
Is Hyper-extensionality Preservable Under
Deletions of Graph Elements? 1

Alberto Casagrande2

Dept. Mathematics and Geosciences
University of Trieste

Trieste, Italy

Carla Piazza3 Alberto Policriti4

Dept. Mathematics and Computer Science
University of Udine

Udine, Italy

Abstract

Any hereditarily finite set S can be represented as a finite pointed graph –dubbed membership graph–
whose nodes denote elements of the transitive closure of {S} and whose edges model the membership
relation. Membership graphs must be hyper-extensional, that is pairwise distinct nodes are not bisimilar
and (uniquely) represent hereditarily finite sets.
We will see that the removal of even a single node or edge from a membership graph can cause “collapses” of
different nodes and, therefore, the loss of hyper-extensionality of the graph itself. With the intent of gaining
a deeper understanding on the class of hyper-extensional hereditarily finite sets, this paper investigates
whether pointed hyper-extensional graphs always contain either a node or an edge whose removal does not
disrupt the hyper-extensionality property.

Keywords: Set theory, Hereditarily finite sets, Non-well-foundedness, Hyper-extensionality.

1 Introduction

A set is hereditarily finite if it is finite and all its elements are hereditarily finite.

Moreover, it is well-founded if any chain of membership relations starting from it is

finite. In standard Set Theory the Extensionality axiom, establishing that two sets

1 This work has been partially supported by GNCS-INDAM project “Algoritmica per il model checking e
la sintesi di sistemi safety-critical” and by University of Trieste FRA project “Learning specifications and
robustness in signal analysis (with a case study related to health care)”.
2 Email: acasagrande@units.it
3 Email: carla.piazza@uniud.it
4 Email: alberto.policriti@uniud.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 103–118

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.008

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:acasagrande@units.it
mailto:carla.piazza@uniud.it
mailto:alberto.policriti@uniud.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.008
http://dx.doi.org/10.1016/j.entcs.2016.03.008
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

are equal if and only if they have the same elements, guarantees that hereditarily

finite well-founded sets can be inductively constructed starting from the empty set.

When also cyclic chains of memberships are allowed sets are called non-well-

founded and one of the possible principles for establishing equality is Aczel’s Anti-

Foundation axiom based on the notion of bisimulation [2].

A hereditarily finite set S can be canonically represented through a pointed

finite graph G in which each node represents a different element of the transitive

closure of {S} and the edges of G model the membership relation. Since the notion

of bisimulation can be naturally defined also on graphs, this means that in the

canonical representation of S there are not two different bisimilar nodes. Well-

founded sets are represented by acyclic graphs, while non-well-founded sets are

represented by cyclic ones (e.g., see [2] for more details).

Now a quite general question arises: is there a natural way to inductively rea-

son on both well-founded and non-well-founded hereditarily finite sets represented

through graphs? In other terms, is there a way to inductively construct/deconstruct

graphs representing hereditarily finite sets? Such question has been previously for-

malized and studied in [14] where the authors ask whether given the canonical

representation of a set, it is always possible to find a node which can be removed

producing the canonical representation of another set, i.e., without causing any

bisimulation collapse. A definitive answer is not provided in [14]. In this paper

we further investigate in that direction proving that there are cases in which it is

not possible to remove any node without causing collapses. On the other hand, we

provide positive evidence on the fact that there always exists an edge which can be

safely removed. This result is achieved by introducing the notion of n-well-founded

part of a non-well-founded graph and by applying Ackermann code on it.

The paper is organized as follows: Section 2 formalizes hereditarily finite sets.

Section 3 relates hereditarily finite sets and pointed hyper-extensional graphs and

defines keystones –elements whose removal disrupts the graph hyper-extensionality.

Section 4 presents a pipeline to enumerate pointed hyper-extensional graphs. This

pipeline is used in Section 5 to prove that there exist pointed hyper-extensional

graphs whose nodes (edges) are all keystones. Section 6 introduces the notion of

disposable element –an element whose removal does not produce collapses between

nodes of the same connected components– and shows a pointed hyper-extensional

graph that do not contain disposable nodes. In Section 7, we prove that pointed

hyper-extensional graphs always have a disposable edge. Finally, in Section 8, we

draw conclusions and suggest future works.

2 Hereditarily Finite Sets

Hereditarily finite sets are finite sets whose elements are hereditarily finite sets.

We write P (S) to denote the powerset of S i.e. P (S) = {S′ | S′ ⊆ S}

Definition 2.1 [Well-founded Hereditarily Finite Sets] Well-founded hereditarily

finite sets are the elements of HF
def
=

⋃
i∈NHFi where the HFi’s are defined as

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118104

follows:

HFi
def
=

⎧⎪⎨
⎪⎩

∅ if i = 0

P (HFi−1) otherwise
(1)

Definition 2.2 [Non-Well-Founded Hereditarily Finite Sets]Non-well-founded hered-

itarily finite sets are finite sets specified by finite systems of equations of the form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y0 = {X0,0, . . . , X0,m0}
...

Yn = {Xn,0, . . . , Xn,mn}

(2)

where {Y0, . . . , Yn} ⊇ {X0,0, . . . , Xn,mn}.
We denote the set of all the non-well-founded hereditarily finite sets by HF1/2.

Let us notice that HF ⊆ HF1/2.

3 From hereditarily finite sets to graphs

Definition 3.1 [Graph] A (directed) graph is a tuple (V,E) where V is a finite set

of nodes and E ⊆ V × V is a set of edges.

If G = (V,E) is a graph, we write G \ e to indicate the graph G deprived of the

edge e (i.e., G \ e def
= (V,E \ {e})) and G \ v to denote the graphs G deprived of the

node v and of all its incident edges (i.e., G\ v def
= (V \{v}, E \ ({v}×V ∪V ×{v}))).

If (v, w) ∈ E, then we say that v is a predecessor of w and w is a successor of v.

A path from v0 to vn is a sequence of nodes v0 . . . vn such that (vi−1, vi) ∈ E for all

i ∈ [1, n]. If v0 . . . vn is a path, then its length is n. If there exists a path from v0 to

vn, then we say that vn is reachable from v0.

Definition 3.2 [Pointed Graph] A graph is pointed if all its nodes are reachable

from one of its nodes, which is called root of the graph.

If we interpret the edges of a pointed graph G = (V,E) as a membership relation,

i.e., (v, w) ∈ E as w ∈ v, G depicts an element of HF1/2. Whenever G is clear from

the context, we may write v � w in place of (v, w) ∈ E. By writing v �n w we mean

that there exists a path, whose length is n, from v to w (i.e., v = w, if n = 0, or

there exists a v′ such that v � v′ and v′ �n−1 w, if n > 0). If w is reachable from w

(i.e., there exists a n ∈ N such that v �n w), we can also write v �∗ w.
A cycle is a path, whose length is greater than 0, from a node v to v itself. A

graph is acyclic if it does not contains cycles. If it is not acyclic, then it is cyclic.

Definition 3.3 [Well-founded node] Let G be a graph. A well-founded node v of G

is a node whose transitive closure –the subgraph of the nodes w such that v �∗ w–
is acyclic. A non-well-founded node is a node that is not well-founded.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 105

v0v1v2v3v4

Fig. 1. This graph represents the hereditarily finite set X4 = {X3, X1} where X3 = {X2},
X2 = {X3, X1, X0}, X1 = {X0}, and X0 = ∅.

Two distinct pointed graphs can represent the same set. In order to map each

hereditarily finite set in a single pointed graph, we need the notion of bisimulation.

Definition 3.4 [Bisimulation] Let G = (V,E) and G′ = (V ′, E′) be two graphs. A

bisimulation from G to G′ is a relation R ⊆ V ×V ′ such that (s, s′) ∈ R if and only

if:

• for all s � p there exists a s′ � p′ such that (p, p′) ∈ R;

• for all s′ � p′ there exists a s � p such that (p, p′) ∈ R.

If there exists a bisimulation R from G to G′ such that (v, v′) ∈ R, then we say

that v and v′ are bisimilar and we write v G∼G′v′. If G and G′ are the same graph,

we may use the notation
G∼ in place of G∼G′ . Whenever the graph G is clear from

the context, we may also omit G from the notation v
G∼ p by writing v ∼ p. The

relation ∼ is a bisimulation and also an equivalence relation.

We say that two graphs G and G′ are bisimilar whenever there exists a bisim-

ulation R such that for all nodes v of G there exists a node v′ in G′ such that

(v, v′) ∈ R and vice-versa. As we assumed the equality over hyper-set to be defined

by bisimulation (Anti-Foundation Axiom [2]), two pointed graphs are bisimilar if

and only if they represent the same hereditarily finite set.

Definition 3.5 [Collapsed Graph] Let G = (V,E) be a graph and let [v]∼ be the

set of nodes bisimilar to v in G, i.e., [v]∼
def
= {w ∈ V | w G∼ v}. The collapsed graph

of G is the graph G∼
def
= (V∼, E∼) where:

• V∼
def
= {[v]∼ | v ∈ V };

• E∼
def
= {([v]∼, [w]∼) | (v, w) ∈ E}.

If two graphs are bisimilar, then they share the same collapsed graph. Moreover,

any graph is bisimilar to its collapsed graph. Thus, pointed collapsed graphs are a

canonical form to represent hereditarily finite sets.

Definition 3.6 [Hyper-Extensional] A graph G is hyper-extensional, or HE, if the

only bisimulation over it is the identity, i.e., v ∼ v′ implies v = v′.

Since collapsed graphs are hyper-extensional, any hereditarily finite set corre-

sponds to one pointed hyper-extensional graph (e.g., see [14]). Because of that, we

sometime refer to pointed hyper-extensional graphs as membership graphs.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118106

It is worth to underline that a membership graph may have many different roots

and, thus, represent different sets. For instance, both the nodes v1 and v2 are valid

roots for the graph depicted in Fig. 2.

v0v1v2

Fig. 2. Since both the nodes v1 and v2 are valid roots of the graph, this graph can represent both the
hereditarily finite sets X2 = {X1}, where X1 = {X2, X0} and X0 = ∅, and X4 = {X3, X5}, where
X5 = {X4} and X3 = ∅.

.

It is easy to see that all the possible roots of a membership graph belong to the

same strongly connected component.

Let us notice that nodes that share the same successors are bisimilar. Hence, if

G = (V,E) is a hyper-extensional graph, two nodes are the same if and only if they

have the same successors. Because of that we may denote the set of the successors

of v ∈ V as v itself, i.e., v = {w|(v, w) ∈ E}; this is consistent with the notation �.
Under the same conditions, if v = {v} and w = {w}, then v and w are bisimilar. It

follows that any hyper-extensional graph has, at most, one node v such that v = {v}
and we denote it by Ω. Analogously, any hyper-extensional graph has, at most, one

node without successors and we write ∅ to indicate it.

Proposition 3.7 Let v be a node. It holds that v �∗ ∅ if and only if v 	∼ Ω.

Proof. Let v be such that v �∗ ∅ and v ∼ Ω. By definition of �∗, there should

exist a path v0 . . . vm such that v0 = v and vm = ∅. Since Ω is the only successor of

Ω and v ∼ Ω, vi ∼ Ω for all i ∈ [0,m]. It follows that vm = ∅ ∼ Ω. However, ∅ has

not successors and, thus, it is not bisimilar to Ω which has one successor. Thus, our

assumptions were absurd and we proved the claim. �

The following claim directly follows from Proposition 3.7.

Proposition 3.8 ([2]) Let G be a hyper-extensional pointed graph. Either G con-

tains the node ∅ or G exclusively contains Ω.

Nodes or edges whose deletion causes a collapse (i.e., reduce the number of nodes

of the collapsed graph) are called keystone.

Definition 3.9 [Keystone] Let G be a pointed hyper-extensional graph. A node

n (or an edge e, respectively) of G is a keystone for G, if the graph G \ n (G \ e,

respectively) is not hyper-extensional.

We are interested in establishing whether there are pointed hyper-extensional

graphs in which all nodes (edges) are keystones or not. In the former case, we may

identify some of them by enumerating pointed hyper-extensional graphs and testing

whether all nodes (edges) are keystones.

In the following section we describe a pipeline for the enumeration of pointed

hyper-extensional graphs. We used it to prove the results reported in the remaining

parts of this paper.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 107

4 Enumerating hereditarily finite sets

The enumeration of all the pointed hyper-extensional graphs up to a given order n

–having n nodes– is inherently exponential with respect to n2/2. As a matter of

fact, as n grows, the number of acyclic graphs having order n tends to 2(
n
2)/Mσn,

where M ≈ 0.57436 and σ ≈ 1.48807 [3,4]. Moreover, roughly 32.6% of these graphs

are (hyper-)extensional [21]. It follows that enumerating acyclic (hyper-)extensional

graphs having order n lays in the time complexity class Ω(2n
2/2).

In order to produce all the pointed hyper-extensional graphs, we could both

generate all the directed graphs and retain only those that are hyper-extensional

and pointed 5 . Unfortunately, there are 2n
2
directed graphs of order n –having n

nodes– and the large part of them are not even connected.

A significative improvement for this strategy was obtained by observing that

both the properties of being hyper-extensional and pointed are preserved under

isomorphism. Thus, either all graphs in an isomorphic class –the class of all the

graphs that are pairwise isomorphic– are hyper-extensional or they are all not hyper-

extensional. This also holds for the property of being pointed.

The isomorphic classes of directed graphs has been extensively studies (e.g.,

see [17,5,10,7]). They still are super-exponential in number with respect to the

order n of the investigated graphs, (in particular, they are at least 2n
2
/n!), but

their abundance grows significantly slower than 2n
2
. For instance, for n = 6, 32,

and 64 each class of isomorphic graphs contains in average more than 44595, 1043,

and 10108 elements, respectively (see [18]).

We implement a pipeline to enumerate all the pointed hyper-extensional graphs

in SAGE [20]. A representative for each of the isomorphic classes is produced by

using the SAGE command canaug traverse edge(...). The pipeline should retain

a graph only if it is hyper-extensional and pointed. In order to reduce the average

time required to test these properties, two preliminary heuristics are applied. Since

pointed graphs have at most one source –node that has no incoming edges–, the first

heuristic filters graphs that have more than one source. We also noticed that all

hyper-extensional pointed graphs, but the one representing Ω, must include exactly

one sink node –node with no outgoing edges–, i.e., ∅. Thus, among the graphs that

have survived the first filter, the pipeline considers exclusively the ones that either

have one sink or that have no sinks and one node; the latter case correspond to Ω.

The next step is to identify pointed graphs. Given a graph G, the SAGE command

strongly connected components digraph(G) produces a new graph G′, analo-

gous to it, in which each strong connected component of G has been collapsed to a

distict node. The resulting graph is pointed if and only if the original one is pointed

too. Moreover, as G′ does not contain non-trivial strongly connected components,

if it is pointed, then it must have exactly one source. Hence, it is possible to decide

whether G is pointed or not by both testing the existence of one single source in G′

and, if this is the case, by performing a reachability computation from it.

5 Let us notice that this is not an enumeration for pointed hyper-extensional graphs since two bisimilar
graphs which are not isomorphic can be retain.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118108

Finally, the pipeline verifies hyper-extensionality of each of the remaining graphs

by computing its maximum bisimulation [9,15]. If no pairs of nodes are bisimilar,

the considered graph is pointed and hyper-extensional and, thus, it is kept.

Since all valid roots of a membership graph belong to the same strongly con-

nected component, our pipeline is also able to compute the number of hereditarily

finite sets that are represented by graphs of a given order. In particular, the hered-

itarily finite sets that have each of the issued graphs G as membership graph are in

number as many as the nodes of the strongly connected components that contains

a root for G itself.

Table 1 lists, for each order up to 5, the number of isomorphic classes of directed

graphs (with self-loops), the number of pointed hyper-extensional graphs, and the

number of hereditarily finite sets as they are computed by our pipeline. The same

table also details the number of well-founded hereditarily finite sets that is reported

in [19].

5 Do non-keystone always exist?

In [14], it has been proved that if G is pointed hyper-extensional and acyclic (i.e.,

it represents a well-founded set), then not all the nodes of G are keystones. The

more challenging case of cyclic graphs was left open.

Our pipeline, described in Section 4, can be used to produce all the pointed

hyper-extensional graphs having up to 5 nodes. We test the existence of a non-

keystone node in them by removing each of the nodes and by testing hyper-exten-

sionality of the resulting graph. None of the considered graphs contains exclusively

keystone nodes. Computing all the pointed hyper-extensional graphs of order 6 is

too time consuming. However, by using the above method, we have discovered a

graph in which all nodes are keystones and, as a consequence, we prove the following

theorem.

Theorem 5.1 There exists a non-empty pointed hyper-extensional graph such that

all of its nodes are keystones.

Proof. Let us consider the graph G0 depicted in Fig. 3. All of its nodes, but v0,

v0

v2

v1

v3v4

v5

Fig. 3. A pointed hyper-extensional graph whose nodes are all keystones.

belong to the same strongly connected component (i.e. there is a path from v to w

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 109

for all v 	= v0 and w 	= v0) and v0 is reachable from both v1 and v3. It follows that

G0 is pointed. Moreover, G0 is hyper-extensional. However, v1
G0\v0∼ v2, v0

G0\v1∼ v2,

v4
G0\v2∼ v5, v4

G0\v3∼ v5, v1
G0\v4∼ v3, and v1

G0\v5∼ v3. This proves the claim. �

As far as keystone edges are concerned, we easily prove the following result.

Theorem 5.2 There exists a pointed hyper-extensional graph such that it has at

least one edge and all of its edges are keystones.

Proof. Let us consider the graph G1 depicted in Fig. 4. It is possible to reach v0
from v1, thus, it is pointed. Moreover, since 0 does not reach any node, G1 is hyper-

extensional. However, G1 \ (v1 � v0) contains no edges and, hence, v0
G1\(v1�v0)∼ v1.

This proves the claim. �

v0v1

Fig. 4. A pointed hyper-extensional graph whose edges are all keystones.

Our pipeline highlights that, up to order 5, chains –connected graphs whose

nodes, but ∅, have one single successor– are the only pointed hyper-extensional

graphs whose edges are all keystones (see Table 1). This leads us to consider sep-

arately each of connected components produced by the elimination of a graph ele-

ment. In the following section, we investigate whether there always exists a graph

element whose elimination generates connected components that, individually, are

hyper-extensional.

6 Hyper-extensionality and connected components

As a first step, we need to formalize the notion of connectivity over directed graphs.

Such a notion, called weak connectivity, coincides with the connectivity over the

corresponding undirected graph.

Definition 6.1 [Weak connectivity] A graph (V,E) is weakly connected if, for any

V ′ � V , there exists an edge e ∈ E such that either e ∈ V ′ × (V \ V ′) or e ∈
(V \ V ′)× V ′.

Definition 6.2 [Disposable] Let G be a pointed hyper-extensional graph. A node

n (or an edge e, respectively) of G is disposable whenever the weakly connected

components of G \ n (or G \ e, respectively) are hyper-extensional graphs.

Proposition 6.3 If v is not disposable for G, then it is a keystone for it.

Proof. If v is not disposable, then there exists a weakly connected component of

G \ v that is not hyper-extensional and there exists a bisimulation that is not the

identity for it. By extending this bisimulation with the identity over the other

weakly connected components, we obtain a bisimulation for G \ v that is not the

identity. Thus, G \ v is not hyper-extensional and v is a keystone for G. �

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118110

The graph depicted in Fig. 3 proves the following result.

Theorem 6.4 There exists a non-empty pointed hyper-extensional graph such that

none of its nodes is disposable.

Proof. Let us consider the graph G0 = (V0, E0) depicted in Fig. 3. As already

observed above it is hyper-extensional and pointed. Moreover, all of its nodes are

keystones by Theorem 5.1 and G0 \ v is weakly connected for all v ∈ V0. It follows

that none of its nodes is disposable. �

Only keystone No disposable

Order IC HP HF1/2 nodes edges nodes edges

1 2 2 2(1) 0(0) 0(0) 0(0) 1(1)

2 10 2 2(1) 0(0) 1(1) 0(0) 0(0)

3 104 12 16(2) 0(0) 1(1) 0(0) 0(0)

4 3044 252 504(9) 0(0) 1(1) 0(0) 0(0)

5 291968 18439 52944(88) 0(0) 1(1) 0(0) 0(0)

Table 1
Number of pointed hyper-extensional graphs whose nodes/edges are all keystones and whose nodes/edges

are all disposable. The columns labelled as IC, HP, and HF1/2 report the number of isomorphic classes of
directed graphs (with self-loops), of pointed hyper-extensional graphs, and of hereditarily finite sets (roots
of the pointed hyper-extensional graphs), respectively. All the data concerning the well-founded domain
are reported in brackets. The number of well-founded hereditarily finite sets (pointed hyper-extensional

acyclic graphs) is taken from [19]

In the next section, we prove that, whenever a pointed hyper-extensional graph

contains at least one edge, it also has disposable edges.

7 Do disposable edges always exist?

At the begin of this section, we focus on the well-founded part of graphs and then

we provide all the ingredients for the general case. First of all, we need to introduce

the notion of rank.

Definition 7.1 [Rank [6]] Let G = (V,E) be an graph and let v be one of its

well-founded nodes. The rank of v in G, rank(G, v), is defined as follows:

rank(G, v)
def
=

⎧⎪⎨
⎪⎩

0 if v is a sink

1 + max
(v,u)∈E

(rank(G, u)) otherwise

Notice that, whenever G is acyclic, all the paths from any node v to a sink are

finite in length and rank(G, v) is well-defined.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 111

It is easy to see that, if G is acyclic and pointed, then it has one single root and

its rank is greater than those of the other nodes of G.

Lemma 7.2 If G = (V,E) is a pointed acyclic graph, then it has one single root p

and rank(G, p) > rank(G, q) for all q ∈ V \ {p}.
Proof. IfG had two roots, p1 and p2, then, by definition of root, both p1 is reachable

from p2 and p2 is reachable from p1. It follows that G is cyclic and this contradicts

our hypothesis. Hence, G must have one root p.

Let us assume that there exists q 	= p such that rank(G, p) ≤ rank(G, q). Since

q is reachable from p, there exists a finite path p0, p1, . . . , ph in G such that p0 = q

and ph = p. Since p 	= q, h should be greater than 0. Moreover, by induction on i,

we can prove that rank(G, pi) ≥ rank(G, q) + i. It follows that rank(G, p) should

be greater or equal to rank(G, q) + h where h ∈ N \ {0}. However, this contradicts
our hypothesis and, thus, it proves that all the nodes in V \ {p} must have a rank

smaller than that of p. �

The following lemmas show how bisimulations are affected by edge removals and

relate the ranks of bisimilar nodes.

Lemma 7.3 Let G be a graph and let v be a well-founded node of G. Moreover,

let G′ be the graph G \ (v � u). For every well-founded node w of G such that

rank(G,w) < rank(G, v), w G′∼Gw.

Proof. We prove the thesis by induction on the rank of w.

rank(G,w) = 0 If rank(G,w) = 0, then w is a sink in G. Hence, it is a sink also

in G′ and w G′∼Gw.

rank(G,w) > 0 Let us assume that q G′∼Gq for all q in G such that rank(G, q) <

rank(G,w). From the definition of rank, it follows that q G′∼Gq for all w � q

in G. Since rank(G,w) < rank(G, v), v 	= w and v � u 	= w � q for all edge

w � q in G. Hence, by definition of bisimulation, w G′∼Gw.

This concludes the proof. �

Lemma 7.4 Let G and G′ be two graphs (possibly the same). Moreover, let v

and v′ be two well-founded nodes in G and G′, respectively. If v G∼G′v′, then

rank(G, v) = rank(G′, v′).

Proof. We prove the thesis by induction on the rank of v.

rank(G,v) = 0 If rank(G, v) = 0, then ∅ ∼ v G∼G′v′ and rank(G′, v′) = 0.

rank(G,v) > 0 Let us assume that, for all node w in G such that rank(G,w) <

rank(G, v), if w G∼G′w′, then rank(G,w) = rank(G′, w′). From the definition

of bisimulation, if v G∼G′v′ then for all v � w in G there exists v′ � w′ in
G′ s.t. w G∼G′w′ and vice versa. Furthermore, from the definition of rank,

we known that rank(G, v) = 1 + maxv�w rank(G,w) and rank(G′, v′) = 1 +

maxv′�w′ rank(G′, w′) in G′. Thus, rank(G, v) = 1 + maxv�w rank(G,w) =

1 +maxv′�w′ rank(G′, w′) = rank(G′, v′).

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118112

This concludes the proof. �

Lemma 7.3 implies that edge removal can collapse only nodes whose ranks are

greater or equal to that of the edge source, while from Lemma 7.4 it follows that

two nodes that have different ranks are not bisimilar. Since Lemma 7.2 proves that

roots have maximum rank in pointed acyclic graphs, removing an edge outgoing

from the roots avoids collapses in other nodes. Unfortunately, this result does not

hold in general and there exist pointed hyper-extensional graphs such that none of

the edges leaving their roots is disposable (e.g., see Fig. 5).

v0

v1 v2

v3 v4

Fig. 5. This graph G is pointed and hyper-extensional and both v3 and v4 are valid roots for it. Intriguingly,
none of the edges leaving the possible roots is disposable as ∅ ∼ v4 in G \ (v4, v3), v3 ∼ v4 in G \ (v3, v1),
and v2 ∼ v3 in G \ (v3, v4). The only disposable edge of G is v1 � v2.

Definition 7.5 [n-bisimulation [13]] Let G = (V,E) be a graph. We define
n∼ by

induction on n as follows:

n∼def
=

⎧⎪⎨
⎪⎩

V × V if n = 0

{(v, w) | ∀v � v′∃w � w′s.t. v′ n−1∼ w′ and vice versa} otherwise

In the following part of the paper, we write v
n∼ w meaning (v, w) ∈ n∼.

Theorem 7.6 ([8]) Let G be a finite graph and let x, y be nodes of G. We have

v ∼ w if and only if for each n ∈ N it holds that v
n∼ w.

Definition 7.7 [n-well-founded part] Let G be a graph, v be one of its nodes, and

n ∈ N. The n-well-founded part of v, wf n(v), is defined as follows:

wf n(v)
def
=

⎧⎪⎨
⎪⎩

{w | v � w and w is well-founded} if n = 0

{wf n−1(w) | v � w and w is non-well-founded} otherwise

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 113

Notice that wf n(v) can be represented as a graph. In particular, this can be

computed taking the unravelling of G of order n starting from v and using only the

non-well-founded nodes reachable from x. Then the well-founded trees are attached

to the leaves.

Notice also that if v is well-founded, then wf 0(v) ∼ v, while for each n > 0 it

holds wf n(v) = ∅.
Example 7.8 Let us consider the graph depicted in Fig. 1. The succession of the

n-well-founded parts of its nodes for n up to 4 are reported in Table 2.

n wf n(0) wf n(1) wf n(2) wf n(3) wf n(4)

0 ∅ {0} {0, 1} ∅ {1}
1 ∅ ∅ {∅} {{0, 1}} {∅}
2 ∅ ∅ {{{0, 1}}} {{∅}} {{{0, 1}}}
3 ∅ ∅ {{{∅}}} {{{{0, 1}}}} {{{∅}}}
4 ∅ ∅ {{{{{0, 1}}}}} {{{{∅}}}} {{{{{0, 1}}}}}

Table 2
The n-well-founded parts for n upto 4 of the graph of Fig. 1

Lemma 7.9 Let G be a graph. If wf n(v) ∼ wf n(w) for each n ∈ N, then v
m∼ w for

each m ∈ N.

Proof. By counter nominal we prove that if there exists m such that v
m
	∼ w, then

there exists n such that wf n(v) 	∼ wf n(w). Let m be the minimum such that v
m
	∼ w.

We proceed by induction on m. Since v
0∼ w holds by definition of

0∼, m should be

greater or equal to 1.

Base: m = 1. If there existed v � v′ and w � w′, then v
1∼ w should hold because

v′ 0∼ w′ by definition of
0∼. Hence, one between v and w should has no succes-

sors. We assume with no restriction that v � v′ and w has no successors. If v′

is well-founded, then wf 0(v) 	= ∅, wf 0(w) = ∅ and wf 0(v) 	∼ wf 0(w) hold. If

v′ is non-well-founded, then wf 0(v′) ∈ wf 1(v). However, w has no successors

and, hence, wf n(w) = ∅ for all n ∈ N. It follows that wf 1(v) 	∼ wf 1(w).

Inductive Step: m > 1. By hypothesis, v
m
	∼ w. Hence, we can safely assume that

there exists v � v′ such that v′
m−1
	∼ w′ for each w � w′. If v′ is well-founded,

then v′ ∈ wf 0(v) and for each w′ ∈ wf 0(w) v′ 	∼ w′. Hence wf 0(v) 	∼ wf 0(w).

If v′ is non-well-founded, then, by inductive hypothesis on m − 1, we have

that there exists n such that wf n(v′) 	∼ wf n(w′) for each w � w′. Since

wf n(v′) ∈ wf n+1(v), we conclude that wf n+1(v) 	∼ wf n+1(w).

�

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118114

Theorem 7.10 Let G be a graph and v and w be two of its nodes. Then wf n(v) ∼
wf n(w) for all n ∈ N if and only if v ∼ w.

Proof. We separately prove that if wf n(v) ∼ wf n(w) for all n ∈ N, then v ∼ w

(⇒) and that if v ∼ w, then wf n(v) ∼ wf n(w) for all n ∈ N (⇐).

⇒) By Lemma 7.9 we have that v
m∼ w holds for each m ∈ N. Hence, the thesis

follows from Theorem 7.6.

⇐) Let Sn = {(wf i(x),wf i(y)) | i ≤ n and x, y ∈ V are bisimilar}. By induction on

n we prove that Sn is a bisimulation up-to ∼.

Base: n = 0. Let (wf 0(x),wf 0(y)) ∈ S0 If wf
0(x) � x′, then x′ is well-founded

and x � x′ is in G. Since x and y are bisimilar, there exists an edge y � y′

such that x′ ∼ y′. This proves the claim for n = 0.

Inductive Step: n > 0. Let (wf j(x),wf j(y)) ∈ Sn. If j < n, then Sj is a

bisimulation-up-to ∼ by inductive hypothesis. Moreover, Sj is included in

Sn by definition of Sn. This proves the thesis for j < n. If, otherwise, j = n

and x′ ∈ wf n(x), there exist x � x′′ in G such that x′ = wf n−1(x′′) and

x′′ non-well-founded. From x ∼ y, it follows that there exists y � y′ in G

and x′′ ∼ y′. Since x′′ is non-well-founded, y′ has to be non-well-founded.

Hence, wf n−1(y′) ∈ wf n(y) and (wf n−1(x′′),wf n−1(y′)) ∈ Sn.

This concludes the proof. �

The Ackermann code is a bijective function that maps well-founded hereditarily

finite sets into Natural numbers [1]. Classically, it is defined as:

NA(S)
def
=

∑
p∈S

2NA(p).

The following definition extends Ackermann code and provides an encoding for

the well-founded nodes of any –possibly, neither hyper-extensional nor well-founded–

graph.

Definition 7.11 [Ackermann code] LetG be a graph. The Ackermann code N (G, x)

of any well-founded node x of G is defined as:

N (G, x)
def
=

∑
k∈SN (G,x)

2k (3)

where SN (G, x) = {N (G, x′) | x � x′ in G}
It is easy to see that, if S is a well-founded hereditarily finite sets, pS is the

corresponding node in the membership graph GS , and p is a node of a graph G such

that p and pS are bisimilar, then N (GS , pS) = N (G, p) = NA(S).

Corollary 7.12 Let G be a graph. There exists n ∈ N such that N (G,wf n(x)) 	=
N (G,wf n(y)) if and only if x 	∼ y.

From now on we use the notation N n(G, x) to denote N (G,wf n(x)).

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 115

Lemma 7.13 Let G be a graph and x ∈ G. It holds that

N 0(G, x) =
∑

k∈S0
N (G,x)

2k (4)

where S0
N (G, x) = {N (G, x′) | x � x′ in G and x′ is well-founded}. Moreover,

N n(G, x) =
∑

k∈Sn
N (G,x)

2k (5)

where Sn
N (G, x) = {N n−1(G, x′) | x � x′ in G and x′ is non-well-founded}.

Proof. This is an immediate consequence of the definitions. �

Lemma 7.14 Let G be a graph, let x, x′ be two non-well-founded nodes such that

x � x′ in G, and let G′ be G \ (x � x′). If x is non-well-founded even in G′, then:

(a) N n(G′, y) ≤ N n(G, y) for each node y of G and for all n ∈ N;

(b) either N n(G′, y) = N n(G, y) for each node y of G and for all n ∈ N or, let

m ∈ N be the minimum such that there exists z with Nm(G′, z) < Nm(G, z),

both z = x and Nm(G′, y) = Nm(G, y) for all y 	= x hold.

Proof. Item (a) can be proved by induction on n.

As far as item (b) is concerned, we first notice that, since x is non-well-founded

in G′, all the non-well-founded nodes in G remain non-well-founded in G′ Hence,

since both x and x′ are non-well-founded in G, N 0(G′, z) = N 0(G, z) for all nodes

z of G by the definition of N 0(G, ·). Let m ∈ N be the minimum such that there

exists z with Nm(G′, z) < Nm(G, z). By above considerations, m > 0.

By Lemma 7.13, we have that

Nm(G′, y) =
∑

k∈Sm
N (G′,y)

2k

where Sm
N (G′, y) = {Sm−1

N (G′, y′) | y � y′ and y′ is non-well-founded} because m >

0. Since G′ contains all the edges of G, but x � x′, every edge y � y′ in G is

also an edge for G′ if y 	= x. Thus, if y 	= x and m is the minimum such that

Nm(G′, z) < Nm(G, z), we get that Nm−1(G′, y′) = Nm−1(G, y′) for all y′ in G

and Sm
N (G′, y) = {Nm−1(G, y′) | y � y′ and y′ is non-well-founded} = Sm

N (G, y).

Hence, if y 	= x, then,

Nm(G′, y) =
∑

k∈Sm
N (G,y)

2k = Nm(G, y),

and x is the only node of G such that Nm(G′, x) < Nm(G, x). �

Lemma 7.15 Let G be a hyper-extensional graph and let G′ be the graph G \
(x � x′). Either x � x′ is a disposable edge or there exists y in G′ such that x

G′∼ y.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118116

Proof. Let us assume that x � x′ is not disposable. We prove that if the maximum

bisimulation S over G′ is such that Id ⊂ S (meaning that S and identity do not

coincide) and the only pair including x in S is (x, x), then S is a bisimulation over

G. Let (y, z) ∈ S. If (y, z) = (x, x), then it is trivial to prove that the conditions

required to a bisimulation hold. If (y, z) 	= (x, x), then let y � y′ in G. Since, y 	= x

we have y � y′ in G′. Hence, there exists z′ such that z � z′ in G′ and (y′, z′) ∈ S.
Since z 	= x, we get that z � z′ belongs to G and (y′, z′) ∈ S. �

Thanks to Lemmas 7.14 and 7.15, we are now ready to prove the following

theorem.

Theorem 7.16 If G is a pointed hyper-extensional graph that has at least one edge,

then G has a disposable edge v � w.

Proof. Sketch Let H = {x1, . . . , xk} be the set of nodes of G such that N 0(G, x1)

is maximum in G for each i = 1, . . . , k.

If there exists i such that xi is well-founded, then k = 1 and x1 is the root of G.

In this case, it is easy to prove that there exists an edge x1 � y that is disposable.

Let us consider the case in which all the elements of H are non-well-founded.

We can subsequently refine H into H1, H2, . . . by minimizing N 1(G, ·), N 2(G, ·),
. . . . By Corollary 7.12, there exists a minimum j such that Hj = {x}. Let x � y

be an edge of G with y non-well-founded. By Lemmas 7.14 and 7.15 we can prove

that x � y is disposable. �

8 Conclusions and Future Work

In this paper we considered the problem of removing parts from an hereditarily finite

set without causing bisimulation collapses. We exploited a SAGE pipeline that we

implemented to prove that the problem has a negative answer if one is interested

in removing a node. On the other hand, we gave a positive answer in the case

of removal of one edge, provided that only nodes in the same weakly connected

components are compared.

The results in [16] are based on a Markov chain Monte Carlo-based algorithm,

initially proposed for generating acyclic digraphs [11,12]. The key fact needed in

order to show that the Markov chain converges to the uniform distribution were the

irreducibility, aperiodicity, and symmetry of the chain. The idea exploited in the

construction of the Markov chain was to show that a pair of elementary operations

on graphs (implemented as basic transition rules of the Markov chain, akin to the

elimination of a node) could be used to transform any graph G into another graph

G0 within the same family. A positive answer to the one-node elimination problem

would have allowed to immediately extend such results to non-well-founded sets,

getting a random generator for HF1/2.

The positive result we obtained on edges cannot be easily exploited in this

direction and further investigations are required.

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118 117

References

[1] Ackermann, W., Die widerspruchsfreiheit der allgemeinen mengenlehre, Mathematische Annalen 114
(1937), pp. 305–315.
URL http://dx.doi.org/10.1007/BF01594179

[2] Aczel, P., “Non-Well-Founded Sets,” Number 14 in Lecture Notes, Center for the Study of Language
and Information, Stanford University, 1988.

[3] Bender, E., L. Richmond, R. Robinson and N. Wormald, The asymptotic number of acyclic digraphs,
I, Combinatorica 6 (1986), pp. 15–22.

[4] Bender, E. A. and R. W. Robinson, The asymptotic number of acyclic digraphs, II, Journal of
Combinatorial Theory, Series B 44 (1988), pp. 363 – 369.

[5] David, R. L., The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), pp. 486–495.

[6] Dovier, A., C. Piazza and A. Policriti, An efficient algorithm for computing bisimulation equivalence,
Theor. Comput. Sci. 311 (2004), pp. 221–256.

[7] Harary, F. and E. M. Palmer, “Graphical enumeration,” Addison-Wesley, 1973.

[8] Hennessy, M. and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1985),
pp. 137–161.
URL http://doi.acm.org/10.1145/2455.2460

[9] Kanellakis, P. C. and S. A. Smolka, CCS expressions, finite state processes, and three problems of
equivalence, in: Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Montreal, Quebec, Canada, August 17-19, 1983 (1983), pp. 228–240.

[10] McIlroy, M. D., Calculation of numbers of structures of relations on finite sets, in: Quarterly Progress
Reports No. 17, MIT Research Laboratory of Electronics, 1955 .

[11] Melançon, G., I. Dutour and M. Bousquet-Mélou, Random generation of directed acyclic graphs, in:
J. Nesetril, M. Noy and O. Serra, editors, Comb01, Euroconference on Combinatorics, Graph Theory
and Applications, Electronic Notes in Discrete Mathematics 10, 2001, pp. 202–207.

[12] Melançon, G. and F. Philippe, Generating connected acyclic digraphs uniformly at random, Information
Processing Letters (2004), pp. 209–213.

[13] Milner, R., “A Calculus of Communicating Systems,” Lecture Notes in Computer Science 92, Springer,
1980.
URL http://dx.doi.org/10.1007/3-540-10235-3

[14] Omodeo, E. G., C. Piazza, A. Policriti and A. I. Tomescu, Hyper-extensionality and one-node
elimination on membership graphs, in: Proceedings of the 29th Italian Conference on Computational
Logic (CILC 2014), CEUR Workshop Proceedings 1195 (2014), pp. 341–346.

[15] Paige, R. and R. E. Tarjan, Three Partition Refinement Algorithms, SIAM J. Comput. 16 (1987),
pp. 973–989.

[16] Policriti, A. and A. I. Tomescu, Markov chain algorithms for generating sets uniformly at random, Ars
Mathematica Contemporanea 6 (2013), pp. 57–68.

[17] Redfield, J., The theory of group-reduced distributions, American Journal of Mathematics 49 (1927),
pp. 433–455.

[18] Sloane, N., The on-line encyclopedia of integer sequences, published electronically at http: // oeis. org ,
2010, Sequence A000273.

[19] Sloane, N., The on-line encyclopedia of integer sequences, published electronically at http: // oeis. org ,
2010, Sequence A001192.

[20] Stein, W. et al., “Sage Mathematics Software (Version 6.5),” The Sage Development Team (2015),
http://www.sagemath.org.

[21] Wagner, S., Asymptotic enumeration of extensional acyclic digraphs, Algorithmica 66 (2013), pp. 829–
847.
URL http://dx.doi.org/10.1007/s00453-012-9725-4

A. Casagrande et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 103–118118

http://dx.doi.org/10.1007/BF01594179
http://doi.acm.org/10.1145/2455.2460
http://dx.doi.org/10.1007/3-540-10235-3
http://oeis.org
http://oeis.org/A000273
http://oeis.org
http://oeis.org/A001192
http://www.sagemath.org
http://dx.doi.org/10.1007/s00453-012-9725-4

	Introduction
	Hereditarily Finite Sets
	From hereditarily finite sets to graphs
	Enumerating hereditarily finite sets
	Do non-keystone always exist?
	Hyper-extensionality and connected components
	Do disposable edges always exist?
	Conclusions and Future Work
	References

