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Abstract. The accurate prediction of the performances of axial water turbines and naval
propellers is a challenging task, of great practical relevance. In this paper a numerical prediction
strategy, based on the combination of a trusted CEFD solver and a calibrated mass transfer model,
is applied to the turbulent flow in axial turbines and around a model scale naval propeller, under
non-cavitating and cavitating conditions. Some selected results for axial water turbines and a
marine propeller, and in particular the advantages, in terms of accuracy and fidelity, of Scale-
Resolving Simulations (SRS), like SAS (Scale Adaptive Simulation) and Zonal-LES (ZLES)
compared to standard RANS approaches, are presented. Efficiency prediction for a Kaplan
and a bulb turbine was significantly improved by use of the SAS SST model in combination
with the ZLES in the draft tube. Size of cavitation cavity and sigma break curve for Kaplan
turbine were successfully predicted with SAS model in combination with robust high resolution
scheme, while for mass transfer the Zwart model with calibrated constants were used. The results
obtained for a marine propeller in non-uniform inflow, under cavitating conditions, compare well
with available experimental measurements, and proved that a mass transfer model, previously
calibrated for RANS (Reynolds Averaged Navier Stokes), can be successfully applied also within
the SRS approaches.

1. Introduction

CFD has been a useful tool for flow analysis and efficiency prediction of axial turbines and marine
propellers for more than 20 years. Regarding water turbines, while the effect of modifications of
a runner and other turbine parts on efficiency can be quite accurately estimated, the prediction
of absolute efficiency value for different operating regimes is still a challenge. The main problem
is an inaccurate flow simulation in a draft tube. RANS models including the SST model, which
became a standard in turbo machinery, are not able to model flow in the draft tube accurately. In
recent years an intensive research about numerical flow analysis in axial turbines was performed
in Turboingtitut [1]. Steady state simulations were done by different turbulence models on grids
with different refinements near the walls. At some operating points also transient simulations
were done by SST (Shear Stress Transport) and SSG RSM (Reynolds Stress Model) models. On
the basis of the results it was concluded, that none of the used turbulence models predicted the
efficiency at all operating regimes accurately. With grid refinement some improvements were
achieved but the results were still not satisfactory. This was the motivation for time dependent
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simulations by more advanced turbulence models, the SAS SST and ZLES. The improvement
of results for a Kaplan turbine was presented in [2]. Even greater improvement was achieved in
case of a bulb turbine [3]. Recently, in the frame of ACCUSIM project, cavitation prediction
and its effect on efficiency of the Kaplan turbine was obtained. Also for the bulb turbine the
results were additionally improved by zonal LES model on refined grids [4]. For both turbines a
comparison of numerical results to the experimental ones is presented in this paper.

For marine propellers, the predictions of their performances under non-uniform inflow conditions
(i.e. wake) and under cavitating conditions is still challenging. In this paper, we will present
how a proper combination of a previously calibrated mass transfer model, together with a SAS
SST turbulence approach, provides a prediction of the cavitating flow pattern which agrees well
with the experimental visualizations.

2. Turbulence models and discretisation schemes

In the analysis reported in this paper, several turbulence models were used: the SST model [5],
the SAS SST [6] (hereafter SAS) and the ZLES model [7]. The main idea of the ZLES model
is to resolve the flow inside a predefined zone with the LES model, whereas outside the zone
a RANS model, either steady or unsteady, is used. At the zone boundaries a Harmonic Flow
Generator (8] is used to produce synthetic turbulence. In the simulations of water turbines the
zone started just after the interface between the runner and the draft tube, and it is extended
to the outlet of the computational domain. Some turbulence models were used in combination
with the curvature correction (CC) |9] and with the Kato-Launder limiter (KL) [10] of turbulence
production. The CC and KL options were used for water turbines simulations with SST, SAS and
ZLES models. In the simulations, we used either "high resolution’ (HRS) or the bounded central
difference scheme (BCDS). The high-resolution scheme is a bounded second order upwind biased
discretisation, based on the procedure of the Barth and Jespersen’s scheme [11]. The bounded
central difference scheme (BCDS) is based on the normalised variable diagram and blends from
the CDS scheme to the first-order upwind scheme when the convection boundedness criterion
[12] is violated. The BCDS was used in combination with SAS and ZLES models, whereas HRS
was used in combination with the SST and in order to check the effect of discretisation scheme
in some cases also with the SAS turbulence approach.

3. Cavitation and mass transfer models

Cavitating flows can be modelled using several methods. An excellent review of different methods
is provided for instance by Koop [13|. In this work we used the homogeneous transport equation
based model |14, 15|, described in the following.

3.1. Governing equations

As already indicated the cavitating flow is modelled as a mixture of two species i.e. vapour and
liquid behaving as a single one, where both phases share the same velocity as well as pressure
fields.

In the case of the RANS approach to turbulence, employing the eddy viscosity models and
assuming both liquid and vapour phases incompressible, turbulent cavitating flows can be
described by the following set of governing equations:
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which are, in order, the volume continuity and the momentum equation for the liquid-vapour
mixture and the volume fraction equation for the liquid phase. In the above equations pr,
(kg/m?) and py (kg/m?) are the liquid and vapour densities, respectively. U (m/s) is the
averaged velocity and P (Pa) the averaged pressure. S represents the additional momentum
sources (for instance the Coriolis and centrifugal forces in the rotating frame of reference). = is
the water volume fraction which is related to the vapour volume fraction « through the volume
fraction constraint:

vy+a=1 (4)

The mixture density p (kg/m?3) and laminar dynamic viscosity u (kg/ms) are evaluated according
to:

p=7pL+ (1 —=7)pv (5)

p=ypr+ (1 —7)py (6)
where py, (kg/ms) and py (kg/ms) are the liquid and vapour dynamic viscosities, respectively.
m (kg/m3s) represents the inter-phase transfer rate due to cavitation. In this study 7 was
modelled using a mass transfer model briefly presented in the next section.

Finally, in order to close the system of the governing equations, the mixture turbulent viscosity
e (kg/ms) was evaluated using one of the turbulence models, developed for the single phase
flows, indicated in 2.

8.2. Mass transfer model

The mass transfer model describes/regulates the interphase mass transfer rate due to cavitation.
In the past, three different mass transfer models have been considered by the present authors,
and their empirical constants have been properly calibrated and validated [16, 17, 18].

Here only the Zwart model, with the calibrated constants, was used, together with a SAS
turbulence model.

3.2.1. Zwart model The Zwart model is the native ANSYS CFX mass transfer model. It is
based on the the simplified Rayleigh-Plesset equation for bubble dynamics [19]:

_Fe37’nuc(1—a)/?v gPV_P ZfP<PV
Rp V3 oL

= (7)

e
p3orv 2 v if P> Py
Rp 3 oL

In the above equations, Py is the vapour pressure, 7,, is the nucleation site volume fraction,
Rp is the radius of a nucleation site, F, and F, are two empirical calibration coefficients for the
evaporation and condensation processes, respectively.

4. Improvement of performance prediction for axial turbines with advanced
turbulence models

4.1. Efficiency and cavitation prediction for Kaplan turbine

The results of a detailed numerical analysis of flow in a 6-blade Kaplan turbine which operates
at middle head are presented. Numerical simulations were done for three angles of runner blades
at constant head (see table 1).
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Table 1. Local best efficiency points for three angles of runner blades of the Kaplan turbine.

Operating point  3° ¢/vppp Y/VBEP

OP1 12 0.64 0.86
OP2 20 0.95 0.86
OP3 28 1.31 0.86

The turbine consists of semi-spiral casing with two vertical piers, 11 stay vanes and a nose, 28
guide vanes, a 6-blade runner and an elbow draft tube with two vertical piers. Tip clearance was
modelled while hub clearance was neglected. The grid in the spiral casing with stay vanes was
unstructured, while the grids in the other turbine parts were structured. Near the walls the grids
were refined to get recommended values of y™. For the draft tube and the draft tube prolongation,
basic and refined grids were used (table 2). For the other turbine parts, our previous studies [1]
showed that with additional refinement only a negligible improvement of results can be obtained.
The computational grid for the complete computational domain can be seen in Fig. 1.

Table 2. Number of nodes for the Kaplan turbine parts for the basic grid - BG, and the fine
grid - FG.

Turbine part Number of nodes
Semi spiral casing with stay vanes 1,480,999
Guide vane cascade 2,755,496
Runner 1,858,374
BG FG
Draft tube 1,786,432 6,169,935
Draft tube prolongation 398,056 1,681,992
Total 8,279,357 13,946,796

Detailed results of steady state analysis performed on the basic grid are presented in [2]. At
OP1 and OP2 all turbulence models predicted the efficiency values rather well. At OP3, the
discrepancy between calculated and measured efficiency values was very large, larger than 4 %.
We tried to improve the results at OP3 with transient simulations using SST, SAS and ZLES
turbulence models (Fig. 2).

The values of calculated efficiency differ mostly due to different values of flow energy losses in
the draft tube and different values of torque. The efficiency value calculated from the steady state
solution with SST HRS was 4.42% smaller than the measured one. With transient analysis the
results improved significantly. With SST HRS and SAS HRS the efficiency values were smaller
than the measured ones by 1.01% and 0.24% respectively. The agreement between measured and
numerical values is excellent for SAS BCDS and ZLES BCDS, where the discrepancy is 0.09%
and 0.05%, respectively. Based on the results it can be concluded that the SAS and ZLES models
with BCDS are suitable for flow simulation at operating points with large discharge. Results
obtained by SAS HRS are less accurate mostly due to underestimated torque. Comparing the
results of ZLES BCDS on fine and basic grids it was seen that the effect of grid density on the
efficiency was negligible. Therefore, for transient simulations for different operating regimes the
basic grid was used.
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Figure 1. Computational domain and grid for the Kaplan turbine.
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Figure 2. Kaplan turbine - flow energy losses, torque on the shaft and efficiency at OP3. 0 -
Experiment; 1 - steady state SST, HRS, FG; 2 - transient SST, HRS, FG; 3 - SAS, HRS, FG; 4
- SAS, BCDS, FG; 5 - ZLES, BCDS, FG; 6 - ZLES, BCDS, BG.

In Fig. 3 flow in the draft tube obtained with steady state SST and transient ZLES is
presented. In case of steady state analysis by SST model there is a large swirl at the end of
the cone which is by transient simulations nearly completely reduced. Streamlines obtained
by the ZLES model are more curled than those obtained by the SST. Vortex structures are
represented in Fig. 3(b) and 3(d). By representing viscosity ratio (ratio between eddy and
molecular viscosity) it is possible to figure out the amount of modelling in the SST case, and
scale-resolving in the ZLES base. By the steady state SST only large vortex structures in the
flow were obtained but with the ZLES also small vortex structures were well resolved.

The diagram in Fig. 4 shows a clear distinction between the steady-state simulations and the
ZLES, especially at the runner blade angle 28°, where the decrease of calculated flow energy
losses in the draft tube was the largest. At the local best efficiency point for runner blade angle
12°(OP1), the calculated and measured values are practically the same. At OP2 (blade angle
20°), the efficiency value obtained with ZLES is about 0.5% smaller than the measured one. The
efficiency values at the first three points on the ZLES curve for blade angle 28°agree with the
measured results well. At higher discharge, the discrepancy increases. Peak to peak difference
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Figure 3. Kaplan turbine - streamlines and velocity contours in the draft tube (left) and
isosurfaces of velocity invariant @@ = 0 (right). Results obtained on fine grid at OP3.

in efficiency values is 0.44% but numerically obtained position of the local best efficiency point
is shifted to the left. The tendency that numerical prediction is less accurate at operating points
with large discharge still remains, but the improvement with the ZLES model is significant.

g i
1'88 | OP2 | [oP3 [T |OP4]]
0.98 / ‘m A ——Experiment
0.97 4 N ——Steady state SST
- —=—Steady state SSG RSM
® 0.96 i e LES
S 095 /
0.94
4
0.93 fJ ﬁ
0.92

05 06 07 08 09 10 11 12 13 14 15
O/ gep

Figure 4. Efficiency diagram for Kaplan turbine - experimental and numerical results.

Cavitation prediction was done at the operating point OP4 (see Fig. 4) because for this point
the cavitation was being observed on the test rig and sigma break curve was measured. Two-
phase flow simulations are usually less stable, therefore SAS model in combination with robust
HR scheme was used instead of ZLES model with BCDS. Cavitating flow was simulated using
the homogeneous model. Mass transfer rate due to cavitation was regulated by the Zwart model
using vaporization and condensation parameters previously calibrated on a hydrofoil [16, 17].
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In order to determine the effect of cavitation on turbine efficiency (sigma-break curve)
successive simulations were performed lowering the reference pressure. Steady-state simulations
were performed using the MRF (Multiple Reference Frame) approach in combination with the
frozen rotor frame/change mixing model. Time-dependent simulations were performed using
sliding grids. The first transient simulation that started from steady-state solution was done for
non-cavitating conditions. To get the correct flow in the draft tube and stable value of efficiency
20 runner revolutions were needed. For each value of reference pressure three additional runner
revolutions were needed.

Numerical results were compared with the observation of cavity size (Fig. 5) on the test rig
and with the measured sigma-break curve (Fig. 6). Steady-state simulations did not predict
the same extent of cavitation on all blades due to the frozen rotor condition, which somehow
preserved differences in circumferential direction. With transient simulation the same amount
of cavitation on all runner blades was obtained and the shape and extend of sheet cavitation
agreed well with the cavitation observed on the test rig. As already seen in Fig. 4 steady-
state simulations significantly under-predicted the efficiency, but the value of sigma, where the
efficiency dropped for 1%, agreed well with the experimental result (see Fig. 6). With transient
simulations the same amount of cavitation on all runner blades was obtained and the shape and
extend of sheet cavitation agreed well with the cavitation observed on the test rig (see Fig. 5).
Transient simulations predicted the efficiency more accurately, but the value of sigma where the
efficiency dropped for 1% was a bit too large.

Figure 5. Kaplan turbine - cavity on runner blades: a) observation on test rig, b) steady state
simulation, ¢) time dependent simulation, Th=0.52.
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Figure 6. Sigma break curve for Kaplan turbine - experimental and numerical results at OP4.

4.2. Bulb turbine
The bulb turbine considered in this study consists of an inlet part with a vertical pier, 16 guide
vanes, 3-blade runner and a draft tube. All simulations were done for a turbine model with
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runner diameter D=350 mm. The model was tested on a test rig in accordance with international
standard TEC 60193 [20].

Numerical simulations were done for three angles of runner blades and two values of head.
The complete results obtained by steady state simulations with the SST turbulence model and by
transient simulations with ZLES on the basic grid are presented in [3, 4]. This paper is focused
on the local best efficiency point for maximal runner blade angle at smaller head (5 = 28°,
o/epep = 1.29, ¢ /Yppp = 0.61). At this operating regime, the difference between numerical
and experimental results was the largest.

To see the effect of grid density on results several computational grids were used (see Tab.
3). The basic grid (BG) with about 9 x 10°% nodes is like the grids that are usually used in our
simulations. Fine grid 1 (FG1) is in comparison to BG refined only in the draft tube and draft
tube extension. FG2 is equal to BG everywhere except in the runner where the grid was refined.
FG3 has refined grids in the runner, draft tube and draft tube extension. FG4 is equal to FG1
except in the draft tube and draft tube extension where the grids were additionally refined near
walls in order to get for ZLES recommended values of y*. Coarse grid (CG) with about 2.2 x 10°
nodes was used to check whether simulation time could be reduced without too large effect on
accuracy of results. The basic computational grid on the whole domain can be seen in Fig. 7.

Due to the frozen rotor condition strong wakes behind the runner blades were obtained and
in the region where conical shape of the draft tube changed into a rectangular one a large swirl
formed (see Fig. 8(a)). Transient simulations started from the steady state results. During the
simulations the swirl was moving towards the outlet and after 22 runner revolutions completely
vanished (see Fig. 8(b)).

Comparison of numerical results to the measurements is presented in Fig. 9. Steady state
analysis failed to predict efficiency for more than 14% due to overestimated losses in the draft
tube and underestimated torque on the shaft. Transient simulations with ZLES significantly
improved the results. Positive effect of grid refinement in the draft tube is clearly seen. While
with grid refinement in the runner only, no improvement was obtained, the best results were
obtained when both grids, in the runner and in the draft tube were refined. In this case (FG3),
discrepancy between predicted and measured values of torque on the shaft and turbine efficiency
were equal to 1.46% and 2.09%, respectively.

Table 3. Number of nodes in computational grids for bulb turbine

Inlet Guide Draft Draft
part vane Runner tube  tube ext. Total

Coarse grid 223,375 1,032,976 531,603 211,428 170,332 2,169,714
Basic grid 1,394,720 2,059,568 2,076,603 1,936,188 1,573,336 9,040,415
Fine grid 1 1,394,720 2,059,568 2,076,603 16,324,636 13,176,576 35,032,103
Fine grid 2 1,394,720 2,059,568 6,289,611 1,936,188 1,573,336 13,253,423
Fine grid 3 1,394,720 2,059,568 6,289,611 16,324,636 13,176,576 39,245,111
Fine grid 4 1,394,720 2,059,568 2,076,603 22,202,052 17,885,592 45,708,535

5. Cavitation prediction on a propeller in non-uniform inflow

The numerical predictions of the cavitating E779A model propeller in non-uniform inflow were
carried out [21] following the experimental/numerical setup described in [22]. In particular,
here, we point out that on the domain Inlet the non-homogeneous inflow (nominal wake), kindly
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Figure 7. Computational domain and basic grid for bulb turbine.
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Figure 8. Bulb turbine - flow in the draft tube presented by streamlines and velocity contours,
and ratio between eddy viscosity and dynamic viscosity on mid cross-section.
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Figure 9. Bulb turbine - comparison of numerical results to the experimental values.

provided by CNR-INSEAN (private communication) was set. On Outlet boundary a fixed value
of static pressure was imposed. On the solid surfaces the no-slip wall condition was enforced.
The simulated case is schematically presented in Fig. 10. The Fixed domain used a structured
numerical grid with 3.3 x 10° nodes, whereas the Rotating domain was meshed as an unstructured
hexa-core grid with 7x10% nodes. As already described, the cavitation is predicted with the Zwart
mass transfer model, with constants previously calibrated on a hydrofoil, using the SAS SST
turbulence model. The numerical results agree qualitatively well with the available experimental
snapshots describing the cavitation bubble evolution, as reported in figure 11.
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Figure 11. Cavity evolution during propeller rotation. Numerical cavitation patterns depicted
using isosurfaces of vapour volume fraction equal to 0.1.

Concluding remarks

On the basis of the detailed analysis of flow in a Kaplan turbine and in a bulb turbine by different
turbulence models, and a marine propeller with non-uniform inflow under cavitating conditions,
the following conclusions can be drawn:

e For both Kaplan and bulb turbines, it was found out that steady state analysis is not
suitable for all operating regimes. While for Kaplan turbine the prediction of efficiency by
RANS models was inaccurate only at full rate, for bulb turbine steady state simulations
entirely failed. In both cases the main reason for discrepancy between measured and
calculated efficiency was the flow in the draft tube, where calculated flow energy losses
were overestimated.

e For both turbines the accuracy of results was significantly improved by using ZLES model.
For Kaplan turbine the discrepancy was everywhere smaller than 0.8%. For bulb turbine,
in spite of large improvement, the discrepancy with measurements was even on the finest

grid still 2.09%.

e In the case of the Kaplan turbine the steady-state and time-dependent approaches were
compared for the evaluation of the effect of the cavitation on turbine efficiency. The
time dependent simulations with SAS SST turbulence model predicted the efficiency more
accurately, even though a slightly premature break down of the efficiency was observed.

e In the case of a marine propeller the numerical results, obtained using the SAS SST

turbulence approach with a properly calibrated cavitation model, compared qualitatively
well with the available experimental data.
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