∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|.

Noticing that up to a transformation of coordinates we can assume that P1 coincides with the origin O
of the coordinates system and by Theorem 3.2, this leads to

|I1(w)| ≥ |∂ν(γ(1)
1 − γ

(2)
1 )(O)|C

∫
Bρ0 (O)∩D1

|∂yn
∇xΓ(x,w)|2|xn|

− C

{
E

∫
Bρ0 (O)∩D1

|∂yn
∇xΓ(x,w)||x− w|−n+θ2 |xn|

− E

∫
Bρ0 (O)∩D1

|x− w|−2n+θ2 |xn|
}

−
∫

Bρ0 (O)∩D1

|DT (γ(1)
1 − γ

(2)
1 )| |x′| |∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|

−
∫

Bρ0 (O)∩D1

|(γ(1)
1 − γ

(2)
1 )(O)| |∂yn

∇G̃1(·, w)| |∂zn∇G̃2(·, w)|. (4.50)

Therefore, by combining (4.50) together with (4.48) and (4.49), we obtain

|I1(w)| ≥ |∂ν(γ(1)
1 − γ

(2)
1 )(O)|C

∫
Bρ0 (P1)∩D1

|x− w|1−2n

− C

{
E

∫
Bρ0 (P1)∩D1

|x− w|1−2n+θ2

− E

∫
Bρ0 (P1)∩D1

|x− w|2−2n+θ2

− ε0

∫
Bρ0 (P1)∩D1

|x− w|1−2n

− ε0

∫
Bρ0 (P1)∩D1

|x− w|−2n
}
,

which leads to 

|∂ν(γ(1)
1 − γ

(2)
1 )(O)|σ1−n ≤ |I1(w)| + C

(
ε0σ

−n + Eσ1−n+θ2
)
, (4.51)

and 

|I1(w)| ≤
∣∣〈(Λ1 − Λ2)∂yn

G̃1(·, y), ∂znG̃2(·, z)
〉∣∣ + CEρ−n

0 . (4.52)
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Thus by combining together the last two inequalities we get

|∂ν(γ(1)
1 − γ

(2)
1 )(O)|σ1−n ≤ C

(
ε0σ

−n + Eρ−n
0

+ ε0σ
−n + Eσ1−n+θ2

)
, (4.53)

therefore 

|∂ν(γ(1)
1 − γ

(2)
1 )(O)| ≤ C

{
ε0σ

−1 + Eσθ2
}

(4.54)

and by optimizing with respect to σ we get 

|∂ν(γ(1)
1 − γ

(2)
1 )(O)| ≤ Cε

θ2
θ2+1
0 (E + ε0)

1
1+θ2 . � (4.55)
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