
 Procedia Computer Science 60 (2015) 613 – 622

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2015.08.195

ScienceDirect

19th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems

Approximation to expected support of frequent itemsets

in mining probabilistic sets of uncertain data

Alfredo Cuzzocreaa, Carson K. Leungb,∗, Richard Kyle MacKinnonb

aDept. of Engineering and Architecture (DIA), University of Trieste & ICAR-CNR, Via A. Valerio 6/1, 34127 Trieste (TS), Italy
bDepartment of Computer Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Abstract

Knowledge discovery and data mining generally discovers implicit, previously unknown, and useful knowledge from data. As one

of the popular knowledge discovery and data mining tasks, frequent itemset mining, in particular, discovers knowledge in the form

of sets of frequently co-occurring items, events, or objects. On the one hand, in many real-life applications, users mine frequent

patterns from traditional databases of precise data, in which users know certainly the presence of items in transactions. On the

other hand, in many other real-life applications, users mine frequent itemsets from probabilistic sets of uncertain data, in which

users are uncertain about the likelihood of the presence of items in transactions. Each item in these probabilistic sets of uncertain

data is often associated with an existential probability expressing the likelihood of its presence in that transaction. To mine frequent

itemsets from these probabilistic datasets, many existing algorithms capture lots of information to compute expected support. To

reduce the amount of space required, algorithms capture some but not all information in computing or approximating expected

support. The tradeoff is that the upper bounds to expected support may not be tight. In this paper, we examine several upper

bounds and recommend to the user which ones consume less space while providing good approximation to expected support of

frequent itemsets in mining probabilistic sets of uncertain data.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Knowledge discovery and data mining; expected support; frequent patterns; uncertain data; upper bounds

1. Introduction and related works

With the automation of measurements and data collection, together with an increasing development and usage of

a large number of sensors, high volumes of valuable data have been produced at high velocity from a high variety

of data sources in different application areas—such as bio-informatics, chemical informatics, e-commerce, educa-

tion, engineering, finance, healthcare, science, sports and telecommunications21—in the current era of Big data8,10.

Mostly due to their high volumes, the quality and accuracy of data depend on their veracity (i.e., uncertainty of the

data). Moreover, embedded in these data are useful knowledge. Hence, knowledge-based and intelligent informa-

∗ Corresponding author.

E-mail address: kleung@cs.umanitoba.ca (C.K. Leung)

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/53748577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.195&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.195&domain=pdf

614 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

tion & engineering systems—which mine these data for the discovery of implicit, previously unknown, and useful

knowledge—are in demand. Common knowledge discovery and data mining tasks include classification7,19, cluster-

ing18, graph mining20, and frequent itemset mining.

Frequent itemset mining2 aims to discover useful knowledge in the form of sets of frequently co-occurring items,

events, or objects (i.e., frequent itemsets). It also serves as a building block for various data mining tasks such as

stream mining3 (which mines data that come at a high velocity), social network mining4 and sports data mining11.

Many existing algorithms mine frequent itemsets from high volumes of precise data, in which users definitely know

whether an item is present in, or absent from, a transaction in databases of precise data. However, there are situations

in which users are uncertain about the presence or absence of items (e.g., a physician may suspect, but may not

guarantee, that a fevered patient got a flu or West Nile virus) in a probabilistic set of uncertain data. In it, each item xi

in a transaction t j is associated with an existential probability P(xi, t j) expressing the likelihood of the presence xi

in t j.

To mine frequent itemsets from high varieties of high-value uncertain data, various algorithms have been pro-

posed including UF-growth13. The UF-growth algorithm first scans the entire probabilistic set of n uncertain data

transactions to accurately compute the expected support expSup({xi}) of each domain item (i.e., a singleton item-

set) xi. Note that xi is considered frequent if expSup({xi})—which can computed by summing existential probability

P(xi, t j) over every transaction t j containing xi—in the entire uncertain dataset meets or exceeds the user-specified

minimum support threshold minsup9. Afterwards, the UF-growth algorithm constructs a UF-tree structure (for cap-

turing frequent domain items in the uncertain data), from which frequent itemsets can then be mined recursively. A

2+-itemset (i.e., an itemset consisting of k ≥ 2 items) X is considered frequent if its expected support expSup(X) ≥
minsup. Here, expSup(X) can be computed by summing expSup(X, t j) over every transaction t j containing X, where

expSup(X, t j) can be computed as the product of the existential probability P(xi, t j) of every independent item xi within

the itemset X = {x1, . . . , xk}. In order to accurately compute the expected support of each 2+-itemset, paths in the cor-

responding UF-tree are shared only if tree nodes on the paths have the same item and the same existential probability.

Due to this restrictive path sharing requirement, the UF-tree may be quite large.

Solutions to this large tree-size problem include the exploration of alternative mining approaches such as (i) hy-

perlinked array structure approaches (e.g., UH-Mine algorithm1), (ii) sampling-based approaches6, and (iii) vertical

mining approaches5,16. Another solution is to make the tree compact by capturing less but sufficient information

about uncertain data. Based on the captured information, the corresponding knowledge discovery and data mining

algorithms12,14,15,17 first compute upper bounds to expected support for finding potentially frequent itemsets (i.e., con-

taining true positives and false positives), and then test if the found itemsets are truly frequent (i.e., true positives). By

doing so, the resulting trees are more compact than the UF-tree. This, in turn, shortens the tree traversal time during

the knowledge discovery and data mining process and thus helps reduce the runtime. Moreover, the use of these upper

bounds is expected to guarantee not to generate any false negatives: If an upper bound to expected support of an

itemset X is less than minsup, then X is guaranteed to be infrequent. Furthermore, these upper bounds are expected

to be tight so that not too many false positives are generated-and-tested. In this paper, we (i) present and examine the

computation and tightness of some upper bounds to expected support, (ii) reformulate them so that we could compare

them and determine which ones provide tighter upper bounds, and (iii) recommend the appropriate ones for frequent

itemset mining from probabilistic sets of uncertain data.

The remainder of this paper is organized as follows. The next section gives background. Section 3 presents and

examines several upper bounds to expected support for frequent itemset mining from probabilistic sets of uncertain

data. Evaluation results and conclusions are given in Sections 4 and 5, respectively.

2. Background

Definition 1. Let Item be a set of m domain items. Each item yi in a transaction t j = {y1, y2, . . . , yh} ⊆ Item in a

probabilistic set of uncertain data is associated with an existential probability9—denoted as P(yi, t j)—with value

0 < P(yi, t j) ≤ 1, (1)

where P(yi, t j) represents the likelihood of the presence of yi in t j.

615 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

Definition 2. Let Item be a set of m domain items. Then, the expected support9—denoted as expSup(X, t j)—of k-
itemset X = {x1, x2, . . . , xk} ⊆ Item in a transaction t j = {y1, y2, . . . , yr, . . . , yh} (where xk = yr) can be computed as

the product of the existential probability P(yi, t j) of every independent item yi within the itemset X, i.e.,

expSup(X, t j) =

k∏
i=1

P(xi, t j) =
∏
yi∈X

P(yi, t j), (2)

where X={x1, . . . , xk} ⊆ {y1, . . . , yr−1, yr, . . . , yh}=t j.

Definition 3. Given (i) a probabilistic set of n uncertain data transactions and (ii) a user-specified minimum support

threshold minsup, the research problem of frequent itemset mining from the probabilistic set of uncertain data9 is

to discover frequent itemsets from the dataset. Here, an itemset X is considered frequent if its expected support

expSup(X) in the entire uncertain dataset meets or exceeds the user-specified minimum support threshold minsup.

Note that expSup(X) in the entire probabilistic set of n uncertain data transactions can be computed by summing

expSup(X, t j) over every transaction t j containing X:

expSup(X) =

n∑
j=1

expSup(X, t j), (3)

where expSup(X, t j) can be computed as the product of the existential probability P(xi, t j) of every independent item xi

within the itemset X = {x1, . . . , xk}.

3. Upper bounds to expected support

Computing expected support of 2+-itemsets in tree-based algorithms (e.g., UF-growth) often require large trees

(e.g., large UF-trees), which capture existential probability of every item in each transaction of the uncertain dataset.

To reduce the tree size, several algorithms capture less information and approximate expected support. For instance,

both CUF-growth and CUF*-growth algorithms14 use a single cap—called transaction cap—that serves as an upper

bound to expected support of any itemset in the same transaction. As another instance, both DISC-growth and DISC*-

growth algorithms17 use a domain item-specific cap (or item cap, for short) to approximate expected support to

itemsets. As a third instance, the PUF-growth algorithm15 and the TPC-growth algorithm12 use a prefixed item cap
for the approximation. Among them, which caps lead to more accurate upper bounds to expected support? Which

caps require less memory space? In order to compare them easily, we reformulate these caps using a common notion

or expression.

3.1. Transaction caps

One way to approximate expected support or to obtain an upper bound to expected support of an itemset X is by

using the transaction cap (TC), which is defined as follows.

Definition 4. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such that

X ⊆ t j and xk=yr. Then, the transaction cap (TC) of X in t j, which serves as an upper bound to the expected support

expSup(X, t1) of X in t j, is defined as the product of the two highest existential probabilities in the entire transaction t j:

TC(X, t j) = TM1(t j) × TM2(t j), (4)

where

• TM1(t j) = maxi∈[1,h] P(yi, t j) is the highest existential probability in t j; and

• TM2(t j) = maxi∈[1,h]∧(i�g) P(yi, t j) is the second highest existential probability in t j for yg = argmaxi∈[1,h]P(yi, t j),

i.e., TM1(t j) = P(yg, t j).

Example 1. Consider a transaction t1 = {a:0.2, b:0.4, c:0.6, d:0.8, e:0.9, f :0.7, g:0.5, h:0.1} of uncertain data. Here,

each item is associated with an existential probability. For instance, item a is associated with an existential probability

616 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

of 0.2 expressing there is a 20% likelihood of item a to be present in transaction t1. In this transaction, the two

highest existential probabilities are TM1(t1)=0.9 (belongs to e, i.e., yg=e) and TM2(t1)=0.8 (belongs to d). Then, the

transaction cap TC({d, e}, t1) is 0.9 ×0.8 = 0.72, which is as tight as its expected support expSup({d, e}, t1).

However, the transaction cap becomes loose for long patterns (i.e., itemsets of high cardinality). For instance, the

transaction cap TC({d, e, f }, t1) is also 0.9 ×0.8 = 0.72 (cf. expSup({d, e, f }, t1) = 0.8 ×0.9 ×0.7 = 0.504).

Observation 1. Based on Definition 4 and Example 1, we observed the following:

• The transaction cap TC(X, t j) of any 2+-itemset X contained in the same transaction (e.g., {d, e} and {d, e, f }
in t1) would have the same value.

• As the TC is fixed for each transaction, it can be pre-computed so as to save runtime.

• The TC serves as a good upper bound to 2-itemsets (e.g., {d, e} having its TC value identical to its expected

support). However, TC may not be too tight for 3+-itemsets (e.g., {d, e, f }).

To tighten the upper bound to expected support for 3+-itemsets (i.e., k-itemsets where k ≥ 3), the concept of TC

can be extended as follows.

Definition 5. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such that

X ⊆ t j and xk=yr. Then, the extended transaction cap (ETC) of X in t j, which serves as an upper bound to the

expected support expSup(X, t1) of X in t j, is defined as the product of the two highest existential probabilities in the

entire transaction t j with the (k − 2)-th power of the third highest existential probability in the entire transaction t j:

ETC(X, t j) =

⎧⎪⎪⎨⎪⎪⎩
TC(X, t j) = TM1(t j) × TM2(t j) if k=2

TC(X, t j) ×
[
TM3(t j)

]k−2
= TM1(t j) × TM2(t j) ×

[
TM3(t j)

]k−2
if k≥3

(5)

where

• TM1(t j) = maxi∈[1,h] P(yi, t j) is the highest existential probability in t j;

• TM2(t j) = maxi∈[1,h]∧(i�g) P(yi, t j) is the second highest existential probability in t j for yg = argmaxi∈[1,h]P(yi, t j),

i.e., TM1(t j) = P(yg, t j); and

• TM3(t j) = maxi∈[1,h]∧(i�g)∧(i�s) P(yi, t j) is the third highest existential probability in t j for ys=argmaxi∈[1,h]∧(i�g)

P(yi, t j), i.e., TM2(t j) = P(ys, t j).

Example 2. Reconsider transaction t1 in Example 1, the extended transaction caps for long patterns (i.e., itemsets of

high cardinality) are tightened. For instance, the extended transaction cap ETC({d, e, f }, t1) is 0.9 ×0.8 ×0.7 = 0.504,

which is as tight as its expected support expSup({d, e, f }, t1).

However, the extended transaction cap may still be loose for some patterns, especially for those do not have all (or

some) of the three highest existential probability values. For instance, the extended transaction cap ETC({b, d, e}, t1)

is also 0.9 ×0.8 ×0.7 = 0.504 (cf. expSup({b, d, e}, t1) = 0.4 ×0.8 ×0.9 = 0.288).

Observation 2. Based on Definition 5 and Example 2, we observed the following:

• The extended transaction cap ETC(X, t j) of any k-itemset X ⊆ t j of the same cardinality k ≥ 2 would have the

same value (e.g., ETC({d, e, f }, t1) = ETC({b, d, e}, t1)).

• As the ETC is fixed for each cardinality in each transaction, it can be pre-computed so as to save runtime.

3.2. Item caps

On the one hand, the transaction cap (TC) and its extension (ETC) can be easily pre-computed. On the other hand,

they may not involve any items in X. To tighten the upper bound, the domain item-specific cap—or item cap (IC) for

short—involves at least one item in X. Intuitively, item cap could be defined as the product of P(xk, t j) and the highest

existential probability TM1(t j) in t j. However, for a special case where P(xk, t j) happens to be TM1(t j), IC would then

multiply TM1(t j) twice and thus loosen the upper bound to expected support. Hence, instead, we deal with this special

case by defining IC as follows, which multiplies P(xk, t j) with the second highest existential probability TM2(t j) in t j.

617 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

Definition 6. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such

that X ⊆ t j and xk=yr. Then, the item cap (IC) of X in t j, which serves as an upper bound to the expected support

expSup(X, t1) of X in t j, is defined as (i) the product of P(xk, t j) and the highest existential probability TM1(t j) in t j for

most cases, and (ii) the product of P(xk, t j) and the second highest existential probability TM2(t j) in t j for the special

case where xk possesses the highest existential probability:

IC(X, t j) =

{
P(xk, t j) × TM1(t j) if xk�yg

P(xk, t j) × TM2(t j) if xk=yg
(6)

where

• TM1(t j) = maxi∈[1,h] P(yi, t j) is the highest existential probability in t j; and

• TM2(t j) = maxi∈[1,h]∧(i�g) P(yi, t j) is the second highest existential probability in t j for yg = argmaxi∈[1,h]P(yi, t j),

i.e., TM1(t j) = P(yg, t j).

Example 3. Reconsider transaction t1 in Examples 1 and 2, the item caps for many patterns are tightened. For

instance, the item cap IC({e, g}, t1) is 0.5 ×0.9 = 0.45, which is as tight as its expected support expSup({e, g}, t1) (cf.

its transaction cap TC({e, g}, t1) is 0.9 ×0.8 = 0.72). The item cap IC({d, e}, t1) for the special case is 0.9 ×0.8 = 0.72,

which is as tight as its expected support expSup({d, e}, t1).

However, like the TC, the IC becomes loose for long patterns (i.e., itemsets of high cardinality). For instance, the

item cap IC({d, e, g}, t1) is also 0.5 ×0.9 = 0.45 (cf. ETC({d, e, g}, t1) is 0.9 ×0.8 ×0.7 = 0.504 and expSup({d, e, g}, t1)

= 0.8 ×0.9 ×0.5 = 0.36).

Observation 3. Based on Definition 6 and Example 3, we observed the following:

• The item cap IC(X, t j) of any 2+-itemset X = {x1, x2, . . . , xk} ⊆ t j ending with the same suffix item xk (e.g.,

{d, g}, {e, g}, {d, e, g}) would have the same value. This comment applies to both (i) xk � yg and (ii) xk = yg.

• As the IC is fixed for each suffix item xk, it can be pre-computed so as to save runtime.

• The IC serves as a good upper bound to 2-itemsets (e.g., {d, e} and {e, g} having their IC values identical to their

corresponding expected support). However, IC may not be too tight for 3+-itemsets (e.g., {d, e, g}).

Similar to the extension of TC to become ETC, the concept of IC can be extended as follows to tighten the upper

bound to expected support for 3+-itemsets (i.e., k-itemsets where k ≥ 3).

Definition 7. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such that

X ⊆ t j and xk=yr. Then, the extended item cap (EIC) of X in t j, which serves as an upper bound to the expected support

expSup(X, t1) of X in t j, is defined as the product of P(xk, t j) and the highest existential probability TM1(t j) in t j with

the (k − 2)-th power of the second highest existential probability TM2(t j) in the entire transaction t j. To deal with two

special cases where P(xk, t j) happens to be TM1(t j) or TM2(t j), the extended item cap multiplies the second highest

existential probability TM2(t j) in t j and/or the (k − 2)-th power of the third highest existential probability TM3(t j) in

the entire transaction t j:

EIC(X, t j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IC(X, t j) =

{
P(xk, t j) × TM1(t j) if k=2 ∧ xk�yg

P(xk, t j) × TM2(t j) if k=2 ∧ xk=yg

IC(X, t j) ×
[
TM2(t j)

]k−2
= P(xk, t j) × TM1(t j) ×

[
TM2(t j)

]k−2
if k≥3 ∧ xk�yg ∧ xk�ys

IC(X, t j) ×
[
TM3(t j)

]k−2
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P(xk, t j) × TM1(t j) ×

[
TM3(t j)

]k−2
if k≥3 ∧ xk=ys

P(xk, t j) × TM2(t j) ×
[
TM3(t j)

]k−2
if k≥3 ∧ xk=yg

(7)

where

• TM1(t j) = maxi∈[1,h] P(yi, t j) is the highest existential probability in t j;

• TM2(t j) = maxi∈[1,h]∧(i�g) P(yi, t j) is the second highest existential probability in t j for yg = argmaxi∈[1,h]P(yi, t j),

i.e., TM1(t j) = P(yg, t j); and

• TM3(t j) = maxi∈[1,h]∧(i�g)∧(i�s) P(yi, t j) is the third highest existential probability in t j for ys=argmaxi∈[1,h]∧(i�g)

P(yi, t j), i.e., TM2(t j) = P(ys, t j).

618 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

Example 4. Reconsider transaction t1 in Examples 1–3, the extended item caps for long patterns (i.e., itemsets of

high cardinality) are tightened. For instance, the extended item cap EIC({d, e, g}, t1) is 0.5 ×0.9 ×0.8 = 0.36, which is

as tight as its expected support expSup({d, e, g}, t1). The extended item cap EIC({c, d, e}, t1) for a special case where e
possesses the highest existential probability of 0.9 ×0.8 ×0.7 = 0.504 (cf. expSup({c, d, e}, t1) = 0.432). The extended

item cap EIC({b, c, d}, t1) for another special case where d possesses the second highest existential probability of 0.8

×0.9 ×0.7 = 0.504 (cf. expSup({b, c, d}, t1) = 0.192).

Observation 4. Based on Definition 7 and Example 4, we observed the following:

• The extended item cap EIC(X, t j) of any k-itemset X = {x1, x2, . . . , xk} ⊆ t j of the same cardinality k ending with

the same suffix item xk (e.g., {a, b, d}, {b, c, d}) would have the same value. This comment applies to (i) xk = yg,

(ii) xk = ys, and (iii) xk � ygxk � ys.

• As the EIC is fixed for each cardinality k sharing the same suffix item xk, it can be pre-computed so as to save

runtime.

3.3. Prefixed item caps

Recall from Equation (2) that the expected support of X can be computed as the product of P(xk, t j) and existential

probabilities of the proper prefix of xk. Hence, it is more logical to obtain an upper bound to expected support of X
by involving P(xk, t j) and existential probabilities of the proper prefix of xk. This leads to the concept of prefixed item
cap (PIC), defined as follows.

Definition 8. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such that

X ⊆ t j and xk=yr. Then, the prefixed item cap (PIC) of X in t j, which serves as an upper bound to the expected support

expSup(X, t1) of X in t j, is defined as the the product of P(xk, t j) and the highest existential probability PM(xk, t j)

among items in the proper prefix of xk:

PIC(X, t j) = P(xk, t j) × PM1(yr, t j), (8)

where PM1(yr, t j) = maxi∈[1,r−1] P(yi, t j) is the prefixed maximum, which is defined as the highest existential probabil-

ity in {y1, . . . , yr−1} ⊂ t j.

Example 5. Reconsider transaction t1 in Examples 1 and 4, the prefixed item caps for many patterns are tight-

ened. For instance, the prefixed item cap PIC({c, d}, t1) is 0.8 ×0.6 = 0.48, which is as tight as its expected support

expSup({c, d}, t1) (cf. TC({c, d}, t1) is 0.9 ×0.8 = 0.72 and IC({c, d}, t1) is 0.8 ×0.9 = 0.72).

However, like the TC and IC, the PIC also becomes loose for long patterns (i.e., itemsets of high cardinality). For

instance, the prefixed item cap PIC({a, c, d}, t1) is also 0.8 ×0.6 = 0.48 (cf. expSup({a, c, d}, t1) = 0.2 ×0.6 ×0.8 =

0.096).

Observation 5. Based on Definition 8 and Example 5, we observed the following:

• The prefixed item cap PIC(X, t j) of any 2+-itemset X = {x1, x2, . . . , xk} ⊆ t j ending with the same suffix item xk

(e.g., {a, d}, {c, d}, {a, c, d}) would have the same value.

• As the PIC is fixed for each suffix item xk, it can be pre-computed so as to save runtime.

• The PIC serves as a good upper bound to 2-itemsets (e.g., {c, d} having its PIC value identical to its expected

support). However, PIC may not be too tight for 3+-itemsets (e.g., {a, c, d}).

Similar to (i) the extension of TC to become ETC and (ii) the extension of IC to become EIC, the concept of PIC

can be extended as follows to further tighten the upper bound to expected support for 3+-itemsets (i.e., k-itemsets

where k ≥ 3) by multiplying PIC(X, t j) by the (k − 2)-th power of the prefixed second-maximum (i.e., second highest

existential probability PM2(yr, t j) in {y1, . . . , yr−1} ⊂ t j). See Definition 9.

Definition 9. Let (i) 2+-itemset X = {x1, x2, . . . , xk} and (ii) transaction t j = {y1, y2, . . . , yr, . . . , yh} ⊆ Item such

that X ⊆ t j and xk=yr. Then, the extended prefixed item cap (EPIC) of X in t j, which serves as an upper bound

to the expected support expSup(X, t1) of X in t j, is defined as the the product of P(xk, t j) and the highest existential

619 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

probability PM(xk, t j) among items in the proper prefix of xk with the (k−2)-th power of the second highest existential

probability PM2(t j) among items in the proper prefix of xk:

EPIC(X, t j) =

⎧⎪⎪⎨⎪⎪⎩
PIC(X, t j) = P(xk, t j) × PM1(yr, t j) if k=2

PIC(X, t j) ×
[
PM2(yr, t j)

]k−2
= P(xk, t j) × PM1(yr, t j) ×

[
PM2(yr, t j)

]k−2
if k≥3

(9)

where

• PM1(yr, t j) = maxi∈[1,r−1] P(yi, t j) is the prefixed maximum, which is defined as the highest existential probability

in {y1, . . . , yr−1} ⊂ t j; and

• PM2(yr, t j) = maxi∈[1,r−1]∧(i�g) P(yi, t j) is the prefixed second-maximum, which is defined as the second highest

existential probability in {y1, . . . , yr−1} ⊂ t j for yg=argmaxi∈[1,h] P(yi, t j), i.e., PM1(yr, t j) = P(yg, t j).

Example 6. Reconsider transaction t1 in Examples 1–5, the extended prefixed item caps for many patterns are tight-

ened. For instance, the extended prefixed item cap EPIC({a, c, d}, t1) is 0.8 ×0.6 ×0.4 = 0.192, which is tighter than

its prefixed item cap PIC({a, c, d}, t1) of 0.8 ×0.9 = 0.72).

Observation 6. Based on Definition 9 and Example 6, we observed the following:

• The extended prefixed item cap EPIC(X, t j) of any k-itemset X = {x1, x2, . . . , xk} ⊆ t j of the same cardinality k
ending with the same suffix item xk (e.g., {a, c, d}, {a, b, d}, {b, c, d}) would have the same value.

• As the EPIC is fixed for each cardinality k sharing the same suffix item xk, it can be pre-computed so as to save

runtime.

4. Evaluation

In this section, we evaluate several aspects on the aforementioned approximations (i.e., upper bounds) to expected

support: (i) memory consumption, (ii) accuracy, and (iii) runtime.

4.1. Memory consumption

First, we analytically evaluate the memory consumption of these six different approximations. Among them, we

observed the following:

• TC requires the least amount of memory space because they are solely dependent on transaction t j. In other

words, only a single value (TC) is needed for each transaction t j.

• ETC requires slightly more memory space because, according to Equation (5), two values—both TC and

TM3(t j)—are needed for each transaction t j in order to compute the ETC value for itemsets of different car-

dinality k. For both TC and ETC, we do not need to store existential probabilities of any items in transaction t j.

• In contrast, IC and PIC each requires a total of h values for each transaction t j. Specifically, for each transaction

t j = {y1, y2, . . . , yr . . . , yh} with h items, a single value (IC or PIC) is needed for each item yi in t j.

• As an extension to IC, EIC needs to store an additional value—namely, TM2(t j) or TM3(t j) depending on

whether xk = yg or ys—for each item xk (= yr)in transaction t j. Similarly, as an extension to PIC, EPIC needs

to store an additional value—namely, PM2(yr, t j)—for each item yr in transaction t j. In other words, both EIC

and EPIC require the most amount of memory space because each of them requires a total of 2h values for each

transaction t j.

4.2. Accuracy

We measure the accuracy by first comparing the tightness of the upper bounds as approximated expected support.

Recall that expSup(X, t j) =
∏k

i=1 P(xi, t j) =
∏

yi∈X P(yi, t j). Then, based on Definitions 4–9, we observed the following

for any 2-itemset X:

• ETC(X, t j) = TC(X, t j),

• EIC(X, t j) = IC(X, t j), and

• EPIC(X, t j) = PIC(X, t j).

620 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

These observations are confirmed by Fig. 1 that (i) ETC and TC led to the same number of false positives for 2-

itemsets (i.e., cardinality = 2), and that (ii) EIC and IC—as well as EPIC and PIC—also led to the same number of

false positives for 2-itemsets (i.e., cardinality = 2). Among these three groups of upper bounds, we also observed that

(i) PIC involves the item having the maximum existential probability PM1(yr, t j) in the proper prefix of yr. (ii) IC

involves the item having the maximum existential probability TM1(t j) in the proper prefix of yr as well as its suffix.

Consequently, as PM1(yr, t j) ≤ TM1(t j), we get (i) PIC(X, t j) ≤ IC(X, t j). Moreover, IC also uses P(xk, t j), whereas

TC uses TM2(t j)—which may not even involve any items in X—when xk � yg. So, as P(xk, t j) ≤ TM2(t j), we get

(ii) IC(X, t j) ≤ TC(X, t j). Hence, analytically, it is generally that

PIC(X, t j) ≤ IC(X, t j) ≤ TC(X, t j). (10)

The same inequality is confirmed experimentally, as shown in Fig. 1. In other words, PIC generally provides the

tightest upper bounds to expected support when mining frequent 2-itemsets from high volumes of high-value uncertain

data. When mining 3+-itemsets, we observed the following:

• ETC(X, t j) ≤ TC(X, t j) due to the extra multiplication term [TM3(t j)]
k−2 in ETC such that 0 < [TM3(t j)]

k−2 ≤ 1.

Hence, ETC provides tighter upper bounds to expected support than TC when mining frequent 3+-itemsets from

high volumes of high-value uncertain data.

• EIC(X, t j) ≤ IC(X, t j) and EPIC(X, t j) ≤ PIC(X, t j) due to the same reason, i.e., the extra multiplication

terms—which are in the range (0,1]—in EIC and EPIC.

After analyzing the intra-group relationships between the aforementioned upper bounds, let us analyze the inter-group

relationships among the four extensions when they mine k-itemsets (for itemset X):

• If xk=yg, then EIC(X, t j) = ETC(X, t j) because P(xk, t j) = P(yg, t j) = TM1(t j).

• Similarly, if xk=ys, then EIC(X, t j) = ETC(X, t j) because P(xk, t j) = P(ys, t j) = TM2(t j).

Hence, when xk is associated with the highest or the second highest existential probability in t j, both EIC and ETC

provide the same upper bounds to expected support when mining frequent 3+-itemsets. Moreover,

Fig. 1. Accuracy: the number of false positives.

621 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

• if (xk�yg) and (xk�ys), then EPIC(X, t j) ≤ EIC(X, t j) because both [PM1(yr, t j) ≤ TM1(t j)] and [PM2(yr, t j) ≤
TM2(t j)]. Hence, when xk is not associated with the highest or the second highest existential probability in t j,

EPIC provides tighter upper bounds to expected support than EIC.

The above analysis shows the tightness of these upper bounds to expected support. Note that all these bounds do not
lead to any false negatives but only false positives. The tighter the bound, the lower is the number of false positives.

Our experimental results shown in Fig. 1 support our analytical results. Specifically, TC led to the highest numbers

of false positives, whereas EPIC led to the lowest numbers (with EIC led to a close second lowest numbers) of false

positives in (i) IBM synthetic dataset and (ii) real-life datasets (e.g., mushroom) from the UC Irvine Machine Learning

Depository as well as those from the Frequent Itemset Mining Implementation (FIMI) Dataset Repository. Moreover,

it is interesting to note that the tightness of the upper bound to expected support provided by the three extensions

(ETC, EIC and EPIC). They did not generate any false positives beyond cardinality 6 for the mushroom dataset, as

shown in Fig. 1(c).

4.3. Runtime

Recall that knowledge discovery and data mining algorithms use the aforementioned caps to approximate expected

support. The algorithms find itemsets with upper bounds to expected support meeting or exceeding the user-specified

threshold minsup. This results in a collection of all potentially frequent 2+-itemsets, which include true positive (i.e.,

truly frequent itemsets) and false positive (i.e., potentially frequent with respect to upper bounds but truly infrequent

with respect to minsup). With tighter upper bounds to expected support, fewer false positives are produced. Hence,

shorter runtimes result. See Fig. 2, which shows the following:

• Due to its highest number of false positives generated, TC took the longest runtime.

• As all three extensions (ETC, EPIC, and EIC) produced fewer false positives than the counterparts (TC, PIC,

and IC), the runtimes for the former were also shorter.

• As usual, when minsup increased, the runtime decreased.

Fig. 2. Runtime.

622 Alfredo Cuzzocrea et al. / Procedia Computer Science 60 (2015) 613 – 622

• Recall that EPIC(X, t j) ≤ EIC(X, t j) if (xk�yg) and (xk�ys). For cases where (xk=yg) or (xk=ys), it is possible—

but not guarantee—that EPIC(X, t j) ≤ EIC(X, t j). However, for some other cases (e.g., for short transactions

in the IBM synthetic dataset or short frequent patterns mined from the real-life mushroom dataset), EIC beat

EPIC.

After evaluating the six approximations as upper bounds to expected support, we observed that (i) TC requires

the least amount of memory space (with a single value per transaction) and ETC requires the second least amount

of memory space (with two values per transaction), (ii) EIC and EPIC produced fewest false positives due to the

tightness of their bounds, and (iii) EIC took the shortest runtime and the other two extensions (EPIC and ETC) took

just slightly longer than EIC. Our recommendation is that (i) if memory is an issue, it seems better to use ETC due to

the small memory requirements, production of a few of false positives, and short runtimes. Otherwise, it seems better

to use EIC or EPIC because their memory requirements are not too high (2h values for h items in a transaction) but

they produced fewer false positives and ran faster than others.

5. Conclusions
In this paper, we presented and examined six upper bounds to expected support of frequent k-itemsets when mining

probabilistic sets of uncertain data, including transaction cap (TC), item cap (IC), and prefixed item cap (PIC), as well

as their extensions. Among these upper bounds, PIC provides the tightest upper bounds when mining frequent 2-

itemsets, and thus produces the fewest false positives (i.e., potentially frequent 2-itemsets) and runs the fastest. When

mining frequent 3+-itemsets, the concepts of TC, IC, and PIC were extended to become ETC, EIC, and EPIC. Our

experimental results confirm our analytical findings and recommendations that these extensions provide tighter upper

bounds to expected support of frequent 3+-itemsets when mining probabilistic sets of uncertain data for potentially

frequent 3+-itemsets, which are then verified to obtain truly frequent 3+-itemsets.

Acknowledgements. This project is partially supported by NSERC (Canada) and the University of Manitoba.

References
1. Aggarwal CC, Li Y, Wang J, Wang J. Frequent pattern mining with uncertain data. In: Proceedings of the ACM KDD 2009, p. 29–37.

2. Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proceedings of the VLDB 1994, p. 487–499.

3. Braun P, Cameron JJ, Cuzzocrea A, Jiang F, Leung CK. Effectively and efficiently mining frequent patterns from dense graph streams on

disk. Procedia Computer Science 2014; 35:338–347.

4. Braun P, Cuzzocrea A, Leung CK, MacKinnon RK, Tanbeer SK. A tree-based algorithm for mining diverse social entities. Procedia Computer
Science 2014; 35:223–232.

5. Budhia BP, Cuzzocrea A, Leung CK. Vertical frequent pattern mining from uncertain data. In: Proceedings of the KES 2012, p. 1273–1282.

6. Calders T, Garboni C, Goethals B. Efficient pattern mining of uncertain data with sampling. In: Proceedings of the PAKDD 2010, Part I,
p. 480–487.

7. Czarnowski I, Jedrzejowicz P. Ensemble classifier for mining data streams. Procedia Computer Science 2014; 35:397–406.

8. Jiang F, Leung CK, MacKinnon RK. BigSAM: mining interesting patterns from probabilistic databases of uncertain big data. In: Proceedings
of the PAKDD Workshops 2014. Springer; 2014, p. 780–792.

9. Leung CK. Uncertain frequent pattern mining. In: Aggarwal CC, Han J, editors. Frequent pattern mining. 2014; p. 417–453.

10. Leung CK, Jiang F. A data science solution for mining interesting patterns from uncertain big data. In: Proceedings of the IEEE BDCloud
2014. IEEE Computer Society; 2014, p. 235–242.

11. Leung CK, Joseph KW. Sports data mining: predicting results for the college football games. Procedia Computer Science 2014; 35:710–719.

12. Leung CK, MacKinnon RK, Tanbeer SK. Tightening upper bounds to expected support for uncertain frequent pattern mining. Procedia
Computer Science 2014; 35:328–337.

13. Leung CK, Mateo MAF, Brajczuk DA. A tree-based approach for frequent pattern mining from uncertain data. In: Proceedings of the PAKDD
2008, p. 653–661.

14. Leung CK, Tanbeer SK. Fast tree-based mining of frequent itemsets from uncertain data. In: Proceedings of the DASFAA 2012, Part I,
p. 272–287.

15. Leung CK, Tanbeer SK. PUF-tree: a compact tree structure for frequent pattern mining of uncertain data. In: Proceedings of the PAKDD
2013, p. 13–25.

16. Leung CK, Tanbeer SK, Budhia BP, Zacharias LC. Mining probabilistic datasets vertically. In: Proceedings of the IDEAS 2012, p. 199–204.

17. MacKinnon RK, , Strauss TD, Leung CK. DISC: efficient uncertain frequent pattern mining with tightened upper bounds. In: Proceedings of
the IEEE ICDM 2014 Workshops, p. 1038–1045.

18. Mulyono NB, Ishida Y. Clustering inventory locations to improve the performance of disaster relief operations. Procedia Computer Science
2014; 35:1388–1397.

19. Perner P. Mining sparse and big data by case-based reasoning. Procedia Computer Science 2014; 35:19–33.

20. Rı́os SA, Videla-Cavieres IF. Generating groups of products using graph mining techniques. Procedia Computer Science 2014; 35:730–738.

21. Tanbeer SK, Leung CK, Cameron JJ. Interactive mining of strong friends from social networks and its applications in e-commerce. Journal
of Organizational Computing and Electronic Commerce 2014; 24(2–3):157–173.

