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Abstract 

A set of stereoisomeric 2,5-diazabicyclo[2.2.2]octanes 14 and 15 was prepared in a 

chiral-pool synthesis starting from (S)- or (R)-aspartate. The key step in the synthesis 

was a Dieckmann-analogous cyclization of (dioxopiperazinyl)acetates 8, which 

involved trapping of the intermediate hemiketal anion with Me3SiCl. The σ1 affinity 

was tested using membrane preparations from animal (guinea pig) and human origin. 

The binding of bicyclic compounds was analyzed by molecular dynamics simulations 

based on a 3D homology model of the σ1 receptor. The good correlation between Ki 

values observed in the σ1 assays and calculated free binding energy, coupled with 

the identification of four crucial ligand/receptor interactions allowed the formulation of 

structure affinity relationships. In an in vitro antitumor assay with seven human tumor 

cell lines, the bicyclic compounds inhibited selectively the growth of the cell line 

A427, which is due to induction of apoptosis. In this assay, the compounds behave 

like the known σ1 receptor antagonist haloperidol. 

 

 

Keywords 

σ1 Ligands, conformational restriction, Dieckmann analogous cyclization, structure 

affinity relationships, tumor cell lines, cytotoxic activity, 3D homology model, 

molecular dynamics, docking, ligand-receptor interactions 

 

 

Introduction 

After some misclassification as opioid receptors, σ receptors have now been shown 

to represent a receptor class on their own. To date, two subtypes are known, termed 

σ1 and σ2 receptor. These subtypes can be differentiated by their molecular weight, 
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tissue distribution, and ligand binding profiles. A particular feature is the different 

interaction of σ receptor subtypes with dextrorotatory benzomorphans.1,2  

 

After cloning the σ1 receptor from various tissues of animal origin including guinea pig 

liver, mouse brain, rat brain and rat kidney,3-6 the σ1 receptor was also cloned from 

the human chorioncarcinoma cell line.7 The identity of σ1 receptors cloned from 

different species is around 93%. The σ1 receptor protein encoded by the human gene 

consists of 223 amino acids and has a molecular weight of 25.3 kDa. A similarity of 

the σ1 receptor protein with other mammalian proteins could not be found, but a 30% 

identity and 67% similarity with the yeast enzyme sterol ∆8/7-isomerase was 

detected.8 

 

High density of the σ1 receptor was found in the central nervous system, but also in 

peripheral tissues, e.g. heart,9 kidney, and liver.10 Moreover, the σ1 receptor was 

identified in endocrine organs,11 immune competent blood cells12 and very 

importantly in proliferating tumor cells.13 The σ1 receptor is a membrane bound 

protein localized predominantly in the plasma membrane, the membrane of the 

endoplasmic reticulum associated with mitochondria (mitochondria associated 

membrane) and around the nucleus (perinuclear region of ER).14,15 It has been 

reported that the σ1 receptor functions as chaperone interacting with different 

neurotransmitter receptors and ion channels, but the exact signal transduction 

pathway has not been identified so far.16,17  

 

The σ1 receptor plays an important role in various neurological disorders, including 

depression, psychosis, Alzheimer’s disease, and alcohol/drug dependence.18 
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Furthermore, the antinociceptive system can be modulated by σ1 receptors, i.e. σ1 

receptor agonists such as (+)-pentazocine are able to potentiate the analgesic 

potential of opioid analgesics.19 Moreover, selective σ1 receptor antagonists, e.g. 

S1RA, are able to reduce neuropathic pain.20,21 

 

In 1990 overexpression of σ receptors in brain tumors was reported.22 Then, high σ1 

receptor expression in human breast cancer cell lines and later, in small cell lung and 

prostate cancer cell lines was shown by immunocytochemical, immunohistochemical, 

and real-time-PCR studies as well Western blotting with a σ1 receptor specific 

antibody.23,24 These experiments led to the conclusion that the expression of σ1 

receptors in various human tumor cell lines is significantly increased compared with 

the σ1 receptor expression level of the corresponding non-tumor cells.25,26 In addition 

to the high expression level of σ1 receptors in human tumor cells, it was shown that 

they are involved in apoptosis (programmed cell death) and σ1 receptor antagonists 

were able to induce caspase-dependent cell death.27 Therefore, selective targeting of 

σ1 receptors represents a promising strategy for the therapy of cancer either alone or 

as adjuvants in chemotherapy by inducing apoptosis and ultimately cell death. In fact, 

treatment of tumor cells with various σ1 ligands, e.g. the σ1 antagonist haloperidol, 

led to both cytostatic and cytotoxic effects, although the molecular mechanisms 

underlying cell growth inhibition have not yet been clarified.24,28 In addition to blocking 

σ1 receptors, activation of σ2 receptors, which are highly expressed in rapidly 

proliferating tumor cells, also induced apoptotic processes.26,28-31  

 

Substantial efforts have been spent in recent years in the design, synthesis and 

evaluation of potent and selective σ1 ligands. Many of these well-established σ1 

ligands contain a piperazine ring.32-35 Monocyclic piperazines 1 with a 
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conformationally flexible 3-hydroxypropyl side chain display moderate σ1 affinity.34 

(Figure 1) Conformational restriction of flexible ligands is a general strategy in drug 

design to increase both binding affinity and selectivity for a particular target.36 As a 

result of conformational restriction, the ligand loss of entropy during binding is 

reduced and, hence, its free binding energy is increased. 

 

Figure 1: Development of ethano-bridged piperazines 4 from the ω-hydroxyalkyl 

substituted piperazines 1 and 3 and the propano-bridged piperazines 2. 

 

To investigate the influence of conformational restriction on σ1 receptor affinity and 

cytotoxicity bridged piperazines 2 were designed by connecting the flexible 3-

hydroxypropyl side chain of piperazines 1 with the piperazine ring. Receptor binding 

studies showed higher σ1 affinity for the bridged piperazines 2 compared with the 

monocyclic piperazines 1. For example, a Ki value of 188 nM was found for the 

flexible (hydroxypropyl)piperazine 1a bearing p-methoxybenzyl (PMB) and benzyl 

(Bn) moieties (R1 = PMB, R2 = Bn) at the N-atoms.34 After construction of the 

hydroxypropano bridge of 2 with appropriate configuration and the same 

substituents, the σ1 affinity increased 30-fold (2a (R1 = PMB, R2 = Bn, (1R,2R,5S)-
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configuration): Ki = 6.5 nM).37 A similar relationship between the structure and the 

inhibition of tumor cell growth was observed: the cytotoxic effect against the human 

small cell lung cancer (SCLC) A427 cell line of the bridged piperazines 2 (e.g. 2a: 

54% inhibition at a concentration of 20 µM) was higher than the cytotoxic effect of the 

monocyclic piperazines 1 (e.g. 1a: 23% inhibition at a concentration of 20 µM)34,37 on 

the same cell line. 

 

Recently we have shown that the σ1 affinity of (2-hydroxyethyl)piperazines 3 was 

higher than that of their 3-hydroxypropyl homologs 1, e.g. the (2-

hydroxyethyl)piperazine 3a (R1 = PMB, R2 = Bn, Ki = 20 nM) had a 9-fold higher σ1 

affinity than the (3-hydroxypropyl)piperazine 1a (Ki = 188 nM) bearing the same 

substituents at the N-atoms.34  

 

These observations prompted us to synthesize and evaluate the biological activity of 

the bicyclic compounds 4, which are derived from the bicyclic compounds 2 by 

removal of one methylene moiety of the propano bridge, and from the 2-

hydroxyethyl-substituted piperazines 3 by connecting the flexible hydroxyethyl side 

chain with the piperazine ring. On condition that conformational restriction should 

lead to higher σ1 affinity and tumor cell growth inhibition, the designed 2,5-

diazabicyclo[2.2.2]octanes 4 were expected to show improved biological activities. 

The results of this study were rationalized at the molecular level by atomistic 

molecular dynamics simulations of the interactions between ligands 4 and the 

recently developed 3D homology model of the σ1 receptor.38,39 These studies should 

lead to a deep understanding of the ligand - σ1 receptor interactions and, moreover, 

the contribution of the particular structural elements to the overall interactions. 
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Synthesis 

The synthesis of 2,5-diazabicyclo[2.2.2]octanes of type 4 was planned by bridging 

piperazinediones 8-10 with an appropriate side chain containing two carbon atoms. 

The dioxopiperazines 8a-d with an acetate side chain were synthesized in a six-step 

reaction sequence starting from (S)-aspartate (5) as described in literature.40 In brief, 

the diester 6.HCl was reductively alkylated with different aldehydes and subsequently 

acylated to afford chloroacetamide 7. The dioxopiperazines 8a-d were obtained by a 

Domino reaction (SN2 reaction followed by intramolecular aminolysis) of 7 with 

different primary amines. The differently substituted dioxopiperazines 8a-d served as 

starting material for the exploration of different bridging strategies to obtain 

diazabicyclo[2.2.2]octanes (Scheme 1).  

 

As demonstrated in preliminary investigations, the Dieckmann analogous cyclization 

of piperazinylacetates of type 8 provided less than 10% of the desired bicyclic 

products 12. Therefore, alternative synthetic routes for the installation of the ethano 

bridge were investigated (reaction steps (h) and (i) in Scheme 1). 

 

At first, aldehydes 11a,b should be used as starting material, since the higher 

carbonyl activity of aldehydes 11 compared with esters 8 should give higher yields in 

the envisaged intramolecular aldol reaction. However, the direct reduction of the 

ester 8b with DIBAL in toluene41 did not lead to the aldehyde 11b. Therefore, a two-

step conversion of the ester 8b into the aldehyde 11b comprising a reduction and 

oxidation step was investigated. The selective reduction of the ester moiety of 8b 

with LiBH4 afforded the primary alcohol 10b in 41% yield. However, subsequent 

oxidation of the primary alcohol 10b with Dess-Martin periodinane42 gave only very 

low yields of aldehyde 11b. Finally, high yields of the aldehyde 11b were obtained by 
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8 

 

transformation of the ester 8b into the Weinreb amide 9b43 and its subsequent 

reduction with LiAlH4. 

 

 

 

Scheme 1: Reagents and reaction conditions: (a) (H3C)3SiCl, H3COH, rt, 16 h;40 (b) 

1. R2-CH=O, NEt3, CH2Cl2, rt, 16 h; 2. NaBH4, H3COH, 0 °C, 40 min; 3. ClCH2COCl, 

NEt3, CH2Cl2, rt, 2.5 h;40 (c) R1-NH2, NEt3, CH3CN, rt, 16 h – 3 d;40 (d) 

HN(OCH3)CH3
.HCl, Al(CH3)3, CH2Cl2, rt, 5 h; (e) LiAlH4, THF, -78 °C, 16 h; (f) LiBH4, 

THF, -30 °C, 16 h;21 (g) NaHMDS, THF, -78 °C, 40 min, then (H3C)3SiCl, -78 °C, 1 h, 

then rt, 2 h; (h) LiHMDS, THF, -78 °C, 16 h; (i) 1. LiHMDS, THF, -78 °C, 16 h; 2. 

LiAlH4, THF, reflux, 16 h; (j) 0.5 M HCl, THF, rt, 16 h; (k) LiAlH4, THF, reflux, 16 h. 

The enantiomers of ent-7 – ent-15 were prepared in the same manner. 

 

Reaction of the aldehyde 11b with LiHMDS in THF at -78 °C induced the 

intramolecular aldol reaction affording a bicyclic product. Since the purification of the 

compounds 7-15 R1 R2 
a  CH2C6H11 Bn 
b Me Bn 
c CH2C6H11 1-naphthylmethyl 
d CH2C6H11 4-biphenylylmethyl 
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cyclization product turned out to be difficult, the product was directly reduced with 

LiAlH4 to provide the diastereomeric alcohols 14b and 15b. Although the 1H NMR 

spectra showed the desired signals, the yields and the purity of the products were not 

sufficient for further investigations. 

 

During the synthesis of the aldehyde 11a the Weinreb amide 9a had been 

synthesized. Weinreb amides can form stable chelates with metal cations after 

addition of nucleophiles.44 Thus, after deprotonation of bislactam 9a with LiHMDS at  

-78 °C, a stable Li+-chelate was expected to form by intramolecular aldol reaction. 

Hydrolysis of the Li+-chelate should then afford the bicyclic ketone 13a. MS and NMR 

spectra confirmed the formation of 13a. However, the yield of 13a was below 5% and 

could not be increased although numerous variations of the reaction conditions (type 

and amount of base, temperature, reaction time) were investigated. 

 

As a consequence of these results, the Dieckmann analogous cyclization45 of esters 

8 (conditions (g) in Scheme 1) was investigated in detail. For this purpose, the ester 

8b was treated with LiHMDS at -78 °C and the anion of the intermediate hemiketal 

was trapped after 10 min with (CH3)3SiCl to obtain the mixed methyl silyl ketal 12b in 

3% yield. This variation of the Dieckmann condensation (trapping of the hemiketal 

anion) allows the formation of small bicyclic systems, which cannot form stabilized 

anions of β-dicarbonyl compounds at the end of the synthesis due to Bredt`s rule.46,47 

Herein, the first cyclization product (i.e. the anion of the hemiketal) was trapped by 

(CH3)3SiCl after deprotonation of dioxopiperazine 8b with LiHMDS. Due to the low 

yield of the mixed methyl silyl ketal 12b with recovery of large amounts of the educt 

8b, this transformation was carefully optimized. In order to improve the yield of 12b, 

different counter ions of the base and different time intervals for deprotonation and 
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trapping with (CH3)3SiCl were evaluated. Systematic variations of the reaction 

conditions resulted in an improved yield of 12b of 34%. In particular, the use of 

NaHMDS as base, an interval of 40 min for the deprotonation step, and a modified 

work up procedure (adsorption of the crude product on silica gel instead of dissolving 

the residue before purification by flash chromatography) represent the key features 

for achieving this yield. A previous X-ray crystal structure analysis45 revealed that the 

Dieckmann analogous cyclization provided (7R)-configured products 12 with high 

diastereoselectivity. Since the transformation of all analogs provided predominantly 

one diastereomer with similar signals in the NMR spectra, the (7R)-configuration can 

be transferred to all mixed methyl silyl ketals 12. The configuration of the chiral 

center in 4-position is defined by the configuration of the starting material (S)-

aspartate (5) leading to (1S,4S,7R)-configuration of the mixed methyl silyl ketals 12. 

Hydrolysis with 0.5 M HCl in THF led to the bicyclic ketone 13b, which was reduced 

by LiALH4 to yield the diastereomeric bicyclic alcohols 14b and 15b. 

 

The same reaction sequence was used for the synthesis of 14a,c,d and 15a,c,d 

starting from esters 8a,c,d. The reaction conditions for the crucial Dieckmann 

analogous cyclization of the esters 8a,c,d had to be optimized for each compound 

individually. The yields were 26%, 13%, and 22% for 12a, 12c and 12d, respectively. 

 

In order to compare the σ1 and σ2 affinities of enantiomeric alcohols the (R)-

configured dioxopiperazines ent-8a, ent-8c and ent-8d were prepared from (R)-

aspartate (ent-5) and transformed into the bicyclic alcohols ent-14a, ent-15a, ent-

14c, ent-15c, and ent-14d, ent-15d. Thus, all four possible stereoisomeric bicyclic 

alcohols with a cyclohexylmethyl residue at 2-position and different arylmethyl 
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11 

 

residues at 5-position (series a, c, and d) were available for pharmacological 

evaluation. 

 

In order to determine the enantiomeric purity a chiral HPLC method was developed 

to analyze the stereoisomeric benzyl substituted derivatives 14a, ent-14a, 15a, and 

ent-15a. Approximately 10 % of the enantiomers were found in the samples resulting 

from base catalyzed partial racemization during the bridging reaction of 

piperazinedione 8. However, the contamination with small amounts of the enantiomer 

does not affect the biological activity of the compounds. 

 

Scheme 2: Reagents and reaction conditions: (a) (H3C)3SiCl, H3COH, rt, 16 h;33 (b) 

1. Ph-CH=O, NEt3, CH2Cl2, rt, 16 h; 2. NaBH4, H3COH, 0 °C, 40 min; 3. ClCH2COCl, 

NEt3, CH2Cl2, rt, 2.5 h;37 (c) C6H11CH2-NH2, NEt3, CH3CN, rt, 16 h; (d) NaHMDS, 

THF, -78 °C, 40 min, then (H3C)3SiCl, -78 °C, 1 h, then rt, 2 h; (e) 0.5 M HCl, THF, rt, 

16 h; (f) LiAlH4, THF, reflux, 16 h.  
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Since the pharmacological properties of the diazabicyclo[2.2.2]octanes 14/15 should 

be compared with those of the homologous diazabicyclo[3.2.2]nonanes, the 

diastereomeric alcohols 22a and 23a were prepared. (Scheme 2) Starting from (S)-

glutamate (16) the dioxopiperazine 19 was obtained by esterification (17),33 

benzylation, chloroacetylation (18)37 and, finally, cyclization with 

cyclohexylmethylamine. Deprotonation of 19 with NaHMDS at -78 °C and trapping of 

the intermediate hemiketal anion after 40 min with (CH3)3SiCl provided the mixed 

methyl silyl ketal 20 in 60% yield. This result shows clearly that the moderate yields 

obtained during the cyclization of the smaller homologs 8 with an acetate side chain 

are due to the shorter bridge increasing the strain of the system. Hydrolysis of the 

mixed ketal 20 with diluted HCl led to the bicyclic ketone 21, which was reduced with 

LiAlH4 to obtain the diastereomeric alcohols 22a and 23a in 22% and 42% yields, 

respectively. 

 

Pharmacological evaluation 

Receptor binding studies 

The σ affinities of compounds 14/15 and 22/23 were determined in competition 

experiments with the appropriate radioligands. All compounds were tested against σ1 

and σ2 receptors of animal origin obtained from guinea pig (gp) brain (σ1) and rat liver 

(σ2), respectively. Additionally, the interaction of the ligands with human σ1 receptors 

was analyzed using membrane preparations obtained from the peripheral blood 

human myeloma cell line RPMI 8226.48 These experiments were performed to 

investigate the correlation between ligand interactions with human and guinea pig σ1 

receptors. [3H]-(+)-Pentazocine served as radioligand for both σ1 assays and [3H]-

DTG as radioligand in the σ2 assay.49-51 Compounds with high affinity were tested in 
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triplicate. For compounds with low σ affinity, only the inhibition of the radioligand 

binding at a test compound concentration of 1.0 µM is reported. 

 

The results of the receptor binding studies of the new compounds are shown in Table 

1. The σ1 and σ2 affinity data of various reference ligands are also listed for 

comparison. The values in Table 1 demonstrate that N-methyl substituted bridged 

piperazines 14b and 15b do not interact significantly with σ1 and σ2 receptors. This 

result correlates nicely with the low affinity observed for (hydroxyethyl)piperazines 

3a-d (Figure 1), which do not react with σ1 and σ2 receptors when R1 is a small 

methyl residue (e.g. 3b).  

 

In the guinea pig assay the σ1 affinity of bicyclic compounds 14 and 15 bearing a 2-

cyclohexylmethyl substituent is generally in the low nanomolar range, only ent-14a 

and 15d reveal Ki values higher than 20 nM. Whilst the stereoisomeric bicyclic 5-

benzyl derivatives 14a, 15a, ent-14a, and ent-15a show similar σ1 affinity as the 

corresponding (hydroxyethyl)piperazine 3a, the σ1 affinity of the bicyclic 5-

naphthylmethyl (c-series, exception ent-15c) and biphenylylmethyl derivatives (d-

series) display slightly reduced σ1 affinity compared to their (hydroxyethyl)piperazine 

analogs 3c and 3d. 
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Table 1 σ1 and σ2 receptor affinity of bicyclic piperazines 

 

compd. R1 R2 n 
σ1  

(gp)a) 

Ki ± SEM [nM] 

σ2  
(rat)b) 

Ki ± SEM  
[nM] 

σ1  
(hum)c) 

Ki ± SEM  
[nM] 

3a
40 CH2C6H11 Bn - 4.2 ± 1.1 116e) 21 ± 4.0 

3b
40
 CH3 Bn - 28%d) 27%d) n.d. 

3c
40 CH2C6H11 1-Naph-CH2 - 1.9 ± 0.6 26 ± 12 29 ± 10 

3d
40 CH2C6H11 4-Ph-Ph-CH2  3.5 ± 0.5 73 ± 45 34 ± 8.0 

14a CH2C6H11 Bn 0 4.8 ± 0.7 36 ± 9.0 3.2 ± 0.4 

15a CH2C6H11 Bn 0 6.9 ± 1.6 60 ± 26e) 2.4 ± 0.2 

ent-14a CH2C6H11 Bn 0 23 ± 13 197 ± 18 2.8 ± 1.0 

ent-15a CH2C6H11 Bn 0 5.7 ± 2.6 501 ± 21 1.6 ± 0.4 

14b Me Bn 0 13%d) 4%d) 23%d) 

15b Me Bn 0 0%d) 7%d) n.d. 

14c CH2C6H11 1-Naph-CH2 0 8.0 ± 2.0 51 ± 16 13 ± 5.0 

15c CH2C6H11 1-Naph-CH2 0 7.1 ± 1.8 157 ± 21 7.2 ± 3.9 

ent-14c CH2C6H11 1-Naph-CH2 0 14 ± 4.0 40 ±15 38 ± 3.0 

ent-15c CH2C6H11 1-Naph-CH2 0 0.50 ± 0.1e) 116 ± 33 6.0 ± 2.0 

14d CH2C6H11 4-Ph-Ph-CH2 0 8.7 ± 1.2 20 ± 7.0 27 ± 9.0 

15d CH2C6H11 4-Ph-Ph-CH2 0 23 ± 6.0 334 ± 18 73 ±6.0 

ent-14d CH2C6H11 4-Ph-Ph-CH2 0 11 ± 2.0 202 ± 52 27 ± 5.0 

ent-15d CH2C6H11 4-Ph-Ph-CH2 0 11 ± 2.0 593 ± 53 24 ± 6.0 

22a CH2C6H11 Bn 1 6.0 ± 0.2 65 ± 7.0 6.4 ± 0.9 

23a CH2C6H11 Bn 1 1.6 ± 0.1 284 ± 72 2.2 ± 1.1 

(+)-pentazocine   5.4 ± 0.5 - 36 ± 5.0 

Haloperidol   6.6 ± 0.9 78 ± 2.0 40 ± 5.0 

di-o-tolylguanidine   71 ± 8.0 58 ± 18 208 ± 26 

a) gp: guinea pig brain; b) rat liver; c) RPMI 8226 cell line; d) Inhibition of radioligand 

binding at 1 µM concentration of test compound; e) n = 4; n.d.: not determined.          

Ki values represent mean values of three independent experiments (n = 3). 
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The similar σ1 receptor affinities of the four stereoisomeric benzyl substituted 

derivatives 14a, ent-14a, 15a and ent-15a indicate that the configuration has a 

negligible effect on the interaction with σ1 receptors. Replacement of the benzyl 

residue (a-series) by the voluminous biphenylylmethyl moiety (d-series) results in a 

slight reduction of σ1 affinity as shown for the stereoisomers 14d, ent-14d, 15d and 

ent-15d. As observed for the benzyl derivatives (a-series) the stereochemistry of the 

biphenylylmethyl derivatives (d-series) does not influence the σ1 affinity, 

considerably. 

  

Expansion of the ethano bridge by a methylene moiety does not reflect into a 

considerable change in the σ1 affinity of the corresponding derivatives. Indeed, the 

propano bridged homologs 22a and 23a show almost the same σ1 affinity as the 

ethano bridged ligands 14a and 15a with the same stereochemistry and the same 

substitution pattern. 

 

The σ2 receptor affinity of all bicyclic compounds is lower than their σ1 affinity (gp 

assay, RPMI 8226 assay) varying from slight preference up to a high selectivity for 

the σ1 receptor. The range of the σ1:σ2 selectivity is demonstrated by the 

naphthylmethyl derivatives (c-series), which show σ1:σ2 selectivity of 6, 3, 22, and 

230-fold for 14c, ent-14c, 15c and ent-15c, respectively. The particular high σ1:σ2 

selectivity of the (1S,4R,7S)-configured ligands ent-15a (90-fold), ent-15c (230-fold), 

and ent-15d (55-fold) should be emphasized. 

 

The affinity of the bicyclic compounds towards human σ1 receptors (RPMI 8226 cell 

line) shows a good correlation to the affinity recorded in the guinea pig brain assay. 

In general the Ki-values for the naphthylmethyl (c-series), biphenylylmethyl 
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derivatives (d-series) and propano bridged homologs 22a and 23a are slightly higher 

in the RPMI 8226 assay than in the guinea pig brain assay. In contrast, the benzyl 

derivatives (a-series) show slightly stronger interactions with the human σ1 receptor 

in the RPMI 8226 assay than with the guinea pig σ1 receptors. However, most of the 

measured differences are due to the variability of the assays, thus lacking 

significance. Interestingly, the most potent ligand in the guinea pig assay (ent-15c, Ki 

= 0.50 nM) shows also very high affinity in the RPMI 8226 assay (Ki = 6.0 nM) 

rendering it to one of the most affine ligands in this assay as well. 

 

In conclusion, reduction of the conformational flexibility of (hydroxyethyl)piperazines 

3 by incorporation of the pharmacophoric elements in a diazabicyclo[2.2.2]octane 

framework led to the same or slightly reduced σ1 affinity. Ki values recorded in the 

guinea pig assay are in good accordance with Ki values recorded in the RPMI 8226 

assay. (1S,4R,7S)-Configured bicyclic ligands display high σ1:σ2 selectivity. The 

ligand ent-15c represents the most promising σ1 ligand of this series of bicyclic 

compounds with Ki values of 0.50 nM (guinea pig assay), 6.0 nM (RPMI 8226 assay) 

and 230-fold respective 20-fold selectivity over the σ2 subtype. 

 

Cytotoxicity  

The ability of the new σ1 ligands to inhibit the growth of seven human tumor cell lines 

was investigated in vitro by using two microtiter plate-based assays: the growth of the 

adherent cell lines A427 (small cell lung cancer), LCLC-103H (large cell lung cancer), 

5637 and RT-4 (bladder cancer), DAN-G (pancreatic cancer) and MCF-7 (breast 

cancer) was determined by a crystal violet staining assay described previously,52  

whilst for the cell line HL60 (leukemia) growing in suspension the MTT assay was 
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used.52 The known σ1 ligands (+)-pentazocine and haloperidol were included in these 

investigations and served as reference compounds. 

 

Table 2 displays the 50% growth inhibition concentrations (IC50) of the synthesized 

bicyclic σ ligands 14, 15, 22a, and 23a together with the effects of the reference 

compounds (+)-pentazocine and haloperidol. As expected, 15b bearing a small 

methyl moiety at N-2 did not inhibit the growth of any of the tumor cell lines up to a 

concentration of 20 µM. This effect correlates well with its negligible affinity towards 

both σ receptor subtypes. 

 

The naphthylmethyl substituted derivatives 14c and 15c reveal rather unselective 

inhibition of tumor cell growth based on very similar IC50 values over all cell lines, 

thus indicating unspecific cytotoxicity rather than a precise mechanism of action. 

Compounds 15a, ent-14a, ent-15c, and 14d slightly reduced the growth of the 

bladder cancer cell line 5637. However, the most striking result is the selective 

growth inhibition of the small cell lung cancer cell line A427 by the cyclohexylmethyl 

substituted bicyclic compounds (exception made for 14c and 15c, which are not 

selective). The growth of the other five cell lines was not influenced up to a test 

compound concentration of 10 µM or 20 µM. Therefore, the following discussion will 

focus on the growth inhibition of tumor cell line A427, which expresses high levels of 

σ1 receptors37 and is the most sensitive cell line towards these bicyclic ligands.  

 

 

 

 

Page 17 of 48

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



18 

 

Table 2: Growth inhibition of human tumor cell lines, average IC50 ± SD [µM] of three 

independent determinations (except where noted)  

compd. 
human tumor cell line 

A427a 
LCLC-
103Ha 

5637a RT-4a DAN-Ga MCF-7a HL60b 

14a 16.5 ± 6.2 > 20 > 20 > 20 > 20 > 20 > 20 

15a 9.8 ± 4.3 > 20 9.2 ± 6.3 > 20 > 20 > 20 > 20 

ent-14a 2.8 ± 1.7 > 20 4.8 ± 3.1 > 20 > 20 > 20 > 20 

ent-15a 11.2 ± 4.8 > 20 > 20 > 20 > 20 > 20 > 20 

14b n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

15b > 20 > 20 > 20 > 20 > 20 > 20 n.d.c 

14c 2.3 ± 0.9 10.4 ± 0.9 4.3 ± 1.8 12.9 ± 7.3 10.2 ± 3.1 7.0 ± 4.1 11.2 ± 1.6 

15c 6.0 ± 3.8 8.8 ± 2.0 4.9 ± 1.2 11.3 ± 5.9 16.1 ± 2.1 6.8 ± 1.5 14.7 ± 1.4 

ent-14c 1.8e) > 10 > 10 n.d. 9.3e)  n.d. n.d. 

ent-15c 4.3 ± 2.3 > 10 2.3 ± 0.9 n.d. > 10 n.d. n.d. 

14d 1.6 ± 1.2 3.2e) 4.9 ± 4.1 n.d. 4.9 ± 2.0 n.d. n.d. 

15d 4.5 ± 5.7 > 10 > 10 n.d. > 10 n.d. n.d. 

ent-14d 3.7 ± 3.6 > 10 > 10 n.d. 9.1 ± 1.0 n.d. n.d. 

ent-15d 1.9 ± 1.5 > 10 > 10 n.d. > 10 n.d. n.d. 

22a 7.6 ± 4.7 > 20 > 20 > 20 > 20 14 ± 2.8 > 20  

23a 10.3 ± 2.9 > 20 > 20 > 20 > 20 16 ± 2.8 > 20 

+)-pentazocine > 20 > 20 3.5 ± 0.9 > 20d > 20 > 20d > 20 

Haloperidol 9.6 ± 3.7 10.9 ± 1.9 2.3 ± 1.4 16 ± 5d > 20 > 20d > 20 

 
a)determined with the crystal violet assay after a 96 h exposure to test compounds; 
b)determined with the MTT assay after a 48 h exposure of the HL60 cell line to test 

compounds; c)n.d.: not determined, d)values from ref.37, e)n = 2 

 

 

As discussed for the σ1 receptor affinity, the four stereoisomeric cyclohexylmethyl 

derivatives 14a, ent-14a, 15a and ent-15a display very similar antiproliferative activity 

against A427 cell line, indicating a low influence of the stereochemistry on cell growth 

inhibition. Similar observations were made for the growth inhibition of the 
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stereoisomeric naphthylmethyl (c-series) and biphenylylmethyl (d-series) substituted 

derivatives as well as for enantiomeric monocyclic piperazine derivatives.54 The most 

potent compounds are the naphthylmethyl substituted compounds 14c (IC50 = 2.3 

µM) and ent-14c (IC50 = 1.8 µM) as well as the biphenylylmethyl substituted 

derivatives 14d (IC50 = 2.3 µM) and ent-15d (IC50 = 1.9 µM). With Ki values of 13 nM 

(14c) and 27 nM (14d) in the human RPMI8226 assay, the (1R,4S,7S)-configured 

compounds belong to the group of very high affinity σ1 ligands. Although a precise 

correlation between the antiproliferative activity against the A427 cell line and the σ1 

affinity is not given, the high affinity σ1 ligands ent-14a (Ki(human) = 2.8 nM) and ent-

15c (Ki(human) = 6.0 nM) inhibit the growth of the A427 tumor cell line also with high 

activity (IC50 = 2.8 µM (ent-14a), IC50 = 4.3 µM (ent-15c)). 

 

The size of the bridge does not influence considerably the growth inhibition of the 

A427 cell line, since the homologs 22a and 23a with an additional CH2 moiety in the 

bridge show similar antiproliferative activity as their smaller homologs 14a and 15a. 

 

It can be concluded that a clear correlation between the σ1 affinity of the test 

compounds and their antiproliferative activities in the A427 cell line could not be 

detected, but some trends were observed. For the interpretation of these results it 

has to be considered that some physico-chemical properties of the test compounds, 

such as lipophilicity, which determine penetration of drugs through the cytoplasmic 

membrane to enter the cells and interact with σ1 receptors located in the membrane 

of the endoplasmic reticulum, influence the overall effect on tumor cell growth. These 

aspects are not relevant in receptor binding studies with membrane preparations. 

However, all bicyclic compounds bearing a cyclohexylmethyl moiety behave like the 

σ1 receptor antagonist haloperidol in the inhibition of the growth of the A427 cell line. 
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Therefore, the bicyclic compounds are likely to also be acting as σ1 receptor 

antagonists. 

 

Induction of apoptosis 

Based on their σ1 affinity and tumor cell growth inhibition, the bicyclic 5-benzyl 

derivative ent-14a (a-series), the naphthylmethyl derivatives ent-14c and ent-15c (c-

series), and the biphenylylmethyl derivative ent-14d (d-series) were selected for 

further investigation of apoptosis induction in A427 cells (small cell lung cancer). This 

human tumor cell line displays a high expression of σ1 receptors37 and a high 

sensitivity towards cytotoxic effects of the compounds (Table 2). Cells were treated 

for 24 h and 48 h with a 2-fold higher concentration of the compounds than the 

corresponding IC50 value, established by the crystal violet proliferation assay (96 h). 

Subsequently the cells were double-stained with annexin V-FITC and propidium 

iodide (PI) to distinguish between early apoptotic and late apoptotic/necrotic cells. 

The stained cells were analyzed by flow cytometry. The anticancer agent doxorubicin 

(0.5 µM for 24 h, 0.1 µM for 48 h), a well-known inducer of apoptosis55,56, was 

included as a positive control. 

 

The results of the annexin V / PI double staining experiments are shown in Figure 2. 

Whilst after 24,h significant increases in the population of early apoptotic cells 

(annexin V-positive, PI-negative) could only be observed for the biphenylylmethyl 

derivative ent-14d (39.7 ± 1.3 %), after 48 h the fraction of early apoptotic cells 

significantly increased for all four of the tested compounds (ent-14a: 32.6 ± 1.5 % , 

ent-14c: 33.3 ± 5.4 %, ent-15c: 48.9 ± 3.8 %, ent-14d: 56.4 ± 4.3 %) compared to a 

0.1 % (v/v) DMSO-containing solvent control (19.0 ± 2.5 % after 24 h, 17.3 ± 1.8 % 

after 48 h). Untreated cells (medium only) displayed similar fractions of early 
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apoptotic cells (18.9 ± 2.8 % after 24 h, 16.6 ± 1.1 % after 48 h). Thus, for these four 

compounds, the biphenylylmethyl derivative ent-14d with high σ1 affinity (Ki = 11 nM) 

and growth inhibition (IC50 (A427) = 3.7 µM)   is the most effective and fastest inducer 

of apoptosis in A427 cells. Comparable time-dependent induction of apoptosis by σ1 

ligands with hydroxyethyl framework (see 3 in Figure 1) has been observed 

before.40,54 

Figure 2: Analysis of apoptotic effects of ent-14a, ent-14c, ent-15c and ent-14d by 

annexin V / PI double staining. Annexin V-positive and PI-negative A427 cells after 

treatment with ent-14a (5.6 µM), ent-14c (3.4 µM), ent-15c (8.7 µM), and ent-14d 

(7.4 µM) for 24 h and 48 h, respectively. Apoptosis was evaluated by flow cytometry 

by determining the percentage of annexin V-positive, PI-negative cells. Results 

expressed as mean ± SD [µM] of at least three independent experiments. 

Doxorubicin (0.5 µM for 24 h, 0.1 µM for 48 h) as positive control, 0.1 % (v/v) DMSO 

as solvent negative control. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p < 0.0001 (two-

way ANOVA followed by Dunnett’s multiple comparisons test by using GraphPad 

Prism, GraphPad Software)  

 

 

Molecular simulations 

With the purpose of explaining the interactions between this new series of bridged 

piperazines and the σ1 receptor at the molecular level, all derivatives were docked in 

the binding site of our 3D homology model38,40,57 and the corresponding 

M
ed

ium

0.
1 

%
 D

M
SO

0.
5 

µM
 D

ox
or

ub
ici

n

en
t-1
4a

en
t-1
4c

en
t-1
5c

en
t-1
4dA

p
o
p
to
ti
c
 (
a
n
n
e
x
in
 V
-p
o
s
.)
 c
e
ll
s
 [
%
]

****

**

M
ed

ium

0.
1 

%
 D

M
SO

0.
1 

µM
 D

ox
or

ub
ici

n

en
t-1
4a

en
t-1
4c

en
t-1
5c

en
t-1
4d

****

*** ***

****
****

Page 21 of 48

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22 

 

ligand/protein free energies of binding (∆Gbind)
58-61 were evaluated by applying a 

molecular dynamics (MD)-based scoring procedure in the framework of the so-called 

Molecular Mechanics/Poisson-Boltzannn Surface Area (MM/PBSA) approach.62 

Further, we performed a per-residue decomposition of the enthalpic component of 

∆Gbind
58-61 in order to quantitatively identify contribution afforded by the σ1 amino 

acids mainly involved in binding these bicyclic compounds.  

 

The analysis of the MD trajectories reveals that the new derivatives can establish a 

series of intermolecular interactions quite similar to those previously detected for the 

more flexible (ω-hydroxyalkyl)piperazines 1 and 3.40 Actually, all new synthesized σ1 

ligands can bind their target receptor by exploiting four highly specific molecular 

determinants, schematically represented in Figure 3A. In details, the 

cyclohexylmethyl substituent at N-2 of the diazabicyclic system is encased in the 

hydrophobic pocket generated by the σ1 residues Ile128, Phe133, Tyr173, and 

Leu186, thereby establishing favorable, hydrophobic interactions with their side 

chains. The basic N-arylmethyl nitrogen atom (N-5) is engaged in a permanent salt 

bridge with the carboxylic group of Asp126 whilst the different arylmethyl moieties, 

common to all these new derivatives, are anchored in place by stabilizing π-type 

interactions. Specifically, residues Arg119 and Tyr120 are involved in receptor/ligand 

π-cation and π-π interactions, respectively (see Figure 3A). Finally, the hydroxy 

substituent present on one of the three chiral carbon atoms of the diazabicyclic 

scaffold plays an important functional group in the structure of these new molecules. 

Indeed, it serves as a hydrogen bond acceptor, the donor counterpart being the –OH 

group of the Thr181 side chain. The general binding mode of the new ligands 
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described above is portrayed in details in Figure 3B, taking compound 14d as a 

proof-of-concept. 

 

Figure 3. (A) 2D schematic representation of the identified interactions between the 

3D homology model of the σ1 receptor and the bicyclooctane(-nonane) compounds 

synthesized in this work. The lines/arrows indicate key interactions between the 

receptor and its ligand. (B) Equilibrated MD snapshot of the complex of the σ1 

receptor with compound 14d. The main protein residues involved in these 

interactions are Arg119 and Tyr120 (π-interactions, cyan), Asp126 (salt bridge, red), 

Ile128, Phe133, Tyr173, and Leu186 (hydrophobic interactions, purple), and Thr181 

(hydrogen bond, green). Compound 14d is shown in atom-colored sticks-and-balls 

(C, gray; N, blue; and O, red). H atoms are omitted, but the salt bridge and the H-

bond are indicated as black dotted lines. Water molecules, ions, and counterions are 

not shown for clarity. 
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Table 3. MM/PBSA calculated binding enthalpy (∆Hbind), binding entropy (-T∆Sbind), 

binding free energy (∆Gbind), and the calculated Ki values for all compounds 

considered in this work. The corresponding experimental values (Table 1) are also 

shown in the last column for comparison. 

 
∆Hbind 

[kcal/mol] 
-T∆Sbind 

[kcal/mol] 
∆Gbind 

[kcal/mol] 

σ1 
(calcd) 
Ki [nM]a) 

σ1 (hum) 

Ki ± SEM [nM] 

3a -22.19 (0.16) -12.01 (0.28) -10.18 (0.32) 21 21 ± 4.0 

3b -17.44 (0.15) -10.40 (0.31) -7.04 (0.34) 6900 n.d. 

3c -23.34 (0.17) -12.62 (0.27) -10.72 (0.43) 14 29 ± 10 

3d -23.31 (0.18) -13.02 (0.29) -10.29 (0.34) 29 34 ± 8.0 

14a -20.68 (0.21) -10.15 (0.28) -10.53 (0.35) 19 3.2 ± 0.4 

15a -20.63 (0.16) -10.18 (0.29) -10.45 (0.33) 22 2.4 ± 0.2 

ent-14a -20.90 (0.17) -10.09 (0.31) -10.81 (0.35) 12 2.8 ± 1.0 

ent-15a -21.14 (0.21) -10.21 (0.27) -10.93 (0.34) 9.7 1.6 ± 0.4 

14b -17.45 (0.20) -9.99 (0.30) -7.46 (0.38) 3400 23%d) 

15b -17.27 (0.19) -9.86 (0.34) -7.41 (0.39) 3700 n.d. 

14c -21.52 (0.16) -10.33 (0.28) -11.19 (0.32) 6.3 13 ± 5.0 

15c -21.25 (0.18) -10.24 (0.29) -11.01 (0.34) 8.5 7.2 ± 3.9 

ent-14c -21.80 (0.22) -10.42 (0.26) -11.38 (0.34) 4.6 38 ± 3.0 

ent-15c -21.85 (0.21) -10.39 (0.29) -11.46 (0.36) 4.0 6.0 ± 2.0 

14d -21. 21 (0.18) -10.53 (0.30) -10.68 (0.35) 15 27 ± 9.0 

15d -21.02 (0.21) -10.46 (0.28) -10.56 (0.35) 18 73 ± 6.0 

ent-14d -20.54 (0.15) -10.21 (0.28) -10.33 (0.31) 27 27 ± 5.0 

ent-15d -21.02 (0.17) -10.78 (0.31) -10.24 (0.35) 31 24 ± 6.0 

22a -20.51 (0.23) -10.01 (0.29) -10.50 (0.37) 20 6.4 ± 0.9 

23a -20.58 (0.19) -9.98 (0.27) -10.60 (0.33) 17 2.2 ± 1.1 
a)The σ1 Ki values were obtained from the corresponding ∆Gbind values using the 

relationship: ∆Gbind = -RT ln Ki. 
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The MM/PBSA estimated values of the free energy of binding ∆Gbind shown in Table 

3 confirm that all bicyclic derivatives – with the notable exception of the N-methyl 

substituted molecules 3b, 14b and 15b (vide infra) - are endowed with high affinity 

toward the σ1 receptor, since the extrapolated σ1 Ki values are in nanomolar range.  

 

The per residue deconvolution of the enthalpic contribution to ligand binding, ∆Hbind, 

allows to derive two further, important structural considerations about this new series 

of compounds within the receptor binding site: the role of a bulky cycloalkyl 

substituent and the absolute configuration related to the specific stereochemistry of 

these molecules. 

 

Concerning the first point, the replacement of the cyclohexylmethyl moiety with the 

considerably smaller methyl group in compounds 14b and 15b leads to a dramatic 

decrease in the relevant σ1 affinity, quantified by a three orders of magnitude 

plummet in the corresponding σ1 Ki values (Tables 1 and 3). The reasons for this 

behavior can be directly attributed to the reduced efficiency of the methyl substituent, 

with respect to the bulkier cyclohexyl moiety, in generating substantial hydrophobic 

connection with the residues lining the receptor binding pocket. This is clearly 

supported by the relevant interaction spectra shown in Figure 4. De facto, the 

favorable interactions between the cyclohexyl group and the side chains of Ile128, 

Phe133, Tyr173, and Leu186 amount to ~ 3.5 kcal/mol for the corresponding 

derivatives while, in the presence of the methyl group, the same interactions barely 

afford an energetic stabilization to the receptor/ligand complex of 0.75 kcal/mol. This, 

in turn, exerts a negative effect on global binding conformation of derivatives 14b and 

15b, ultimately resulting in a general decrement of all enthalpic contributions to ligand 

binding (Figure 4). In addition, the same analysis confirms that the addition of one 
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methylene moiety in the cyclic structure (i.e., the diazabicyclononane derivatives 22a 

and 23a) does not result in any significant advantage in the binding of these 

compounds with the σ1 receptor, as they exhibit an interaction profile utterly similar to 

those characterizing the diazabicyclooctane counterparts. 

 

 

Figure 4. Per residue binding enthalpy decomposition (interaction spectra) for 

compounds 14a-d and 22a in complex with the σ1 receptor. Only those σ1 amino 

acids involved in major intermolecular interactions (see Figure 3) are displayed for 

simplicity. Legend abbreviations: π = π-type interactions; SB = salt bridge; HB = 

hydrogen bond; HI = hydrophobic interactions. 

 

Our MD simulation results confirm all present and previous experimental 

observations regarding the stereochemistry issue: indeed, the flexible nature of the 

σ1 binding site enables the receptor to easily and efficiently accommodate each 

configuration of enantiomeric ligands when these result in small modifications in the 

orientation of the molecular pharmacophore requirements. Figure 5A clearly shows 

the obvious similarity in the equilibrated binding poses of the diastereomeric 

compounds 14d and 15d, according to which the relative position of the hydroxy 

group is practically irrelevant. 
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Figure 5. (A) Overlay of binding modes of diastereomers 14d (orange) and 15d (blue) 

in the binding pocket of the σ1 receptor (colored transparent ribbons). The two 

ligands are shown as colored sticks-and-balls, whereas the main interacting residues 

are shown as colored sticks and labelled. Hydrogen atoms, ions, counterions and 

water molecules are omitted for clarity. (B) Per residue binding enthalpy 

decomposition (interaction spectra) for compounds 14d, ent-14d, 15d, and ent-15d in 

complex with the σ1 receptor. Only those σ1 amino acids involved in major 

intermolecular interactions (see Figures 3 and 4) are shown for simplicity. Legend 

abbreviations: π = π-type interactions; SB = salt bridge; HB = hydrogen bond; HI = 

hydrophobic interactions. 

 

Quantitatively speaking, also the corresponding enantiomers ent-14d and ent-15d do 

not display significant differences upon binding to the receptor. In fact, according to 

the corresponding interaction spectra shown in Figure 5B, all four specific molecular 

determinants required for stabilizing the relevant σ1 receptor/ligand complexes are 

practically not affected as concerns their enthalpic contribution to binding. 

 

Notably, however, even if the new, conformationally more constrained piperazine 

compounds overall seem to be as potent as the more flexible, monocyclic 

compounds with respect to σ1 receptor affinity, this similar behavior is the result of an 

underlying enthalpy-entropy compensation effect. In fact, as shown in Figure 6, the 

presence of a substantially more rigid scaffold in the bicyclic derivatives reflects in a 

less negative (i.e., more favorable) entropic binding component (-T∆Sbind), of ~ 2 

kcal/mol compared to the monocyclic compounds 3a, 3c and 3d. On the other hand, 
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diazabicyclooctanes 14a,c,d and 15a,c,d binding in the low nanomolar range (Ki ≤ 23 

nM) at σ1 receptors. The high σ1 affinity of the cyclohexylmethyl derivatives is 

explained by favorable interactions of the cyclohexyl group with the side chains of 

Ile128, Phe133, Tyr173, and Leu186, which amount to ~ 3.5 kcal/mol of binding 

enthalpy. Interaction of these residues with the small methyl moiety affords only a 

binding enthalpy of 0.75 kcal/mol, reflecting the reduced affinity. The stereochemistry 

of the bicyclic compounds has only limited influence on σ1 receptor binding. 

Molecular dynamics calculations confirm the adaptation of the flexible σ1 receptor 

binding site to stereoisomeric bicyclic ligands resulting in similar binding poses. In 

particular the orientation of the -OH moiety in the stereoisomers is practically 

irrelevant. The conformationally restricted derivatives 14a,c,d and 15a,c,d reveal the 

same or slightly reduced σ1 affinity as their flexible monocyclic counterparts 3a,c,d. 

The similar σ1 affinities are the result of an enthalpy-entropy compensation effect. 

Whereas the entropic binding component of the bicyclic compounds is increased (~ 2 

kcal/mol) the enthalpic component is reduced by approx. the same amount, resulting 

in comparable binding free enthalpies for both series of ligands.  

 

In order to analyze species differences of σ1 receptors, membrane preparations 

obtained from peripheral blood human myeloma cell line RPMI 8226 were used as 

receptor material in an additional assay and the data were compared with data 

recorded in the standard guinea pig brain σ1 assay. In general the affinity data 

recorded in both assays are well comparable, which reflects the 93% sequence 

identity of human and guinea pig σ1 receptors (see Figure S2). The small differences 

between the values recorded in the assays could be due to the assay conditions. The 

data recorded in the RPMI 8226 assay are of particular impact since all the molecular 
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dynamics simulations described herein were performed with the human σ1 receptor 

protein. 

 

The growth inhibition of the bicyclic ligands 14, 15, 22a and 23a against seven 

human tumor cell lines was investigated. A selective inhibition of the growth of the 

human small cell lung cancer line A427 was observed, indicating a common 

mechanism of action. As shown for hydroxyethylpiperazines of type 3 (see Figure 1), 

the bicyclic ligands induce apoptosis. The biphenylylmethyl derivative ent-14d was 

the most effective and fastest inducer of apoptosis in A427 cell lines. Although a 

clear correlation between the growth inhibition and the σ1 affinity could not be 

detected, some common tendencies were found. The most affine σ1 ligand ent-15c 

(Ki(gp) = 0.5 nM; Ki(human) = 6.0 nM) shows high inhibition of the A427 cell growth 

as well (IC50 = 4.3 µM). On the other hand, the very potent antiproliferative 

compounds 14c and 14d display high σ1 affinity with Ki values of 13 nM and 27 nM, 

respectively, in the human RPMI8226 σ1 assay. The antiproliferative effect of the 

bicyclic compounds supports the σ1 antagonistic activity of this compound class. 

 

Experimental Part 

Chemistry, general  

Thin layer chromatography: Silica gel 60 F254 plates (Merck). Flash chromatography 

(fc): Silica gel 60, 40–43 µm (Merck); parentheses include: diameter of the column, 

eluent, Rf value. In order to obtain high yields some compounds were adsorbed on 

silica gel by addition of silica gel to a solution of the compound in an appropriate 

solvent, removal of the solvent in vacuo and giving the mixture on top of the column. 

Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. 1H 

NMR (600 MHz, 400 MHz), 13C NMR (151 MHz, 100 MHz): Agilent 600-MR, Agilent 
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400-MR and Mercury Plus AS 400 NMR spectrometer (Varian); δ in ppm related to 

tetramethylsilane; coupling constants are given with 0.5 Hz resolution; the 

assignments of 13C and 1H NMR signals were supported by 2D NMR techniques. The 

purity of all compounds was determined by HPLC analysis. HPLC (method ACN): 

Merck Hitachi Equipment; UV detector: L-7400; autosampler:L-7200; pump: L-7100; 

degasser: L-7614; column: LiChrospher® 60 RP-select B (5 µm); LiCroCART® 250-4 

mm cartridge; flow rate: 1.0 mL/min; injection volume: 5.0 µL; detection at λ = 210 

nm; solvent A: demineralized H2O with 0.05% (v/v) trifluoroacetic acid; solvent B: 

acetonitrile with 0.05% (v/v) trifluoroacetic acid: gradient elution (% A): 0-4 min: 

90.0%; 4-29 min: gradient from 90% to 0%; 29-31 min: 0%; 31-31.5 min: gradient 

from 0% to 90.0%; 31.5-40 min: 90%. According to HPLC analysis the purity of all 

test compounds is >95%. 

 

(S)-2-[1-Benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]-N-methoxy-N-

methylacetamide (9a) 

N,O-Dimethylhydroxylamine hydrochloride (393 mg, 4.0 mmol) was dissolved in 

CH2Cl2 abs (12 mL) and cooled to 0 °C. Trimethylaluminium solution (2 M in toluene, 

2 mL, 4.0 mmol) was added and the mixture was stirred at room temperature for 30 

min. Then a solution of 8a (500 mg, 1.3 mmol) in CH2Cl2 abs (5 mL) was added and 

the reaction mixture was stirred for 5 h at room temperature. For work-up, the mixture 

was filled up with aqueous sodium potassium tartrate solution (10%, 7 mL) and 

stirred for additional 1 h. The resulting suspension was filtered through Celite and 

washed with CH2Cl2 for several times. The filtrate was concentrated under reduced 

pressure and the residue was purified by fc (∅ 3 cm, h = 18 cm, v = 20 mL, 

C6H12/EtOAc = 1/1, Rf = 0.12). Colorless solid, mp 92 – 95 °C, yield 340 mg (63%). 

C22H31N3O4, Mr = 401.4. 1H NMR (CDCl3): δ = 0.89-1.00 (m, 2H, NCH2C6H11), 1.12-
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1.29 (m, 3H, NCH2C6H11), 1.61-1.71 (m, 6H, NCH2C6H11), 2.95 (dd, J = 17.7, 3.8 Hz, 

1H, CHCH2CON(OCH3)CH3), 3.06 (dd, J = 17.7, 3.8 Hz, 1H, 

CHCH2CON(OCH3)CH3), 3.13 (dd, J = 13.5, 7.3 Hz, 1H, NCH2C6H11), 3.16 (s, 3H, 

NCH3), 3.22 (dd, J = 13.5, 6.9 Hz, 1H, NCH2C6H11), 3.46 (s, 3H, NOCH3), 3.92 (d, J = 

17.0 Hz, 1H, O=CCH2N), 4.15 (t, J = 3.9 Hz, 1H, CHCH2C ON(OCH3)CH3, 4.40 (d, J 

= 15.4 Hz, 1H, NCH2Ar), 4.42 (d, J = 16.9 Hz, 1H, O=CCH2N), 4.91 (d, J = 15.1 Hz, 

1H, NCH2Ar), 7.19-7.36 (m, 5H, Ar-H).  

 

(S)-2-[1-Benzyl-4-(cyclohexylmethyl)-3,6-dioxopiperazin-2-yl]acetaldehyde (11a)  

Under N2, 9a (200 mg, 0.50 mmol) was dissolved in THF abs. (10 mL) and cooled 

down to -78°C. At this temperature, 1.5 equivalents of LiAlH4 solution (1 M in THF, 

0.75 ml, 0.75 mmol) were added slowly and the mixture was stirred for 16 h. For 

work-up, the mixture was treated with HCl (1 M, 6 mL) and warmed to room 

temperature. The aqueous layer was extracted with Et2O (5 x 10 mL). The combined 

organic layers were dried (Na2SO4) and the solvent was removed in vacuo (H2O bath 

temperature ≤ 30 °C). The crude product was purified by fc (∅ 3 cm, h = 20 cm, v = 

20 mL, C6H12/EtOAc = 1/1, Rf = 0.23). Colorless solid, mp 99 – 102 °C, yield 109 mg 

(64%). C20H26N2O3, Mr = 342.4. 1H NMR (CDCl3): δ = 0.90-0.98 (m, 2H, NCH2C6H11), 

1.00 – 1.22 (m, 3H, NCH2C6H11), 1.64-1.75 (m, 6H, NCH2C6H11), 2.92 (ddd, J = 18.7, 

5.1, 0.9 Hz, 1H, CHCH2CHO), 3.08 (dd, J = 18.6, 4.0 Hz, 1H, CHCH2CHO), 3.16 (dd, 

J = 13.5, 6.8 Hz, 1H, NCH2C6H11), 3.30 (dd, J = 13.5, 7.8 Hz, 1H, NCH2C6H11), 3.96 

(d, J = 17.3 Hz, 1H, O=CCH2N), 4.12 (t, J = 4.5 Hz, 1H, CHCH2CHO), 4.35 (d, J = 

15.1 Hz, 1H, NCH2Ar), 4.42 (d, J = 17.2 Hz, 1H O=CCH2N), 4.89 (d, J = 15.2 Hz, 1H, 

NCH2Ar), 7.20-7-35 (m, 5H, Ar-H), 9.52 (s, 1H, CHO).  
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(1S,4S,7R)-5-Benzyl-2-(cyclohexylmethyl)-7-methoxy-7-(trimethylsilyloxy)-2,5-

diazabicyclo[2.2.2]octane-3,6-dione (12a) 

Under N2, 8a (2.68 g, 7.2 mmol) was dissolved in THF abs (50 mL) and the mixture 

was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in 

THF (21.6 mL, 21.6 mmol) was added dropwise. After stirring at -78 °C for 40 min, 

the mixture was treated with chlorotrimethylsilane (2.27 mL, 18.0 mmol) and stirred 

for additional 1 h at -78 °C and at room temperature for 2 h. Then, an aqueous 

solution of NaHCO3 (35 mL) was added and the mixture was extracted with CH2Cl2 

(3 x 25 mL). The combined organic layers were dried (Na2SO4), filtered and 

concentrated in vacuo. The residue was adsorbed on silica gel and given on a silica 

column (∅ 5.5 cm, h = 20 cm, v = 65 mL, C6H12/EtOAc = 4/1, Rf = 0.39). Colorless 

solid, mp 138 – 141 °C, yield 540 mg (17%). C24H36N2O4Si, Mr = 444.5. 1H NMR 

(CDCl3): δ = 0.20 (s, 9H, OSi(CH3)3), 0.85-0.96 (m, 2H, NCH2C6H11), 1.08-1.27 (m, 

3H, NCH2C6H11), 1.51-1.72 (m, 6H, NCH2C6H11), 1.84 (dd, J = 13.6, 3.9 Hz, 1H, 8-H), 

2.07 (dd, J = 13.6, 2.0 Hz, 1H, 8-H), 2.74 (dd, J = 13.8, 6.6 Hz, 1H, NCH2C6H11), 3.21 

(s, 3H, OCH3), 3.60 (dd, J = 13.8, 7.7 Hz, 1H, NCH2C6H11), 3.82 (dd, J = 3.9, 2.0 Hz, 

1H, 4-H), 3.95 (s, 1H, 1-H), 4.25 (d, J = 14.8 Hz, 1H, NCH2Ar), 4.83 (d, J = 14.8 Hz, 

1H, NCH2Ar), 7.24-7.34 (m, 5H, Ar-H). 

 

(1S,4S)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octane-3,6,7-

trione (13a) 

12a (450 mg, 1.0 mmol) was dissolved in a mixture of THF/0.5 M HCl (9/1, 150 mL) 

and the reaction mixture was stirred for 16 h at room temperature. For work-up, H2O 

was added (12 mL) and the mixture was extracted with CH2Cl2 (3 x 25 mL). The 

combined organic layers were dried (Na2SO4), filtered and the solvent was removed 

in vacuo. The residue was adsorbed on silica gel and given on a silica column (∅ 3 
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cm, h = 18 cm, v = 20 mL, C6H12/EtOAc = 3/2, Rf = 0.23). Colorless solid, mp 151 – 

155 °C, yield 339 mg (99%). C20H24N2O3, Mr = 340.4. 1H NMR (CDCl3): δ = 0.84-0.95 

(m, 2H, NCH2C6H11), 1.07-1.25 (m, 3H, NCH2C6H11), 1.51-1.71 (m, 6H, NCH2C6H11), 

2.20 (dd, J = 18.6, 3.3 Hz, 1H, 8-H), 2.52 (dd, J = 18.5, 2.1 Hz, 1H, 8-H), 3.16 (dd, J 

= 13.9, 6.9 Hz, 1H, NCH2C6H11), 3.36 (dd, J = 13.9, 6.8 Hz, 1H, NCH2C6H11), 4.11 

(dd, J = 3.3, 2.1 Hz, 1H, 4-H), 4.21 (s, 1H, 1-H), 4.37 (d, J = 14.6 Hz, 1H, NCH2Ar), 

4.89 (d, J = 14.6 Hz, 1H, NCH2Ar), 7.23-7.33 (m, 5H, Ar-H).  

 

(1R,4S,7S)-5-Benzyl-2-(cyclohexylmethyl)-2,5-diazabicyclo[2.2.2]octan-7-ol 

(14a) and (1R,4S,7R)-5-Benzyl-2-(cyclohexylmethyl)-2,5-

diazabicyclo[2.2.2]octan-7-ol (15a) 

13a (310 mg, 0.91 mmol) was dissolved in THF abs. (30 mL) and the mixture was 

cooled down to 0 °C. At this temperature, LiAlH4 solution (1M in THF, 5.46 mL, 5.46 

mmol) was added. The reaction mixture was stirred at 0 °C for 10 min and then 

heated to reflux for 16 h. Finally H2O was added under ice-cooling until H2-liberation 

was finished. The mixture was stirred at 0 °C for 10 min and then heated to reflux for 

30 min. After cooling to room temperature, the mixture was filtered and the solvent 

was removed in vacuo. The crude product was purified by fc (∅ 3 cm, h = 20 cm, v = 

10 mL, C6H12/EtOAc = 9.5/0.5 + 0.5% N,N-dimethylethylamine). C20H30N2O, Mr = 

314.5.  

14a: (Rf = 0.49). Colorless solid, mp 68 – 72 °C, yield 45.8 mg (16%). 1H NMR 

(CDCl3): δ = 0.84-0.94 (m, 2H, NCH2C6H11), 1.14-1.29 (m, 4H, NCH2C6H11), 1.38-

1.43 (m, 2H, NCH2C6H11, 8-H), 1.68-1.74 (m, 4H, NCH2C6H11), 1.87 (d, J = 13.5 Hz, 

1H, O-H), 2.29 (dd, J = 11.8, 8.8 Hz, 1H, NCH2C6H11), 2.37-2.44 (m, 1H, 8-H), 2.51-

2.55 (m, 2H, NCH2C6H11, 4-H), 2.58-2.62 (m, 2H, NCH2, 1-H), 2.72 (dt, J = 10.2, 2.2 

Hz, 1H, NCH2), 2.98, 3.07 (m, 2H, NCH2), 3.60 (d, J = 13.4 Hz, 1H, NCH2Ar), 3.64 (d, 
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J = 13.1 Hz, 1H, NCH2Ar), 3.92 (dt, J = 8.8, 2.8 Hz, 1H, 7-H), 7.21-7.36 (m, 5H, Ar-

H).  

15a: (Rf = 0.36). Colorless oil, yield 119.7 mg (42%). 1H NMR (CDCl3): δ = 0.78-0.91 

(m, 2H, NCH2C6H11), 1.13-1.20 (m, 3H, NCH2C6H11), 1.31-1.42 (m, 1H, NCH2C6H11), 

1.65-1.80 (m, 6H, NCH2C6H11, 8-H), 2.10 (ddd, J = 13.7, 8.8, 1.7 Hz, 1H, 8-H), 2.34 

(dd, J = 11.8, 6.7 Hz, 1H, NCH2C6H11), 2.41 (dd, J = 11.8, 6.7 Hz, 1H, NCH2C6H11), 

2.62-2.65 (m, 2H, NCH2, 4-H), 2.66-2.69 (m, 1H, 1-H), 2.74-2.78 (m, 2H, NCH2), 3.08 

(dd, J = 10.8, 2.9 Hz, 1H, NCH2), 3.64 (d, J = 14.0 Hz, 1H, NCH2Ar), 3.67 (d, J = 13.7 

Hz, 1H, NCH2Ar), 4.03-4.07 (m, 1H, 7-H), 7.21-7.35 (m, 5H, Ar-H). The signal for the 

proton of the OH group is not seen. 

 

(1S,2R,5S)-6-Benzyl-8-(cyclohexylmethyl)-2-methoxy-2-(trimethylsilyloxy)-6,8-

diazabicyclo[3.2.2]nonane-7,9-dione (20) 

Under N2, 19 (980 mg, 2.5 mmol) was dissolved in THF abs (50 mL) and the mixture 

was cooled down to -78 °C. Then a 1 M solution of sodium hexamethyldisilazane in 

THF (7.6 mL, 7.6 mmol) was added dropwise. After stirring at -78 °C for 40 min, the 

mixture was treated with chlorotrimethylsilane (0.8 mL, 6.3 mmol) and stirred for 

additional 1 h at -78 °C and at room temperature for 2 h. Then an aqueous solution of 

NaHCO3 (20 mL) was added and the mixture was extracted with CH2Cl2 (3 x 15 mL). 

The combined organic layers were dried (Na2SO4), filtered and concentrated in 

vacuo. The residue was adsorbed on silica gel and given on a silica column (∅ 5 cm, 

h = 22 cm, v = 65 mL, C6H12/EtOAc = 8.5/1.5, Rf = 0.22). Colorless solid, mp 112 – 

113 °C, yield 698 mg (61%). C25H38N2O4Si, Mr = 458.7. 1H NMR (CDCl3): δ = 0.21 (s, 

9H, OSi(CH3)3), 0.86-0.99 (m, 2H, NCH2C6H11, 3-H, 4-H), 1.13-1.26 (m, 3H, 

NCH2C6H11, 3-H, 4-H), 1.45-1.51 (m, 1H, NCH2C6H11, 3-H, 4-H), 1.55-1.75 (m, 6H, 

NCH2C6H11, 3-H, 4-H), 1.80-1.89 (m, 3H, NCH2C6H11, 3-H, 4-H), 2.69 (dd, J = 13.6, 
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6.3 Hz, 1H, NCH2C6H11), 3.24 (s, 3H, OCH3), 3.77 (dd, J = 13.7, 7.7 Hz, 1H, 

NCH2C6H11), 3.81-3.83 (m, 1H, 5-H), 3.95 (s, 1H, 1-H), 4.41 (d, J = 14.6 Hz, 1H, 

NCH2Ar), 4.66 (d, J = 14.7 Hz, 1H, NCH2Ar), 7.23-7.32 (m, 5H, Ar-H).  

 

(1S,5S)-6-Benzyl-8-(cyclohexylmethyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9-

trione (21) 

20 (500 mg, 1.1 mmol) was dissolved in a mixture of THF/0.5 M HCl (9/1, 70 mL) and 

the reaction mixture was stirred for 16 h at room temperature. For work-up, H2O was 

added (12 mL) and the mixture was extracted with CH2Cl2 (3 x 25 mL). The 

combined organic layers were dried (Na2SO4), filtered and the solvent was removed 

in vacuo. The residue was adsorbed on silica gel and given on a silica column (∅ 3 

cm, h = 16 cm, v = 20 mL, C6H12/EtOAc = 7/3, Rf = 0.16). Colorless solid, mp 135- - 

140 °C, yield 354.7 mg (91%). C21H26N2O3, Mr = 354.4. 1H NMR (CDCl3): δ = 0.87-

1.02 (m, 2H, NCH2C6H11), 1.12-1.26 (m, 3H, NCH2C6H11), 1.54-1.73 (m, 6H, 

NCH2C6H11), 2.82-2.34 (m, 1H, 4-H), 2.46-2.51 (m, 1H, 4-H), 2.48 (ddd, J = 15.6, 7.2, 

4.3 Hz, 1H, 3-H), 2.74 (dt, J = 15.6, 8.4 Hz, 1H, 3-H), 2.92 (dd, J = 13.8, 6.5 Hz, 1H, 

NCH2C6H11), 3.61 (dd, J = 13.8, 7.4 Hz, 1H, NCH2C6H11), 4.05 (dd, J = 4.2, 3.2 Hz, 

1H, 5-H), 4.22 (s, 1H, 1-H), 4.55 (d, J = 14.6 Hz, 1H, NCH2Ar), 4.70 (d, J = 14.6 Hz, 

1H, NCH2Ar), 7.24-7.37 (m, 5H, Ar-H).  

 

(1R,2S,5S)-6-Benzyl-8-(cyclohexylmethyl)-6,8-diazabicyclo[3.2.2]nonan-2-ol 

(22a) and (1R,2R,5S)-6-Benzyl-8-(cyclohexylmethyl)-6,8-

diazabicyclo[3.2.2]nonan-2-ol (23a) 

21 (340 mg, 0.96 mmol) was dissolved in THF abs. (30 mL) and the mixture was 

cooled down to 0 °C. At this temperature, LiAlH4 solution (1M in THF, 5.8 mL, 5.8 

mmol) was added. The reaction mixture was stirred at 0 °C for 10 min and then 
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heated to reflux for 16 h. Finally H2O was added under ice-cooling until H2-liberation 

was finished. The mixture was stirred at 0 °C for 10 min and then heated to reflux for 

30 min. After cooling to room temperature, the mixture was filtered and the solvent 

was removed in vacuo. The crude product was purified by fc (∅ 2 cm, h = 25 cm, v = 

10 mL, C6H12/EtOAc = 9.5/0.5). C21H32N2O, Mr = 328.5.  

22a: (Rf = 0.30). Colorless oil, yield 69.4 mg (22%). 1H NMR (CDCl3): δ = 0.87-0.96 

(m, 2H, NCH2C6H11), 1.14-1.27 (m, 4H, NCH2C6H11), 1.46-1.53 (m, 1H, NCH2C6H11), 

1.57-1.79 (m, 7H, NCH2C6H11 (4H), 3-H, 4-H, O-H), 1.88-1.93 (m, 1H, 3-H or 4-H), 

2.10 – 2.17 m, 1H, 3-H or 4-H), 2.25 (t, J = 10.4 Hz, 1H, NCH2C6H11), 2.62-2.69 (m, 

3H, NCH2C6H11, NCH2, 1-H), 2.72-2.92 (m, 4H, 5-H, NCH2), 3.70 (s, broad, 2H, 

NCH2Ar), 3.79-3.82 (m, 1H, 2-H), 7.21-7.34 (m, 5H, Ar-H).  

23a: (Rf = 0.14). Colorless oil, yield 131.6 mg (42%). 1H NMR (CDCl3): δ = 0.81-0.92 

(m, 2H, NCH2C6H11), 1.17-1.26 (m, 3H, NCH2C6H11), 1.33-1.43 (m, 1H, NCH2C6H11), 

1.64-1.85 (m, 9H, NCH2C6H11 (5H), 3-H, 4-H (2H), O-H), 2.14-2.21 (m, 1H, 3-H), 

2.31-2.40 (m, 2H, NCH2C6H11), 2.72-2.80 (m, 4H, NCH2, 1-H), 2.86-2.89 (m, 1H, 5-

H), 3.11-3.14 (m, 1H, NCH2), 3.72 (d, J = 13.3 Hz, 1H, NCH2Ar), 3.77 (d, J = 13.4 Hz, 

1H, NCH2Ar), 4.02-4.06 (m, 1H, 2-H), 7.26-7.40 (m, 5H, Ar-H). 

 

Receptor binding studies 

The affinity towards σ1 and σ2 receptors was recorded as described in references 48-

51 and 53. 

 

Molecular Modeling 

The optimized structure of selected compounds 14, 15, 22a, and 23a was docked 

into the σ1-R putative binding pockets by applying a consolidated procedure.38-40,57-61 

All docking experiments were performed with Autodock 4.2/Autodock Tools 1.4.663 
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on a win64 platform. The resulting docked conformations were clustered and 

visualized; then, for each compound, only the molecular conformation satisfying the 

combined criteria of having the lowest (i.e., more favorable) Autodock energy and 

belonging to a highly populated cluster was selected to carry for further modeling. 

 

The ligand/σ1-R complex obtained from the docking procedure was further refined in 

Amber 1464 using the quenched molecular dynamics (QMD) method as previously 

described.58,60,61 According to QMD, the best energy configuration of each complex 

resulting from this step was subsequently solvated by a cubic box of TIP3P I H2O 

molecules extending at least 10 Å in each direction from the solute. The system was 

neutralized and the solution ionic strength was adjusted to the physiological value of 

0.15 M by adding the required amounts of Na+ and Cl- ions. Each solvated system 

was relaxed by 500 steps of steepest descent followed by 500 other conjugate-

gradient minimization steps and then gradually heated to a target temperature of 300 

K in intervals of 50 ps of NVT MD, using a Verlet integration time step of 1.0 fs. The 

Langevin thermostat was used to control temperature, with a collision frequency of 

2.0 ps-1. The protein was restrained with a force constant of 2.0 kcal/(mol Å), and all 

simulations were carried out with periodic boundary conditions. Subsequently, the 

density of the system was equilibrated via MD runs in the isothermal−isobaric (NPT) 

ensemble, with isotropic position scaling and a pressure relaxation time of 1.0 ps, for 

50 ps with a time step of 1 fs. All restraints on the protein atoms were then removed, 

and each system was further equilibrated using NPT MD runs at 300 K, with a 

pressure relaxation time of 2.0 ps. Three equilibration steps were performed, each 2 

ns long and with a time step of 2.0 fs. To check the system stability, the fluctuations 

of the rmsd of the simulated position of the backbone atoms of the σ1 receptor with 

respect to those of the initial protein were monitored. All physicochemical parameters 
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and rmsd values showed very low fluctuations at the end of the equilibration process, 

indicating that the systems reached a true equilibrium condition. 

 

The equilibration phase was followed by a data production run consisting of 40 ns of 

MD simulations in the canonical (NVT) ensemble. Only the last 20 ns of each 

equilibrated MD trajectory were considered for statistical data collections. A total of 

1000 trajectory snapshots were analyzed for each ligand/receptor complex. 

 

The binding free energy, ∆Gbind, between the two ligands and the σ1 receptor was 

estimated by resorting to the MM/PBSA approach implemented in Amber 14. 

According to this well-validated methodology.38-40,57-61 the free energy was calculated 

for each molecular species (complex, receptor, and ligand), and the binding free 

energy was computed as the difference: 

∆Gbind = Gcomplex – (Greceptor + Gligand) = ∆EMM + ∆Gsol – T∆S 

in which ∆EMM represents the molecular mechanics energy, ∆Gsol includes the 

solvation free energy and T∆S is the conformational entropy upon ligand binding. 

The per residue binding free energy decomposition was performed exploiting the MD 

trajectory of each given compound/σ1-R complex, with the aim of identifying the key 

residues involved in the ligand-receptor interaction. This analysis was carried out 

using the MM/GBSA approach,65,67 and was based on the same snapshots used in 

the binding free energy calculation. 

 

All simulations were carried out using the Pmemd modules of Amber 14, running on 

our own CPU/GPU hybrid calculation cluster. The entire MD simulation and data 

analysis procedure was optimized by integrating Amber 14 in modeFRONTIER, a 

multidisciplinary and multiobjective optimization and design environment.68 
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cytotoxicity assay, induction of apoptosis and of the molecular modeling methods. 
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