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1 Introduction

Constrained superfields can play an important role in supersymmetric theories and have

been subject to intensive research during the past few years. The simplest case is the

nilpotent chiral superfield X (X2 = 0) (see for instance [1–5] and references therein). X

has a single propagating component, the Volkov-Akulov goldstino [6], and supersymmetry

(susy) is broken by its F-term. The supersymmetry is realised nonlinearly, but it can

nevertheless be represented by the standard supersymmetric couplings of chiral, gauge and

gravity superfields coupled to the goldstino superfield X. Implementing this idea into the

low energy effective action of string compactifications allows to describe the presence of

the anti-brane by using a supersymmetric action.

In type IIB flux compactifications [7–11] the presence of an anti-D3-brane, as proposed

by Kachru, Kallosh, Linde and Trivedi (KKLT) in [12], provides probably the simplest and

more model independent realisation of de Sitter (dS) space in string theory.1 The anti-brane

breaks the supersymmetry preserved by the rest of the compactification background at the

(warped) string scale. In the original paper, its positive contribution to the supergravity

scalar potential was simply added as an explicitly supersymmetry breaking term to the

supergravity effective action. For this reason, the control over such non-supersymmetric

effective field theory was questioned.2 Describing the effective field theory (EFT) that

captures the physics of this anti-brane in terms of a purely supersymmetric formulation is

then highly desirable. Recently there has been progress in this direction. The de Sitter

supergravity couplings were studied in [40–47] and the KKLT uplifting term was reproduced

in the supergravity framework in [48–50]. Finally, in [50] explicit string constructions

were presented in which an anti-D3-brane at the tip of a flux-induced throat has only the

goldstino as its massless degree of freedom, justifying the use of the nilpotent field X to

describe the anti-brane. A complementary approach has been recently presented in [51],

where the authors introduce a locally supersymmetric generalisation of the Volkov-Akulov

goldstino action that describes a non-BPS D3-brane in superspace and couple it to the

minimal N = 1 4D supergravity.

Over the past decade much work has been dedicated to the effective field theory of

moduli stabilised de Sitter vacua. Both the KKLT [12] and Large Volume (LVS) [52]

scenarios have been explored in order to extract the low energy properties of chiral matter

fields. It is the purpose of this article to revisit and compute the soft breaking terms induced

by the presence of the nilpotent superfield X. We recall that even though in KKLT the

anti-D3-brane is the source of supersymmetry breaking, in LVS the anti de Sitter (AdS)

minimum is already non-supersymmetric with the F-term of the volume modulus providing

the main source of supersymmetry breaking. It is anyway desirable to have all the sources of

supersymmetry breaking described in terms of the same supergravity effective field theory.

Before studying the soft susy breaking terms, we briefly review the properties of the

nilpotent goldstino superfield X and its couplings in the supergravity effective action in sec-

1See [13–22] for other mechanisms to find dS vacua in the EFT of type IIB flux vacua and [23–27] for

explicit realisations in concrete models.
2In the last years a debate on the (meta)stability of this setup was raised by [28–30]. Recent development

can be found in [31–39].
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tion 2. We constrain the moduli dependence of its contribution to the Kähler potential and

to the superpotential, by matching the generated uplift term to the scalar potential with

the one generated by an anti-D3-brane. We found that a compact logarithmic no-scale form

of the Kähler potential is in principle possible if one relation between the coefficients of the

relevant terms holds. Section 3 is devoted to describe the physics of string compactifications

with both D3 and anti-D3-branes. We briefly recall the discussion of warped compacti-

fications with mobile D3-branes presented in [53] by Kachru, Kallosh, Linde, Maldacena,

McAllister and Trivedi (KKLMMT). We are also able to reproduce the brane/anti-brane

Coulomb interactions by adding a coupling between X and the D3-brane moduli in the

superpotential. We finally estimate the potential instability due to the brane/anti-brane

attraction and find that this is usually too weak to compete with the generic magnitude of

soft scalar masses (that stabilise the D3-brane position). However for the case of ultralo-

cal scalar masses discussed in [54, 55] there are several cancellations and the soft masses

become of order O(m3/2/V). We find that this value is at the border of the stability bound.

In sections 4 and 5 we study susy breaking for KKLT and LVS. In section 4 we extend

the analysis started in [50], where the soft breaking terms in KKLT were computed by using

the nilpotent superfield formalism. Generically the spectrum is split in the sense that scalar

masses are a few orders of magnitude larger than gaugino masses. This is not the case for

D3-branes at singularities if the Kähler potential can be put in the compact logarithmic

form we mentioned above. When this happens, there are cancellations in the scalar masses

that make the subleading contributions relevant. The most important ones come from

leading order α′ corrections. Including them, we find the non-vanishing values of scalar

masses and we compare them with those coming from anomaly mediation which at this

level can be competitive. The resulting structure of soft terms for the KKLT case has some

analogies with the one originally found using other techniques by [16, 56–58]. In particular,

the form of the leading contribution of the scalar masses is very similar: it is proportional

to the gravitino mass and the overall factor depends on the Kähler metric of the matter

fields and of the chiral multiplet responsible for the uplift. Moreover, for a particular

value of this coefficient, the leading contribution is zero and the subleading terms become

important. There are however some differences: first of all, in our case the (uplifting)

chiral superfield is constrained (nilpotent) and it is claimed to have a specific origin (it

describes the only degree of freedom of an anti-D3-brane on top of an orientifold O3-plane

in presence of three-form fluxes); moreover, its Kähler metric is different with respect to the

one used in the original paper. Second, we relate the possible vanishing of the leading term

in the scalar masses to a conjectured logarithmic form of the Kähler potential (in analogy

with how the D3-brane fields behave). Third, we consider more effects contributing to

the subleading terms in the soft masses, i.e. both non-perturbative and α′ corrections and

anomaly mediation contributions, that can compete to avoid or force tachyonic masses.

In section 5 we revisit LVS soft breaking terms that have been recently studied in [55]

using different sources of uplifting. We consider the sequestered scenario (like in [54, 55])

in which the uplifting mechanism is relevant. We found a very similar soft term structure.

In section 6 we outline the phenomenological and cosmological implications of each of the

scenarios described in sections 4 and 5. In section 7 we conclude. In the appendices we

discuss the soft terms for D7-branes and the anomaly mediation effects.
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2 Effective field theory of the nilpotent goldstino

When supersymmetry is spontaneously broken in supergravity effective theories, the gold-

stino is eaten by the gravitino realising the super-Higgs effect. If this breaking happens

at low energies compared with the Planck mass, the goldstino couplings can be described

by introducing a (constrained) independent superfield in the supergravity effective action.

This has a non-linearly realised supersymmetry, as in the original Volkov-Akulov formalism.

Sometimes the process of supersymmetry breaking is not fully under control, like for

example in situations with strongly coupled systems or in D-brane models in which the

presence of different objects can break supersymmetry (sometimes even partially). It is

nevertheless important to have control on the low energy effective theory in which super-

symmetry is non-linearly realised. Over the years there have been several approaches to

describe the low energy couplings of the goldstino in terms of spurion or constrained super-

fields (see for instance [5] and references therein). We will describe the goldstino in terms

of a chiral superfield X that is further constrained to be nilpotent, i.e. X2 = 0. This has

been claimed to be the right approach to deal with the breaking of supersymmetry induced

by the presence of an anti-D3-brane in flux compactifications [48–50].

The couplings of a nilpotent chiral superfield can be described in terms of very simple

Kähler potential K, superpotential W and gauge kinetic function f as follows:

K = K0 +K1X + K̄1X̄ +K2XX̄, W = ρX +W0, f = f0 + f1X, (2.1)

where K0,K1,K2, ρ,W0, f0, f1 may be functions of other low energy fields. Higher powers

of X are not present in K and W because X2 = 0.

Furthermore the nilpotency condition implies a constraint on the components of the

chiral superfield X, where

X = X0(y) +
√

2ψ(y)θ + F (y)θθ̄ , (2.2)

with, as usual, yµ = xµ + iθσµθ̄. In fact, imposing X2 = 0 implies

X0 =
ψψ

2F
. (2.3)

The effective field theory of X with Kähler and superpotential (2.1) reproduces the

Volkov-Akulov action, that has been studied both in global and local supersymmetry. For

the anti-D3-brane in the KKLT scenario, the representation in terms of X is very convenient

since it allows to treat its effect in terms of standard supergravity couplings of matter and

moduli superfields to the nilpotent goldstino.

Recently, it has been shown that the nilpotent superfield is enough to capture all

the anti-D3-brane degrees of freedom when this brane is placed on top of an orientifold

plane [50]: a combination of fluxes and orientifold projections leave the massless goldstino

as the only low energy propagating particle, thus justifying the use of a nilpotent superfield

X to account for the presence of the anti-brane in the low energy effective field theory. The

simplest example is when an O3-plane and an anti-D3-brane are at the tip of the warped
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throat. In this case, the anti-D3-brane does not have a modulus describing its motion, con-

trary to D3-branes in the bulk. This fits with the fact that the scalar component of X is

not a propagating field. Moreover, in calculating the scalar potential, there is no contribu-

tion from X0 and it is consistently set to zero when looking for Lorentz preserving vacuum

configurations as we set all fermions to zero. This simplifies substantially the calculations.

Let us consider the couplings of X with the moduli fields in compactifications of type

IIB string theory on a Calabi-Yau (CY) orientifold.3 In the simplest case of a single Kähler

modulus T , the functions W0 and ρ do not depend on it at the perturbative level, due to

holomorphy and the Peccei-Quinn symmetry T 7→ T +ic. In the Kähler potential (2.1), the

zeroth order term K0 = −3 log(T + T̄ ) is known to be invariant (up to a Kähler transfor-

mation) under the full modular transformation T → (aT − ib)/(icT + d) (a generalisation

of the shift symmetry). If X transforms appropriately, i.e. as a modular form of weight κ,

the quadratic coeffcient is given by K2 = β(T + T̄ )−κ (with β a constant). Moreover, if

the linear term in K is constant the only contribution of X to the F -term scalar potential

is the positive definite term

Vuplift = eKK−1
XX̄

∥∥∥∥∂W∂X
∥∥∥∥2

=
|ρ|2

β(T + T̄ )3−κ . (2.4)

This precisely coincides with the KKLMMT uplift term induced by an anti-D3-brane at

the tip of a warped throat, if the modular weight is κ = 1.4 Regarding the gauge kinetic

function, even though a linear term in X is allowed in general, the fact that the anti-D3-

brane is localised at a particular point in the compactification manifold makes it difficult

to have a direct coupling to gauge fields located at distant D3 or D7-branes. This then

indicates that the anti-D3-brane in a warped throat can be described by an EFT with

K = −3 log(T + T̄ ) + β
XX̄

T + T̄
, W = W0 + ρX, f = f0, (2.5)

where c, ρ,W0, f0 are constant and |ρ|2/β provides the warp factor in KKLMMT.

Due to the nilpotency property of the superfield X, this Kähler potential can also be

written in the form

K = −3 log

(
T + T̄ − β

3
XX̄

)
. (2.6)

We then notice that in the regime when the EFT is valid, i.e. when the anti-D3-brane is

at the tip of the throat, the X superfield couples to T in the Kähler potential in the same

way as the superfield φ describing the D3-brane matter fields,5 i.e. [59, 60]

KD3 = −3 log
(
T + T̄ − α

3
φφ̄
)
∼ −3 log

(
T + T̄

)
+ α

φφ̄

T + T̄
+ · · · , (2.7)

3We consider only situations in which the warping is approximately constant over the compact manifold,

except for one region, where a warped throat is generated (whose volume will be anyway smaller than the

rest of the CY).
4If κ = 0 it would reproduce the original KKLT uplifting term but this holds only for the anti-D3-brane

on an unwarped region and therefore the term is of order the string scale Vuplift ∼M4
s which, if included in

the low energy EFT, would destabilise the vacuum by generating a runaway.
5Here and in the following we will take a simplified model where we write down only one of the three

complex superfields describing the D3-brane positions. Adding the other two would only complicate the

expressions, without changing our results.

– 5 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
6

where in the last step we have made an expansion in 1/(T + T̄ ). One could then conjecture

that the only effect of X in the Kähler potential is to shift the Kähler coordinate T in the

same way as the field φ does. We call this the log hypothesis, as it leads to write the X

inside the log as in (2.6).

When we have both D3-branes and the anti-D3-brane in the background, generically

we can write the Kähler potential as

K = −3 log(T + T̄ ) + α
φφ̄

(T + T̄ )µ
+ β

XX̄

(T + T̄ )κ
+ γ

XX̄φφ̄

(T + T̄ )ζ
+ · · · (2.8)

with modular weights µ = κ = 1 fitting the discussion above. Moreover, if φ and X have

modular weights µ and κ respectively, the corresponding modular weight for the φφ̄XX̄

term should be ζ = µ+ κ. In this case ζ = 1 + 1 = 2.6 This agrees with the log hypothesis

introduced above, that would lead to the Kähler potential

Kno−scale = −3 log

(
T + T̄ − α

3
φφ̄− β

3
XX̄

)
. (2.9)

In fact, expanding this in powers of 1/(T + T̄ ), one obtains (2.8) with the only condition

that γ = αβ
3 . Notice that this is the standard no-scale form [61] of the Kähler potential.

In this paper we want to apply this EFT to the KKLT and LVS scenarios with matter

living on D3-branes. Notice that in KKLT the low energy effective theory is usually written

in terms of the fields with masses of order or below the gravitino mass. These include open

string massless chiral fields as well as Kähler moduli. Supersymmetry is broken at the

minimum of the scalar potential. Both the F-term of X and the F-term of T are different

from zero (with FT � FX). Therefore, the full goldstino field would be a combination of

the fermion in X and the fermion in T , with dominant X component. In LVS already in the

absence of the anti-brane the volume modulus Tb breaks supersymmetry by having a non-

vanishing F-term (FTb 6= 0). Including a nilpotent superfield in the effective action allows to

consider the breaking of supersymmetry induced by fluxes and the one induced by the anti-

brane on equal footing. Again the total goldstino will be a combination of the fermion com-

ponents of X and of the moduli. Even though the dominant component is usually the one

from the Tb field, for sequestered models the X component is relevant and its contribution to

the soft terms must be properly computed. We will address these issues in sections 4 and 5.

3 Warped flux compactifications and nilpotent fields

3.1 Geometric approach

We consider type IIB compactifications on Calabi-Yau (CY) orientifolds in presence of

non-trivial background three-form fluxes. In the work by Giddings, Kachru and Polchinski

(GKP) [7] the solution of the ten dimensional (10D) equation of motion has been studied

(see also [8]). The 10D metric has the following form:

ds2
10 = e2Dηµνdx

µdxν + e−2Dgmndy
mdyn . (3.1)

6This can be seen to be consistent with the fact the FX contribution to the soft scalar masses is of

order m3/2 [50].
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Here e2D(y) ≡ h−1/2(y) is the warp factor, with h(y) satisfying a Poisson-like equation with

sources coming from three-form fluxes and localised objects (brane/orientifold), and gmn is

a Calabi-Yau metric. For zero fluxes this function becomes a constant. For non-zero fluxes,

it provides a factor in front of both the internal and external metric, that varies over the

compact directions. As a result, the compact metric in no-longer CY (only conformally

equivalent to it) and the 4D space-time metric is multiplied by the so-called warp factor.

The warp factor acts as a redshift factor for the objects localised in the compact directions

in regions where e−2D is large (like in [62]). In these regions, points that would be close in

the unwarped CY metric are far away in the physical compact metric. These regions are

called warped throats and their geometry is close to the Klebanov-Strassler (KS) throat [63].

The effective action of warped type IIB compactifications has been studied in [64–73]. Here

we work in the approximation in which the warp factor is almost constant over the whole

compact space, except for a single throat, whose volume is smaller than the rest of the space.

As pointed out in [66], a constant shift of e4D leaves invariant the Poisson equation and

can be identified with (a power of) the CY volume modulus. Furthermore a rescaling of the

Calabi-Yau metric ds2
CY to a unit-volume fiducial metric ds2

CY0
given by ds2

CY = λds2
CY0

can be compensated by a rescaling of the warp factor e2D = λe2A. The warped metric can

then be written schematically as

ds2
10 = V1/3

(
e−4A + V2/3

)−1/2
ds2

4 +
(
e−4A + V2/3

)1/2
ds2

CY0
, (3.2)

which is equivalent to:

ds2
10 =

(
1 +

e−4A

V2/3

)−1/2

ds2
4 +

(
1 +

e−4A

V2/3

)1/2

ds2
CY . (3.3)

Here Ω2 =
(

1 + e−4A

V2/3

)−1/2
is the redshift factor that, in a highly warped region defined

by e−4A � V2/3, behaves as Ω ∼ eAV1/6 � 1.

Let us see the properties of this metric.

• In the large volume limit, i.e. V2/3 � e−4A(y) everywhere, the metric becomes the

standard unwarped metric ds2
10 = ds2

4 + V1/3ds2
CY0

= ds2
4 + ds2

CY.

• In the largely warped regions, where e−2A(y) � V1/3, the internal part of the metric

describing the warped throat becomes close to the KS geometry:

ds2
10 = e2Dw(r)ds2

4 + e−2Dw(r)
(
dr2 + r2ds2

T 1,1

)
, (3.4)

where approximately e−Dw(r) ∼ R
r . This takes its maximal value at the tip of the

throat (r = r0): e−Dw(r0) ∼ R
r0

, where R is the typical size of the throat. In the

GKP [7] compactifications, r0 measures the size of the three-sphere at the tip of the

throat and is given by r0 ∝ V1/6e
− 2πK

3gsM `s. Hence

e4Aw(r0) ∼ e−
8πK
3gsM ≡ e−4% , (3.5)

where gs is the string coupling and K and M are the integral fluxes on the two dual

three-cycles that define the throat.

– 7 –
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• The warped volume VW that relates the 10D and 4D Planck masses is given by

VW =

∫
d6y
√
gCY e

−4D = V
∫
d6y
√
gCY0

(
1 +

e−4A

V2/3

)
∼ V , (3.6)

where the last approximation is valid if the volume of the throat is small compared

to the (large) volume of the CY.

• The tension of an anti-D3-brane in the GKP background induces a positive term in

the scalar potential. This term depends on the anti-D3 position rD3 in the compact

space, i.e. whether it is in a warped or unwarped region:

2T3

∫
d4x
√
−g4 ∼ 2M4

s

V2/3

e−4A(rD3) + V2/3
∼

{
e4A(rD3)

V4/3 for e−4A(rD3) � V2/3

1
V2 for V2/3 � e−4A(rD3)

(3.7)

where we are using T3 = 8π3gsα
′2 ∼M4

s ∼M4
p /V2, with Ms the string scale and Mp

the four dimensional Planck mass. Notice that the first expression gives the uplifting

term (2TD3) in KKLMMT and the second one gives the one written in KKLT.

• In the presence of both large warping regions and large volume it is important to

understand the conditions under which an effective field theory is valid. In these

regions, we have e−4A � V2/3. The massive string states of an anti-brane sitting at

the tip of such a throat are redshifted to lower masses and could be lighter than the

gravitino mass m3/2 ∼ 1/V invalidating the use of a low energy effective field theory

that neglects these states. Their mass is proportional the string scale Ms ∼ V−1/2Mp

redshifted by the factor Ω = V1/6eA. Hence we need to require [21, 66, 74]:

Mw
s ∼ ΩMs ∼

V1/6eA

V1/2
Mp =

eA

V1/3
Mp � m3/2 ∼

W0

V
Mp =⇒ e−A � V2/3 . (3.8)

Including the condition of being in a warp throat, the volume and the warp factor

must satisfy e−A � V2/3 � e−4A.

3.2 Brane/anti-brane dynamics

In this paper we mainly consider a visible sector realised by some D3-branes placed on top

of a point-like singularity of the compact manifold. The susy breaking fluxes (together with

perturbative and non-perturbative corrections to the effective action) induce soft terms on

the worldvolumes of these branes that tend to stabilise the position of the D3-branes. It

is a sensible question whether the attraction that the D3-branes feel towards the anti-D3-

brane is enough to destabilise this minimum or can shift the D3-brane position away from

the singularity (destroying the SM spectrum).

The potential generating such a force can be computed in the following way. Geometri-

cally, the D3-brane back-reacts on the geometry by modifying the harmonic function h(r).

Here we are assuming that the anisotropies of the internal directions are negligible (that for

large volume of the compact manifold is plausible). If the position of the D3-brane is y1, the

back-reaction of the D3-brane on the geometry induces a y1 dependence on the warp factor:

h(y, y1) = h(y) + δh(y, y1) . (3.9)

– 8 –
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At the tip of the throat (at y = y0) the warp factor becomes

e4D ∼ h(y0)−1

(
1− δh(y0, y1)

h(y0)

)
. (3.10)

Let us see how it works when the D3-brane is inside the throat. In the radial co-

ordinates that are valid for the spherical symmetric (deformed) KS throat, the tip is at

r = r0 where the anti-D3-brane sits, while the D3-brane is at r = r1. Moreover, we take

r0 � r1 . R. In this case we know the approximate form of the metric and we can com-

pute how the warp factor is modified. The radial position of the D3-brane is promoted to

a scalar field, whose action is in this case∫
d4x
√
−g4

[
1

2
T3∂µr1∂µr1 − 2T3

r4
0

R4

(
1− `4s

R4

r4
0

r4
1

)]
. (3.11)

The last term gives the Coulombian attraction between the D3-brane and the anti-D3-

brane.

We introduce the canonically normalised fields ~ϕ, that describe the position of the

D3-brane in the six dimensional internal space. Their relation to r is

|~ϕ1 + ~ϕ| =
√
T3r1 ∼M2

s r1 (3.12)

where we introduced the constant |~ϕ1| to shift the origin of coordinates ~ϕ. We consider

|~ϕ| � |~ϕ1|.
Since T3 ∼ M4

s ∼ V−2 and r0/R ∼ V1/6e−% the scalar potential in units of Mp can be

written as

V =
e−4%

V4/3

(
1− e−4%V2/3

`4s|~ϕ1 + ~ϕ|4

)
∼ e−4%

V4/3

(
1− e−4%V2/3

`4s|~ϕ1|4

(
1− 4

~ϕ · ~ϕ1

|~ϕ1|2
+ 10

(
~ϕ · ~ϕ1

|~ϕ1|2

)2

+ · · ·

))
.

(3.13)

When we move the D3-brane outside the throat, the potential (3.11) is still valid, with

now r1 being the distance between the D3-brane and the anti-D3-brane measured with the

unwarped CY metric. If the D3-brane is at a generic point in the CY manifold, the distance

from the anti-D3-brane is approximately r1 ∼ V1/6`s and |~ϕ1| = r1M
2
s = V1/6V−1/2Mp =

V−1/3Mp (with `s ∼ V1/2/Mp). If we now plug these numbers into (3.13) we obtain

V ∼M4
p

e−4%

V4/3

(
1− e−4%

(
1− 4V1/3 |~ϕ|

Mp
cosϑ+ 10V2/3 |~ϕ|2

M2
p

cos2 ϑ+ · · ·
))

, (3.14)

where the angle ϑ measures the orientation of ~ϕ (cosϑ = ~ϕ·~ϕ1

|~ϕ1|2 ).

3.2.1 Stability of D-branes at singularities: bounds on soft masses

We can now consider the situation in which the D3-brane is at a singularity of the CY three-

fold. At the singularity the D3-brane splits into a set of fractional branes with non-abelian

gauge groups and chiral fermions. This can accommodate the visible MSSM sector. If the

moduli are fixed in a non-supersymmetric vacuum, soft susy breaking terms are generated,

giving a mass to the field ϕ̂ (where we define ϕ̂ ≡ |~ϕ|) that stabilises it at zero. On the other

hand, as we have just seen, the presence of an anti-D3-brane generates a Coulomb attraction
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Figure 1. Cartoon description of the geometry and brane set-up.

for the D3-branes. If this is too strong, it can destabilise the location of the minimum.

When this happens, the fractional D3-branes can recombine into a normal D3-brane that

will start rolling towards the anti-D3-brane. As a result, the MSSM structure is destroyed.

We now work out what are the bounds on the soft masses such that this does not happen.

The ϕ̂ dependent part of the potential is of order

δV (ϕ̂) =
e−8%

V
ϕ̂M3

p +m2
0ϕ̂

2 , (3.15)

where the linear term comes from the Coulombian potential (3.13) and where we have

assumed that the soft term mass is dominant with respect to the quadratic negative part

in (3.13), i.e. m2
0 � e−8%

V2/3M
2
p . The minimum of (3.15) is at

ϕ̂ ∼
e−8%M3

p

2m2
0V

. (3.16)

Physically this non-zero vev for ϕ̂ means that the D3-brane position is shifted from the

original position by ∆r = ϕ̂`2s. If this value were greater than the typical string length scale

then it would mean that the presence of the anti-brane substantially affects the physics of

the D3-brane system. Hence we need to impose ∆r � `s.

In order to have a de Sitter minimum, the uplifting term e−4%/V4/3 has to be of the

same order as W 2
0 /V2 in KKLT and as 1/V3 in LVS, that are the values of the potential

evaluated on the AdS minimum (when the anti-D3-brane is not present). This implies that

the warp factor must be of order respectively e−4% ∼ W 2
0 /V2/3 and e−4% ∼ 1/V5/3. When

– 10 –
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this happens, we have

∆r ∼
e−8%M3

p

2m2
0V

`2s =
M2
p

m2
0

e−8%

2V1/2
`s =


M2
p

m2
0

W 4
0

2V11/6 `s for KKLT

M2
p

m2
0

1
2V23/6 `s for LVS

. (3.17)

Hence, ∆r � `s if 
m2

0
M2
p
� W 4

0

V11/6 for KKLT

m2
0

M2
p
� 1
V23/6 for LVS

. (3.18)

Under these conditions, it is also valid that m2
0 is leading with respect to the quadratic term

in (3.13), that we had assumed at the beginning of this section (m0 �
W 2

0

V4/3Mp ∼
m2

3/2

MKK
for

KKLT and m0 �
W 2

0
V2 Mp ∼

m2
3/2

Mp
for LVS).

Notice that most models of supersymmetry breaking coming from KKLT and LVS sat-

isfy the bounds. The only exception is the ultra-local case in LVS studied in references [54,

55] for which the soft masses were precisely of order m0 ∼ m2
3/2/Mp that is a borderline case.

3.2.2 Supersymmetrising brane/anti-brane interactions

We finish this section with an observation: by allowing the parameter ρ in the superpo-

tential (2.1) to depend on the matter fields governing the D3-brane position, we are able

to reproduce the Coulomb coupling (3.13) from the effective supergravity point of view.

The dependence of ρ on ϕ̂ should account for the modification of the anti-D3-brane con-

tribution to the potential due to the interaction with the D3-brane in the bulk. Let us

consider the simplest case of moduli stabilisation with all complex structure moduli and

dilaton stabilised by fluxes and concentrate on the Kähler moduli and matter fields. We

study the effective field theory at low energies for one Kähler modulus T , with the volume

determined by V ∼ (T + T̄ )3/2, one matter field φ representing the position of a D3-brane

and the anti-D3-brane superfield X. The field φ is the proper Kähler coordinate and it is

related to the field ϕ̂ that we used before:

ϕ̂ =
|φ|√

3(T + T̄ )
∼ |φ|
V1/3

. (3.19)

For this analysis, we take the Kähler potential (2.8) and the superpotential

W = W0(U, S) +Wnp(U, S, T ) + ρ(U, S, φ)X , (3.20)

where we allow ρ to depend on φ. The contribution of the X superfield to the scalar

potential, given by the Kähler potential and the superpotential just presented, is very

simple to extract:

VFX = eKK−1
XX̄
‖DXW‖2 = V−2V2/3β−1

∥∥∥∥∂W∂X
∥∥∥∥2

=
|ρ|2

βV4/3
∼ |ρ|2

β
(
T + T̄

)2 . (3.21)
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We now consider the φ dependence of ρ, by expanding it around φ = 0:

ρ = ρ0 + δρ = ρ0 + ρ1φ+ · · · (3.22)

where ρ0 gives the constant KKLMMT uplift term if |ρ0|2 ∼ e−4%. We now plug (3.22)

into (3.21) and we expand this around φ = 0:

VFX ∼
1

βV4/3

(
|ρ0|2 + 2Re(ρ∗0ρ1φ) + · · ·

)
(3.23)

∼ 1

βV4/3

(
|ρ0|2 + 2V1/3Re(ρ∗0ρ1ϕ̂e

iϑ̃) + · · ·
)
,

where ϑ̃ is the phase of φ and we used (3.19) to substitute |φ| = V1/3ϕ̂.

We can now compare this expression with the analogous expansion (3.14) of the

Coulomb potential. We realise that the volume dependence exactly matches and that

|ρ0| ∼ e−2% and |ρ1| ∼ e−6% . (3.24)

For real ρi, we also have that the phase ϑ̃ of φ matches with the angle ϑ between ~ϕ and ~ϕ1.

This analysis suggests that the interaction between the anti-D3-brane at the tip of the

throat and the D3-brane in the bulk can be reproduced at the level of the supergravity EFT

by letting the parameter ρ in the superpotential (2.1) depend on the D3-brane position

moduli φ.

We end this section with a curiosity. If we generalised the Kähler potential (2.8) by

taking a different factor in front of the XX̄ term, i.e. instead of β
V2/3 we took β

V2/3 +b(U, Ū),

then the uplift term eKK−1
XX̄
|ρ0|2 could be written as:

Vup = eKK−1
XX̄
|ρ0|2 =

|ρ0|2

V2

V2/3

β + bV2/3
(3.25)

Notice that for b ∼ e4A, the equation (3.25) would reproduce exactly the general result

of (3.7) interpolating between KKLT and KKLMMT uplift. In particular, if b � βV−2/3

then we would recover the warped KKLMMT uplift, while if the volume dominated over the

warp factor, bV2/3 � β then we would recover the unwarped uplifting originally proposed

in KKLT.

4 Nilpotent goldstino in KKLT

In this section we deform the EFT of the type IIB KKLT flux vacua, by introducing the

nilpontent chiral superfield X. As we have discussed, this produces an uplift term and

breaks supersymmetry. By using standard supergravity techniques we will compute the

soft terms that are generated in the visible sector realised on D3-branes at singularities.

4.1 Scalar potential

Following the standard KKLT moduli stabilisation procedure, we assume that the dilaton

and the complex structure moduli have been fixed at high scale and hence are integrated
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out form the EFT. The Kähler potential for the remaining fields, i.e. the Kähler modulus

T (whose real part controls the CY volume: V = τ3/2, with τ = ReT ), the matter field φ

and the nilpotent field X, is7

K = −3 log(T + T̄ ) + K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + . . . (4.1)

where K̃i and Z̃i are the matter metric for the matter fields living on D3-branes and the

nilpotent goldstino respectively and H̃i is the quartic interaction between the matter fields

and the nilpotent goldstino. Following the discussion in section 2, these are given by

K̃i =
α

τ
, Z̃i =

β

τ
, H̃i =

γ

τ2
, (4.2)

where the scaling of K̃i with τ is due to the modular weight of the matter fields on D3-

branes [75, 76]. The superpotential is

W = W0 + ρX +A e−aT , (4.3)

where we included the non-perturbative contribution necessary to stabilise the Kähler

modulus in KKLT. The supergravity F-term scalar potential is determined by K and W

(respectively (4.1) and (4.3)). Here and in the following we are measuring everything in

units of the 4D Planck mass, i.e. we take Mp = 1.

The supergravity potential is determined in terms of the Kähler potential and the

superpotential by the formula

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
, with DIW = ∂IW +KIW . (4.4)

In this equation, I, J run over the chiral superfields T, φ,X, KIJ̄ is the inverse of the matrix

KIJ̄ ≡ ∂I∂J̄K and KI ≡ ∂IK. Sometimes we write this formula as

V = F IFI − 3m2
3/2 (4.5)

where FI ≡ eK/2DIW and F I ≡ eK/2KIJ̄DJ̄W̄ are the F-term controlling supersymmetry

breaking, and m3/2 ≡ eK/2|W | is the gravitino mass.

By plugging the expressions (4.1) and (4.3) into (4.4), after some manipulations one

obtains

V = (VKKLT + Vup) +
2

3

(
(VKKLT + Vup) +

1

2
Vup

(
1− 3γ

αβ

))
|φ̂|2 , (4.6)

where φ̂ is the canonically normalised matter scalar field and VKKLT is the standard KKLT

potential (without the uplifiting term):

VKKLT =
2 e−2aτaA2

s V4/3
+

2 e−2aτa2A2

3s V2/3
− 2 e−aτaA W0

s V4/3
, (4.7)

7The blow up modulus τD3 is fixed to zero by the higher order D-term potential and it is then integrated

out in the EFT we are considering here [23].
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where s = 1/gs is the real part of the axiodilaton S = e−φ− iC0 that is fixed at higher scale

by three-form fluxes (hence at this level of the EFT s is just a parameter).8 Moreover,

recall that τ is the real part of the Kähler modulus T = τ + iψ. The imaginary part of

this modulus behaves like an axion and develops a minimum for ψ = π/a. This value is

responsible for the minus sign in the third term in (4.7).

The uplift term Vup coming from FXF ∗X is

Vup =
ρ2

2βsτ2
. (4.8)

Minimising the scalar potential, one finds that at the minimum

W0 = e−aτA

(
1 +

2

3
aτ +

e2aτρ2

2βa2A2τ

)
. (4.9)

Plugging this condition into the scalar potential (4.6), one obtains its value at the minimum,

that is

V =
(
V KKLT

0 + Vup

)
+

2

3

(
(V KKLT

0 + Vup) +
1

2
Vup

(
1− 3γ

αβ

))
|φ̂|2 , (4.10)

where

V KKLT
0 = −2e−2aτa2A2

3s τ
= −3 W 2

0

2sV2
= −3m2

3/2 < 0 . (4.11)

Notice that without the uplift term (Vup ≡ 0), the minimum would be supersymmetric,

i.e. we would have DTW = 0, the cosmological constant would be negative and the squared

masses would be tachyonic (this does not signal an instability, as we have a supersymmetric

AdS vacuum). After adding the uplift term, the minimum is no more supersymmetric; in

particular, using the minimum condition (4.9) one has

DTW = −1

4

eaτρ2

a2A τ2
. (4.12)

The flux dependent parameter ρ can be tuned to make the cosmological constant zero

or extremely small (positive). This happens when the uplift term (4.8) is (approximately)

equal to the KKLT contribution (4.11), i.e. when

ρ2 =
4β

3
τ e−2aτa2A2 . (4.13)

After imposing the null cosmological constant condition (4.13), the KKLT minimum con-

dition (4.9) gives us

W0 =
e−aτA

3
(2aτ + 5) . (4.14)

8Here and in the following we are neglecting the eKcs factor in front of the scalar potential, where Kcs

is the Kähler potential for the complex structure moduli. Since they are fixed at higher scales, this is just a

flux dependent parameter in the studied EFT. This factor would appear in front of all the relevant scales,

like the gravitino mass and the soft masses, but is not affecting our results, as we are giving the soft masses

in terms of the gravitino one.
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The scalar masses can be read off from the scalar potential (4.10) evaluated at the

minimum. After tuning ρ as in (4.13), one obtains (remember we have set Mp = 1)

m2
0 =

1

3
Vup

(
1− 3γ

αβ

)
=

(
1− 3γ

αβ

)
2a2A2e−2aτ

9sτ
. (4.15)

From (4.15) we can see that there are two different terms that compete: the first one

comes form the contribution of the nilpotent field X, while the second one, with opposite

sign, comes from the quartic interaction term in (4.1) between the matter fields and X.

Depending on the values of α, β, γ these masses might be tachyonic.

Interestingly, notice that if the log hypothesis is valid, i.e. the Kähler potential takes

the form (2.9), there is a cancellation inside the parenthesis in (4.15) that makes the scalars

massless (m = 0). In fact the log hypothesis is realised when γ = αβ
3 . In this case, the

contribution of the susy breaking term to scalar masses coming from the KKLT Kähler

potential is exactly zero (or as small as the cosmological constant value in our dS universe).

Hence the subleading contributions to the scalar masses, at next order of approximation,

would be the dominant one. In particular the (always present) contribution coming from

anomaly mediation, which is negative for sleptons, may dominate (see the discussion in ap-

pendix A). This would imply that the pure KKLT is unstable, since the anomaly mediated

contributions produce always tachyonic scalar masses in a dS vacuum. Therefore non-

vanishing contributions should also be considered at the next order in the approximation.

4.2 α′ corrections to KKLT

In this section we are going to study the α′ contributions to the KKLT dS minimum. For

that purpose we are going to use again an effective field theory, where now the form of the

Kähler potential is modified:

K = −2 log
(
τ3/2 − ξ̂

)
+ K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + . . . (4.16)

where ξ̂ = s3/2ξ/2 and ξ is a constant of order one depending on the Euler characteristic of

the Calabi-Yau manifold χ [77].9 The matter field metric and the quartic coupling defined

in (4.2) can also receive α′ corrections that can be parametrised in the following way:

K̃i =
α0

V2/3

(
1− α1

ξs3/2

V

)
, Z̃i =

β0

V2/3

(
1− β1

ξs3/2

V

)
, H̃i =

γ0

V4/3

(
1− γ1

ξs3/2

V

)
.

(4.17)

One can recover the theory from the logarithmic Kähler potential

K = −2 log

((
T + T̄ − α

3
φφ̄− β

3
XX̄

)3/2

− ξ̂

)
(4.18)

9In the most conservative view, the constant ξ is given by [77] as ξ = − ζ(3)χ

2(2π)3
. Recently, [78] found that

the presence of an orientifold O7-plane wrapping the divisor D modifies ξ by shifting the Euler characteristic

as χ 7→ χ+ 2
∫
CY

D3.
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if the parameters in (4.16) satisfy the relations

γ0 =
α0β0

3
, α1 = β1 = 1/2 , γ1 = 5/4 . (4.19)

The scalar potential for a theory with the Kähler potential (4.16) and the superpoten-

tial (4.3) is given by

V =
(
Vα′KKLT + Vα′up

)
+

(
2

3
(Vα′KKLT + Vα′up) + Θup + Θα′ + Θα′/up

)
|φ̂|2 (4.20)

where by Vα′KKLT we mean the standard KKLT potential VKKLT (given in (4.7)) corrected

by the α′-contributions:

Vα′KKLT = VKKLT +
e−2aτ √s ξ a2A2

6V5/3
+
e−aτ

√
s ξ aAW0

2V7/3
+

3
√
s ξ W 2

0

8V3
. (4.21)

The α′ correction to the Vup is given by

Vα′up =
ρ2

2β0 sV4/3

(
1− s3/2ξ

V
(1− β1)

)
(4.22)

and the contributions Θup, Θα′ and Θα′/up to the scalar masses correspond to the pure

uplifting, the pure α′ and the mixed uplifting-α′ respectively. Similarly to the case studied

in the previous section,

Θup =
1

3
Vα′up

(
1− 3γ0

α0β0

)
, (4.23)

which is exactly zero for the logarithmic Kähler potential according to (4.19). The pure α′

contribution to the mass is given by

Θα′ =
5
√
s ξ

2

(
e−2aτ a2A2

9V5/3
− e−aτ aAW0

3V7/3
+
W 2

0

4V3

)
(3α1 − 1) . (4.24)

The contribution coming from a combined effect of the nilpotent goldstino and the α′

corrections is given by

Θα′/up =

√
s ξ ρ2

2β0 V7/3

γ0

α0β0
(γ1 − α1 − β1) . (4.25)

We minimise the scalar potential (4.20) and restrict ρ in order to have (approximately)

null cosmological constant. This leads to a condition like (4.14) that is now (at leading

order in 1/τ expansion)

W0 = e−aτA

(
5

3
+

2

3
a V2/3 +

a

3

s3/2 ξ

V1/3

)
. (4.26)

In the new dS non-supersymmetric minimum there is a hierarchy between the contributions

to the scalar mass. The biggest will be the one coming from the pure uplifting effect

Θup =
2

3

e−2aτa2A2

sV2/3

(
1− 3γ0

α0β0

)
∼ W 2

0

V2
. (4.27)
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Notice however that this term is zero if γ0 = α0β0
3 . The second relevant term is

Θα′/up =
2

3

e−2aτ√s ξ a2A2

V5/3

γ0

α0β0
(γ1 − α1 − β1) ∼ W 2

0

V3
(4.28)

and finally the pure α′ corrections are very suppressed due to a cancellation at leading

order in this minimum:

Θα′ =
125

72

e−2aτ√s ξ A2

V3
(3α1 − 1) ∼ W 2

0

V13/3
. (4.29)

Notice that this α′ correction is also proportional to the non-perturbative effect. Hence,

sending this contribution to zero would make Θα′ vanish. This is the result of the fact that

in KKLT susy is broken by the non-perturbative effects, not by the α′ corrections. They

have an impact in the soft terms but they are negligible in determining the minimum as it

has just been discussed.

We see that in the KKLT scenario with α′ corrections the masses are not zero even

when we have a log form of the Kähler potential (like in (4.16)). This can make the scenario

stable against the anomaly mediated contributions or the Coulombian attraction.

4.3 Soft terms and F-terms in α′KKLT with nilpotent goldstino

4.3.1 F-terms

The susy breaking is determined by the F-term, that in supergravity are given by F I ≡
eK/2KIJ̄DJ̄W̄ . In the case under study, the dominant effect comes from the anti-D3-brane

nilpotent superfield. Its F-term is

FX =

√
3

β0
V1/3m3/2 , (4.30)

where we remind that m3/2 ≡ eK/2|W | is the gravitino mass. The presence of the nilpotent

superfield is also inducing an F-term for the Kähler modulus:

F T = −2

a

(
1 +

1

aV2/3

)
m3/2 . (4.31)

Now we want to compute FS . This takes contributions from DSW and, because of

the mixing induced by α′ corrections, fom DTW . At leading order in our approximation

DSW = 0, as it appears squared in the leading term of the scalar potential. When we

include non-perturbative and α′ corrections and we consider the uplift term, these induce

corrections to DSW in the non-supersymmetric minimum. In order for our expansion to

work, these can at most induce a DSW of the order of the non-perturbative correction to

W . More precisely DSW ∼ e−aτA
2s , since at leading order DSWflux = 0. Of course this

is just an upper bound. To obtain the right value of DSW one should minimize the full

potential. It might well be that DSW is much smaller than the above estimation. For this

reason, we write its value as10

DSW ∼
e−aτA

2s
ωs , (4.32)

10Notice that if DSW ∼ e−aτA
2s

, its contribution to the scalar potential is subleading in the 1/V expansion

with respect to the KKLT potential (even considering α′ corrections).
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where ωs . 1 parametrises our ignorance and it takes values at most of order one. If ωs is

sufficiently large, the F-term FS is dominated by the FS contribution such that

FS =
3s ωs

aV2/3
m3/2 . (4.33)

However, if ωs is sufficiently small, the FT contribution to FS dominates and in this case

FS =
9

2

s5/2ξ

aV5/3
m3/2 . (4.34)

4.3.2 Soft terms

In this section, expanding on the work of [50], we are going to write the soft-terms as

functions of the gravitino mass for a theory with the Kähler potential (4.16). In a super-

symmetric effective field theory one can use the general expressions for soft terms [79–81]:

m2
0 = V0 +m2

3/2 − F
I F̄ J∂I∂J̄ log K̂ ,

M1/2 =
1

f + f∗
F I∂If , (4.35)

Aijk = F IKI + F I∂I log Yijk − F I∂I log
(
K̂iK̂jK̂k

)
.

Here, indices i, j, k label different matter fields, indices I, J run over moduli fields and

the X field. f is the holomorphic gauge kinetic function of the visible sector, depending

only on the moduli fields and the dilaton, K̂ is the matter Kähler metric (including the

X dependence, i.e. K̂i = K̃i + H̃iXX̄, with K̃i and H̃i given in (4.17)) and Yijk are the

Yukawa couplings among matter fields.

The scalar masses have been already given in (4.15), as they can be read directly from

the scalar potential (4.10). At leading order they can be written as

m2
0 =

(
1− 3γ0

α0β0

)
m2

3/2 +
s3/2 ξ

V
3γ0

α0β0
(γ1 − α1 − β1)m2

3/2 . (4.36)

This result agrees of course with the derivation via (4.35). Notice that in general the first

term in (4.36) is the dominant one and depending on the values of α0, β0, γ0 the square

masses may be positive or negative. However when the Kähler potential takes the log struc-

ture (2.9), i.e. when (4.19) are fulfilled, this term vanishes and the scalar masses become

m2
0 =

s3/2 ξ

4V
m2

3/2 , (4.37)

which are positive definite and therefore non-tachyonic. Notice also the suppression with

respect to the gravitino mass.

The masses of the gauginos will depend on the form of the gauge kinetic function. For

the D3-branes in KKLT f = S, therefore the gaugino masses will be dominated by the FS

term. For the case of ωs ∼ O(1)

M1/2 = ± 3

2aV2/3
m3/2 , (4.38)
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where the relative sign ± refers to the choice of W0 ≷ 0. The trilinears are given by

Aijk =
−3

2aV2/3

(
1− s3/2 ξ

V1/3

)(
1− s∂s log(Y

(0)
ijk )

)
m3/2 , (4.39)

where Y
(0)
ijk are the holomorphic Yukawa couplings. Hence the relation between trilinears

and gauginos is:

Aijk = −
(

1− s∂s log(Y
(0)
ijk )

)
M1/2 . (4.40)

In the other limit, where ωs is so small that the DTW contribution dominates, the

gaugino masses are generated at the α′ level:

M1/2 =
9

4

s3/2ξ

aV5/3
m3/2 . (4.41)

In this case the trilinears will be also modified, and could be written in terms of gaugino

masses as

Aijk = −
(

5

3
− 2α1 − s∂s log(Y

(0)
ijk )

)
M1/2 . (4.42)

5 Nilpotent goldstino in LVS

5.1 Vacuum structure

In this section we will repeat the previous analysis in the Large Volume Scenario (LVS) [52].

We will study how the explicit antibrane uplift contribution to the potetial affects the soft

terms. In fact, as reported in the general discussion started in [54, 55], the uplift mechanism

is relevant for sequestered models, in particular for branes at singularities.

Following the same notation as before, the Kähler potential can be written as

K = −2 log
(
V − ξ̂

)
+ K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + . . . . (5.1)

We will concentrate on the simplest and most representative LVS example, with two Kähler

moduli Ts and Tb with real parts τb and τs that determines the CY volume V = τ
3/2
b −τ3/2

s .

The coefficients K̃i, Z̃i and H̃i are defined as in (4.17). The superpotential is given by

W = Wflux + ρX +A e−asTs . (5.2)

For such a theory the supergravity scalar potential will take the general form

V =
(
VLVS + Vα′up

)
+

(
2

3
(VLVS + Vα′up) + Θup + Θα′ + Θα′/up

)
|φ̂|2 , (5.3)

where VLVS is the standard LVS potential11

VLVS =
4

3

e−2asτs
√
τs a

2
sA

2

s V
− 2e−asτsτs asA W0

s V2
+

3
√
s ξ W 2

0

8 V3
(5.4)

11Interestingly, it can also be read from Vα′KKLT , but now expanding according to the LVS assumption

that W0 ∼ 1 and that the minimum will be in the region of the moduli space where asτs ∼ logV.
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and where the contributions Θup and Θα′/up to the scalar masses are given by (4.23)

and (4.25). The term Θα′ is instead now given by

Θα′ =
5
√
s ξ W 2

0

8V3
(3α1 − 1) . (5.5)

In the LVS case, the minimum is non-supersymmetric already before adding the dS

uplifting term. Minimising the LVS potential VLVS, one obtains the following conditions

that the Kähler moduli have to satisfy in the minimum:

e−asτs =
3 τ

3/2
s W0

asτs A V
asτs − 1

4asτs − 1
(5.6)

and

τ3/2
s =

s3/2ξ

2

1

16asτs

(4asτs − 1)2

asτs − 1
=
s3/2ξ

2

(
1− 1

16asτs
+

9

16

1

asτs − 1

)
. (5.7)

This minimum is producing the cosmological constant term

V LVS
0 = −3

√
s ξ W 2

0

16asτs V3
= −3

s3/2ξ

4V
1

asτs
m2

3/2 . (5.8)

The non-zero value comes from the fact that the perturbative and non-perturbative correc-

tions to the potential breaks its no-scale structure. Without these corrections, the tree-level

potential would be zero at the minimum (but the Kähler moduli would be flat directions).

At the non-supersymmetric minimum, FTb 6= 0 generates a term in the supergravity scalar

potential which goes like F TbFTb . Such a term at leading order cancels 3m2
3/2 and is mainly

responsible for the cancellation of the tree level cosmological constant in LVS. This does

not happen in KKLT because the minimum is supersymmetric and therefore FT = 0. This

difference is important because it will produce a difference in the parametric scaling of the

warp factor ρ with volume V after imposing the dS/Minkowski condition.

We now minimise the potential (5.3) that includes also the X-contribution. The min-

imum condition (5.6) is not modified, while (5.7) is changed to

τ3/2
s =

1

16asτs

(4asτs − 1)2

asτs − 1

(
s3/2ξ

2
+

8

27β0

ρ2 V5/3

W 2
0

)
. (5.9)

The dS/Minkowski condition

V LVS
0 + Vα′up = 0 (5.10)

restricts ρ such that

ρ2 =
27β0

8

s3/2 ξ W 2
0

V5/3(5asτs − 2)
. (5.11)

This produces a shift in the condition (5.7):

τ3/2
s =

s3/2ξ

2

(
1− 3

16

1

5asτs − 1
+

15

16

1

asτs − 1

)
. (5.12)
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Moreover, we notice that if we plug the equation (5.9) into (5.6), we obtain the relation

e−asτs =
3

4A

1

asτs

(
s3/2ξ

2

W0

V
+

8

27β0

ρ2V2/3

W0

)
. (5.13)

Finally, if we introduce the dS LVS minimum in the scalar potential (5.3) we can read

the scalar mass. In particular we have

Θup =
9
√
s ξ

16V3

W 2
0

5asτs − 2

(
1− s3/2ξ

V
(1− β1)

)(
1− 3γ0

α0β0

)
, (5.14)

Θα′/up =
9

16

s2ξ2W 2
0

V4

3γ0

α0β0

1

5asτs − 2
(γ1 − α1 − β1) (5.15)

and

Θα′ =
5
√
s ξ W 2

0

8V3
(3α1 − 1) . (5.16)

Therefore, in this minimum the dominating contributions are Θα′ and the first term of

Θup. However if the Kähler potential has the log structure (4.16), with the parameters

given by (4.19), there is a cancellation in Θup which makes it vanish. Therefore the scalar

masses would be given in this case by Θα′ .

5.2 Soft terms and F-terms in LVS with nilpotent goldstino

5.2.1 F-terms

In the dS LVS minimum, susy breaking is dominated by the F-term of the modulus Tb
determining the volume (we will call it FV instead of F Tb to make this clear):

FV = −2V2/3m3/2 −
s3/2 ξ

24V1/3

80a2
sτ

2
s − 67asτs + 32

(5asτs − 2)(asτs − 1)
m3/2 , (5.17)

where the first term cancels the −3m2
3/2 term in the scalar potential at leading order, due

to the underlying no-scale structure. Expanding (5.17) in powers of 1
asτs
∼ 1

logV , we obtain

at leading order

FV = −2V2/3m3/2 −
2

3

s3/2 ξ

V1/3
m3/2 . (5.18)

The F-term of the nilpotent goldstino,

FX = −2

3

√
3

2β0

√
s3/2 ξ

5asτs − 2

1

V1/6
m3/2 , (5.19)

is subleading with respect to the V modulus F-term (5.17). Even the small modulus Ts
has a bigger susy breaking contribution through the F-term

F Ts = − 6τs
4asτs − 1

m3/2 . (5.20)

The dilaton contribution to susy breaking is the smallest one. As in KKLT, its F-term

can receive contributions from both DTW and DSW . The last one can be parametrised
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as in (4.32), for the same reason explained in section 4.3.1. For LVS, this contribution is

of the same order of the one coming from DTW . If we expand in 1
asτs
∼ 1

logV , we obtain

FS =
3

2

s5/2 ξ

V
(3− 2ωs) m3/2 (5.21)

where again ωs . 1.

5.2.2 Soft terms

In this section we are going to discuss the soft terms for a visible sector living on D3-branes,

with moduli stabilised at the LVS dS minimum.

The scalar masses already discussed in the last section can be written at leading order

as:

m2
0 =

5

4

s3/2 ξ

V
(3α1 − 1)m2

3/2 +
9

8

s3/2 ξ

V
1

5asτs

(
1− 3γ0

α0β0

)
m2

3/2 . (5.22)

Assuming the log hypothesis for the Kähler potential, i.e. imposing the relations (4.19) in

the effective Kähler potential (5.1), the scalar masses are given by

m2
0 =

5

8

s3/2ξ

V
m2

3/2 (5.23)

which are completely dominated by the α′ contribution. Regarding the gaugino masses,

as discussed in [54, 55] the uplift term plays only an indirect role. The gauge kinetic

function is f ' S in the case of branes at singularities. This implies that the gauginos

are completely dominated by FS . Hence the expression for the gaugino masses at leading

order in 1
asτs
∼ 1

logV is

M1/2 = ±3

4

s3/2ξ

V
(3− 2ωs) m3/2 , (5.24)

where the relative sign ± refers to the choice of W0 ≷ 0. Finally the trilinears at leading

order in 1
asτs
∼ 1

logV can be written in terms of the gaugino mass as

Aijk = −(1− s∂s log Y
(0)
ijk )M1/2 . (5.25)

Notice that the general structure of soft terms is similar to the one found in [55] for

the local case in which the uplift term is given by hidden sector matter fields. The volume

suppresion of the soft terms with respect to the gravitino mass is a sign of sequestering. The

potential sources of de-sequestering are discussed in appendix B of [55], where it is shown

that their effects are irrelevant for D3-branes at singularities with the potential exception

of the effect of field re-definitions induced by quantum corrections to gauge couplings, as

computed in [82].12 If this redefinition is naively substituted in the Kähler potential it may

give rise to de-sequestering, as discussed in [83]. The effect of these field re-definitions in

the Kähler potential has not been computed explicitly so this remains as an open question.

The same considerations apply to our models.

12Notice that this field re-definition refers to the visible sector blowing-up mode. In the hidden sector

the anti-D3-brane is on top of an orientifold O3-plane (with no orbifold singularity in the double cover

Calabi-Yau); its massless spectrum corresponds only to the goldstino with no gauge fields and therefore the

analysis of [82] does not apply.
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6 Some cosmological and phenomenological observations

In this section we consider the mass of the lightest modulus and its relation to the relevant

scales in both scenarios. We will discuss possible cosmological consequences and how they

constrain the scenarios discussed in this paper. For instance, as we will see, the SUSY

breaking scale develops some bounds. Finally we will speculate on slow-roll inflation. The

results presented in this section hold strictly for an MSSM visible spectrum. However

several features will still be valid for close modifications of the MSSM.

6.1 LVS with D3-branes

The lightest modulus in LVS is the volume modulus. Its mass (that as usual is computed

from the matrix of the second derivatives of the potential) is, in terms of the gravitino mass,

m2
V =

45

8

s3/2ξ

V
20a3

sτ
3
s − 21a2

sτ
2
s + 9asτs − 2

(8a3
sτ

3
s − 6a2

sτ
2
s + 3asτs + 1) (5sτs − 2)

m2
3/2 . (6.1)

At leading order in 1
asτs
∼ 1

logV � 1 expansion, one obtains

m2
V =

45

16

s3/2ξ

asτs V
m2

3/2 . (6.2)

Comparing this with (5.23), one can conclude that there is the following hierarchy between

the relevant scales:

m3/2 > m0 > mV . (6.3)

Since the lightest modulus redshifts like the matter does, it quickly dominates the ther-

modynamic history of the universe after the end of inflation [84–90]. Through its decay,

it reheats the universe, but being its mass smaller than m3/2, it is not able to produce

gravitini through direct decay. Hence, in this scenario there is no gravitino problem.

The volume modulus can decay into SM (MSSM) particles. Since the moduli couple

to matter gravitationally, the lightest modulus decays very late and that could in principle

spoil nucleosynthesis. One way of quantifying it is through the decay (reheating) temper-

ature of this modulus, which is given by TRH ∝
√

ΓMp, where Γ is the decay rate and

MP = 2.4 1018 GeV. Since in this case Γ ∼ m3
V

M2
p

, the reheating temperature is

TRH '

√
m3
V

MP
. (6.4)

In order to avoid problems with nucleosynthesis one should have TRH & 4 MeV [94]. This

would impose a bound on the lightest modulus mass. This is the so called Cosmological

Moduli Problem (CMP), that is known to affect the LVS scenario if the soft masses are at

the TeV scale. At the same time it would impose a bound on the gravitino through the

relation (6.2). Finally given the relation (5.23) between the gravitino and the scalar mass,

this bound on the volume modulus implies a bound on the scalar masses and hence on the

susy breaking scale.

– 23 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
6

We can also make use of (6.2) and (5.23) to write the volume modulus in terms of the

scalar masses. When the visible sector lives on D3-branes, we have

m2
V =

9

2

1

asτs
m2

0 . (6.5)

Using the bound on the reheating temperature one can see that for typical (GUT) values

s ∼ 10 and V ∼ 106 − 107 the scalar masses are forced to be bound as

m0 & 65 TeV (6.6)

and therefore MSUSY & 65 TeV.13 Moreover, in this scenario one has a hierarchy between

the scalar and the gaugino masses (a split-like scenario [91–93]). Actually, for the same

values of the dilaton s and the volume V that we used before, we have

m0 ' (102 − 103)M1/2 . (6.7)

One could then in principle work out a scenario in which the electroweakinos are at the

TeV scale, that would make them potentially interesting as dark matter candidates. The

equation (5.24) implies universality of the gaugino masses at high energies. For this rea-

son, following the RG-flow, the lightest gaugino can only be the bino. Depending on the

electroweak symmetry breaking conditions on the MSSM, the lightest electroweakino will

then be either the bino or the higgsino.

The thermal averaged cross section 〈σv〉 for the bino annihilation is very small, hence

it is very difficult not to overproduce dark matter bino like unless there exists a co-

annihilation with other sparticles. Given the hierarchy (6.7) between scalars and gauginos,

co-annihilation with sleptons or the A-funnel would not be realisable.

Notice that in more complicated supersymmetric models there could be more neu-

tralino components (e.g. the singlino one in the NMSSM). However for the analysis con-

sidered below this fact does not produce any relevant difference. Going beyond this will

need a more involved analysis that goes beyond the scope of this paper.

Hence the only option is a scenario where the dark matter is a neutralino that is

higgsino like or a bino like one which co-annihilates with a NLSP higgsino. In this case,

such a scenario is possible for scalars in the range

105 TeV & m0 & 65 TeV , (6.8)

where the upper bound is a consequence of the hierarchy (6.7): if scalars were heavier than

this bound, the gauginos would be heavy enough to induce a one loop contribution to the

higgsino mass bigger than 1 TeV. Such a heavier higgsinos would overproduce dark matter.

On the other hand if the scalars were heavier than 103 TeV, following the same hierarchy,

the binos would be very heavy and the bino-higgsino scenario would not be possible.

Notice that for m0 . 104 TeV, (6.5) implies that the mass of the modulus is below

5000 TeV and therefore the reheating temperature (6.4) would be below 7.5 GeV. Then, any

13MSUSY refers to the scale of the scalars, typically the scale of the stop.
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neutralino with a mass heavier than 150 GeV would have freeze-out temperature Tfo ' mχ
20

above the reheating temperature TRH . Hence, its relic abundance would be produced non-

thermally. Interestingly, non-thermally produced higgsinos could saturate the total relic

density even if their mass is below 1 TeV (for similar discussion see [95]).

The typical pattern of masses in this scenario is the following: there are near degenerate

neutralinos χ0
1, χ0

2 and a chargino χ±1 with masses around 1 TeV, whereas the rest of the

electroweakinos are heavier and the scalars are in the multi TeV range (a little split in this

case). In the case of pure higgsino the collider phenomenology is dominated by hard jet

production with large missing energy which is known as monojet search. There has been

a lot of work in this direction. In particular the authors in [96] claim that the exclusion

limits for higgsino masses at LHC 14 TeV are around 185 GeV and at a 100 TeV machine

would reach the 870 GeV (both for luminosity L ∼ 3000 fb−1).

In the case of bino like neutralino, if the split between the bino and the higgsino were

around 20-50 GeV, then higgsinos could decay into binos via off-shell gauge bosons which

could produce a signal with low pT leptons.14 The exclusion limit for bino masses at LHC

14 (at L ∼ 3000 fb−1) is around 300 GeV, and in a future 100 TeV collider would be around

1 TeV (for the same luminosity) [96].

Dark matter direct detection experiments will shed light on bounds on electroweakino

masses. In our case, these experiments will have a definite impact only if the gaugini are

light enough, i.e. M1/2 . 20 TeV. Due to the hierarchy (6.7), that would be possible only if

the scalars were lighter than 104 TeV. Otherwise, for example for the pure higgsino, if the

binos were heavier than 10 TeV, all the parameter space would escape the bounds coming

from direct detection experiments [97, 98]. The reason is that µ < M1 and then the spin

independent cross section goes like σSI ∼ 1/M2
1 , i.e. a bigger M1 corresponds to a smaller

cross section.

The case of mixed bino/higgsino needs ∼ 1 TeV gauginos, but that would imply scalar

masses ∼ 103 TeV. Such scalars allow a 125 GeV higgs in the region where tanβ ∼ 2 [99].

For this value of tan β and µ < 0, the spin independent cross section is below the strongest

limits on direct detection which so far are given by LUX [100]. The new limits by XENON

1T are expected for next year and will be very sensitive for this scenario.

Concerning dark matter indirect detection, the strongest bounds for higgsino and

bino/higgsino dark matter come from γ-rays produced by neutralino annihilation. In par-

ticular the most stringent ones come from Fermi-LAT’s data on dwarf Spheroidal Galax-

ies [101]. However these limits are not decisive for the two scenarios discussed in this

section. Future experiments like CTA [102] will have a bigger impact on higgsino and

bino/higgsino mass limits.

14Notice that this signal is different from the standard multilepton one which is produced through squark

decay. In this scenario, given that scalars are very heavy, LHC will not be able to produce them and hence

the standard multilepton signals do not apply.
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6.2 KKLT with D3-branes

The lightest modulus in KKLT is the Kähler modulus T . Its mass is given by

mT = 2aV2/3m3/2 (6.9)

where V = τ3/2. This time the relation between the relevant scales is

mT > m3/2 & m0 . (6.10)

The last relation depends whether the log hypothesis is realised or not: in the first case the

soft scalar masses are suppressed with respect to the gravitino mass, while in the second

case the two masses are of the same order.

Given the structure of (6.10), there will be no cosmological moduli problem because

the lightest modulus is heavier than the visible sector scalars. However, the fact that the

modulus is heavier than the gravitino can lead to a moduli-induced gravitino problem.

That happens because now the channel T → 2ψ3/2 is no longer closed. In fact its decay

rate is generically large [103, 104].

The gravitinos are produced by direct decay of the modulus after inflation. However

this has non trivial cosmological consequences: the requirement that the gravitino decay

products should not spoil the nucleosynthesis constrains strongly the gravitino abundance

putting a bound on its mass, i.e. m3/2 & 105 GeV. However, the gravitino can decay to

R-parity odd particles, like stable electroweakinos. That could overproduce relic density

of gauginos or higgsinos. This generates a more severe bound: if the LSP is wino like one

has m3/2 & 106 GeV, while for higgsinos and binos it is stronger, i.e. m3/2 & 107 GeV.

The bound on the gravitino mass translates into a bound on the scalar masses. When

the Kähler potential takes the generic form (2.8), m0 ∼ m3/2 and one can read the bound

from the previous paragraph. If the log hypothesis is satisfied, one obtains for the scalar

masses:

m0 &

√
s3/2ξ

4V
(103 − 104)TeV , (6.11)

which, for values of dilaton s ∼ 10 and volume V ∼ 103, becomes m0 & 9 − 900 TeV.

9 TeV correspond to winos and 900 TeV to the bino case (higgsinos would be somewhere

in between).

On the other hand, in KKLT the anomaly mediation contribution to gaugino masses

(see appendix A) is of the same order as the moduli mediated one. Therefore, using the

expression for soft-terms discussed in section 4 and in appendix A we see that

MKKLT
a =

(
3

2

1

aV2/3
− g2

a

16π2
ba

)
m3/2 , (6.12)

where g2
a ' 4π/s. Following the notation of the equation (3.1) in Choi, Jeong and Oku-

mura [56–58], one could rewrite it as

MKKLT
a =

3

2

1

aV2/3

(
1−

aV2/3g2
GUT

16π2
ba α̂

)
m3/2 , (6.13)
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where according to them aV2/3 = log(MP /m3/2). By doing this, one can see that

α̂ ≡ 2

3

1

g2
GUT

4π

s
. (6.14)

The mirage scale (which is the scale at which the gauginos unify) will be given by

Mmir = MUV e
−aV2/3 α̂

2 . (6.15)

For s = 10 one has α̂ ' 1.7 and more interestingly, for s = 8.5 (gs ' 0.12) one has α̂ = 2.

Therefore, from (6.15) for a volume of V ∼ 103 and given that a = 2π/N the scale can be

written as

Mmir = MUV e
− 200π

N . (6.16)

Hence, the behaviour is now dominated by the number N . For N small the scenario is

anomaly mediation dominated. When N is very large, the scenario is modulus dominated.

There is a particularly interesting case: for N ' 21 the mirage scale is at the TeV scale

(when MUV ∼ 1016 GeV). This scenario is reproducing the one studied in [56–58] and [105]

where the pattern of masses at the TeV corresponds to a compressed spectrum scenario.

These scenarios have as dark matter candidates higgsino like neutralinos or a mixture of

near degenerate bino/wino/higgsino.

As it will be discussed in appendix A, in KKLT the anomaly mediation contributions

for sleptons are negative. This is not a problem when the log hypothesis is not fulfilled, as

they are suppressed by a loop factor with respect to the gravitino mass. On the other hand,

if this hypothesis is realised, one has a bound to avoid tachyonic scalar squared masses:

the highest anomaly mediation contribution is in mẽR ; summing this with the contribution

discussed in section 4, one obtains

m2
i |KKLT=

(
s3/2ξ

4V
− 8g4

a

(16π2)2

)
m2

3/2 , (6.17)

giving the bound on the volume

V < s9/2ξπ2

2
' 105 , (6.18)

where we used again g2
a ' 4π/s.

Notice that for N < 20 (and also in the case of ωs � 1) the anomaly mediation

contribution dominates and then the phenomenology changes. In this case an open window

to wino like dark matter is opened. Moreover, depending on the higgsino mass, dark matter

matter could also be higgsino like. Even scenarios with co-annihilating wino-higgsino or

wino-bino would be allowed. For the case of wino like dark matter, disappearing tracks

search is competitive with the monojet one [96]. The exclusion limits on wino masses

at LHC 14 TeV are around 280 GeV and at a 100 TeV machine would reach the 2.1 TeV

(both for luminosity L ∼ 3000 fb−1). The limits on the co-annihilating bino-wino or wino-

higgsino are similar to those discussed in the previous sub-section for the bino-higgsino case.
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The impact of dark matter direct detection on the anomaly mediated scenario has been

studied in [97, 98]. It depends very much on the higgsino mass but the combination of dark

matter direct detection and collider searches seems to be a powerful tool. Unfortunately,

to really constrain the parameter space a 100 TeV machine is needed. Finally, in the

indirect detection searches of dark matter for wino like WIMPs there is a discussion on

possible exclusion limits on thermal winos (see for example [106]). The bounds come from

signals of monochromatic photons from our Galactic Core coming from possible neutralino

annihilation, in particular the monochromatic H.E.S.S. line [107].

6.3 Slow-roll inflation and nilpotent goldstino

Models of inflation in string theory abound [108, 109]. A usual criticism to these models

is the fact that they assume the presence of the uplift term without specifying its source.

Moreover, if supersymmetry is broken explicitly by the uplift term one could doubt that

the corresponding field theory is under control. With the formalism used in this paper,

one realises the uplift term by introducing the nilpotent superfield. This automatically

provides a concrete supersymmetric description of the inflationary models. This might be

applied to models present in the literature like, for instance, the Kähler [110] and fibre

moduli inflation [111]: here the inflationary region behaves as V ∼ A−Be−kφ with A and

B independent of the inflaton φ and A determined by the uplift term. For recent proposals

of inflation in supergravity models along the lines described here see for instance [112–120].

Furthermore, notice that finding the general structure of soft scalar masses for D3-

branes is essentially the same calculation needed for the well studied brane/anti-brane

inflation scenario. In [53, 121] several contributions to scalar masses were studied in order

to compensate for the −2V0/3 contribution that gives rise to the η problem. The −2V0/3

contribution appears also in our formulae (4.6) and (5.3), where, during infation, V0 is not

equal to zero, but it is positive. On the other hand, in our case the other contributions to

the scalar masses are not proportional to V0. It is then conceivable to tune the parameters

such that the 2V0/3 contribution is approximately canceled in the quadratic term (in the

inflaton) of the potential, giving rise to slow roll inflation. This can be combined with the

other supersymmetric contributions described in [53, 121] in order to estimate the required

O(10−2) fine tuning.

7 Summary and conclusions

In this article we have considered a particular 4D supergravity effective field theory with a

nilpotent superfield, in which the supersymmetry is realised non-linearly. Following [48, 49],

we have argued that this should be the low energy effective theory describing the moduli

and matter physics of CY flux compactifications of type IIB string theory with an anti-

D3-brane at the tip of a warped throat.

We summarise our findings as follows.

1. The coupling of the nilpotent superfield X to moduli and chiral matter provides the

uplifting term proposed in KKLT [12, 48, 49]. IfX couples to the moduli in the Kähler
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potential in the same way as the D3-brane matter superfield φ, then the generated

de Sitter uplift term has the same CY volume dependence as the one coming from

an anti-brane at the tip of a warped throat [53]. Adding a coupling between X and

φ in the superpotential, we could reproduce also the brane/anti-brane Coulombian

potential described for instance in [53].

2. The anti-D3-brane is taken to be bound on top of an O3-plane, that is placed at the

tip of the throat. This does not allow the anti-D3-brane to move. On the other hand

we want to realise the visible sector on a set of D3-branes placed at a singularity.

The fluxed induced soft masses typically stabilise the position of these D3-branes. On

the other hand, the anti-D3-brane attracts the D3-brane to the throat. This may in

principle destabilise the system, moving the D3-brane outside the singularity (in this

case the SM gauge group would be destroyed). We checked how big the soft masses

must be such that this does not happen. We found that in the studied cases the system

is stable, with the exception of the so-called ultralocal sequestered scenario in LVS.

3. We analysed the structure of the de Sitter vacuum in KKLT and how the F -term of

the nilpotent field X induces soft supersymmetry breaking terms for D3-branes at sin-

gularities. We found that if the Kähler potential can be brought in the logarithmic no-

scale form (2.9), the soft scalar masses vanish at leading order. Only when α′ effects

are included these soft terms are non-vanishing, but suppressed with respect to the

gravitino mass (see table 1). As discussed in section 6.2, in this case the anomaly me-

diation contribution can compete (possibly inducing tachyonic masses). On the other

hand, if the log hypothesis is not realised, sfermion masses are of order m0 ∼ m3/2,

while the other soft terms are of order m3/2/ log
(
Mp/m3/2

)
∼ O

(
10−2m3/2

)
. As

regard the gaugino masses, typically the anomaly mediation contribution dominates.

As we have explained in the introduction, this scenario has some analogies with the

one found by other means in [16, 56–58] and extends the results of [50] to include α′

corrections.

4. We studied for the first time the explicit structure of soft terms induced by an anti-

D3-brane in the Large Volume Scenario (LVS). We described the anti-D3-brane uplift

by introducing the nilpotent field like in KKLT. We computed the structure of soft

terms in this case as well. We found a concrete realisation of split supersymmetry

in which TeV gaugino masses M1/2 are lighter than the scalar ones m0 by a fac-

tor V−1/2. Moreover, the scalars are lighter than the gravitino by the same factor,

with m2
0 ∼ M1/2m3/2. In order to have a TeV gaugino the volume must be of order

V ∼ 106− 107 [54, 55].15 Notice that the used formalism allows to treat both sources

of supersymmetry breaking at the same level. The dominant component comes from

the overall volume modulus but all sources of supersymmetry breaking play a role

due to standard no-scale cancellations. This scenario gives the same physics as those

obtained in [54, 55] in which other uplifting mechanisms were used.

15For LVS, the log hypothesis does not play any role, as it induces cancellations in the subleading contri-

butions.
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KKLT LVS

Soft term D3 D3

M1/2 ±
(

3
2aV2/3

)
m3/2 ±

(
3s3/2ξ

4V

)
m3/2

m2
0

(
s3/2ξ

4V

)
m2

3/2

(
5s3/2ξ

8V

)
m2

3/2

Aijk −(1− s∂s log Yijk)M1/2 −(1− s∂s log Yijk)M1/2

Table 1. Summary of different soft terms for the visible sector on D3 branes for both KKLT and

LVS scenarios (when the log hypothesis is fulfilled). In both cases there is a hierarchy of masses with

the ratio ε = M1/2/m0 � 1. For typical numbers we have ε ∼ 1/50 for KKLT and ε ∼ 10−2− 10−3

for LVS, illustrating a version of mini-split supersymmetry.

5. We have commented some possible phenomenological consequences of the KKLT and

LVS scenarios with nilpotent goldstinos. In both cases the scalars are heavier than

gauginos such that the only possible accesible sparticles at TeV scales are some neu-

tralinos and some charginos. It seems that LHC exclusion limits for electroweakinos

are not decisive at all [96]. Hence a 100 TeV machine would be desirable to explore

the most interesting corners of their parameter space. We have also made some

comments on the possible impact coming from dark matter direct and indirect de-

tection. The LVS scenario behaves as a mini-split susy model with higgsino-like or

bino higgsino as dark matter candidates. In the KKLT scenario, the scalars are a bit

heavier than gauginos and the dark matter candidates depend on how much anomaly

mediation dominates. On the one hand, it could have a compressed spectrum with

dark matter being higgino like or a mixture higgsino-bino. Alternatively it could be

anomaly dominated and then, also wino like dark matter would be possible.

We summarise the structure of soft terms for matter on D3-branes for both KKLT

and LVS in table 1, under the assumption that the Kähler potential takes the logarithmic

form (2.9).16 In summary, including also the study of the visible sector living on D7-branes

presented in appendix B and summarised in table 3, there are four distinct scenarios, de-

pending whether the visible sector lives on D3 or D7-branes and on the moduli stabilisation

mechanism (KKLT or LVS). These may be subject to strong constraints in the not too far

future by LHC and its potential extensions and different dark matter searches.

One could generalise the use of the supersymmetric effective field theory with a nilpo-

tent superfield in different setups. For example, adding the effects of several anti-D3-branes

in terms of several nilpotent superfields seems straightforward and may lead to richer sce-

narios. Moreover, here we have always assumed that the anti-D3-brane is on top of an

O3-plane; if this is not the case, there will be other degrees of freedom that could be cap-

tured by including different constrained superfields. We hope the results of this article

could be useful for further developments.

16Notice that the soft terms are non-vanishing only when non-perturbative effects, α′ corrections and

the presence of the nilpotent superfield are considered. This is consistent with the existence of a vanishing

supertrace formula recently found in [122] since in that reference those effects were not included.
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A Anomaly mediated contributions

Anomaly mediation [123, 124] generates a one-loop gaugino mass and two-loop scalar

masses and is always present if there exists a hidden sector in the theory. The expres-

sions for anomaly mediated contributions to scalars and gaugino masses are given by:

Manom =
βga
ga
m3/2 and m2

i |anom=
1

2

dγi

dt
m2

3/2 , (A.1)

where γi is the anomalous dimension and βga is the beta function for the gauge couplings

ga. One can make more explicit the expression for the scalar masses in (A.1)

m2
i |anom=

m2
3/2

2

(
βga

∂

∂ga
+ βykmn

∂

∂ykmn
+ βy∗kmn

∂

∂y∗kmn

)
γi , (A.2)

where βykmn is the beta function for the Yukawas. In particular, the expression for the

anomalous dimension is

γi =
1

16π2

(
1

2

∑
m,n

|yimn|2 − 2
∑
a

g2
aCa(i)

)
(A.3)

where Ca(i) are the quadratic Casimir invariants of the group in the fundamental repre-

sentation. The beta function for the gauge couplings in the MSSM are given by

βga = − g3
a

16π2
(3TG − TR) (A.4)

where TG is the Casimir invariant in the adjoint representation and TR is the Dynkin index

of the group. In the MSSM:

3TG − TR =


−33

5 for U(1)Y

−1 for SU(2)L

+3 for SU(3)c

. (A.5)

Finally the beta function for Yukawas can be written generically as

βyijk = γiny
njk + γjny

ink + γkny
ijn . (A.6)

From (A.1) and (A.4) one can read the anomaly mediated contribution to gaugino

masses:

Manom
a = − g2

a

16π2
(3TG − TR)m3/2 (A.7)
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and from (A.1) and (A.3)–(A.6) one could also see that the dominating contribution to the

scalars is governed by the contribution of the gauge couplings

m2
i |anom=

2

(16π2)2

∑
a

g4
aCa(i)(3TG − TR)m2

3/2 . (A.8)

From this expression we see that the sleptons in pure anomaly mediated susy breaking are

tachyonic.

A way of understanding anomaly mediation was proposed in [125, 126]17 as a susy pre-

serving effect in AdS4. In that case the authors propose that the AdS susy structure is the

underlying symmetry structure for SUGRA theories. In order to preserve such underlying

AdS susy structure, it is needed that on top of the loop anomaly mediated terms described

above, one has to take into account the one-loop goldstino couplings. That generates

general expressions for the soft terms in anomaly mediation for flat space of the form:

Manom
a =

βga
ga

(
m3/2 −

1

3
KlF

l

)
(A.9)

m2
i |anom =

1

2

dγi

dt

∣∣∣∣m3/2 −
1

3
KlF

l

∣∣∣∣2 (A.10)

Aijk|anom =
1

2
Y

(0)
ijk

(
γi + γj + γk

)(
m3/2 −

1

3
KlF

l

)
(A.11)

where Kl = ∂lK and F lare the F-terms. Notice that, as it happens in no-scale models,

these contributions to soft terms vanish if KiF
i = 3m3/2.

A.1 Anomaly mediated soft terms for KKLT and LVS

It can be seen that the contribution to the scalar masses (A.1) is completely defined in

terms of the anomalous dimension. Given that anomalous dimension is coming from the

wavefunction renormalisation, the equation (A.1) is telling us that the behaviour of the

anomaly mediated contribution to scalars is linked to the behaviour of the renormalisation

of the wave-function. This seems to suggest that if one has a Kähler potential with no-scale

behaviour like

K = −2 log(T + T̄ − φ0φ̄0)3/2 , (A.12)

the effect of the renormalisation of the wave-functions φ0 =
√
Z0φ should satisfy the same

no-scale behaviour, given that

K = −2 log(T + T̄ − Z0φφ̄)3/2 . (A.13)

This would indicate that anomaly mediated contributions to scalar masses follow the same

no-scale behaviour as the moduli mediated ones. This no-scale behaviour is produced by

the logarithmic structure of the Kähler potential. Such a no-scale behaviour is captured

by the expression for the scalars in (A.10).

17See [127, 128] for a different point of view.
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Concerning the gaugino masses, using (A.9) one can see that in KKLT

Manom
a = − g2

a

16π2
(3TG − TR)m3/2 , (A.14)

whereas in LVS

Manom
a = − g2

a

16π2
(3TG − TR)

s3/2ξ

4V
m3/2 . (A.15)

By comparing these two expressions we see that in the LVS case there is a no-scale behaviour

whereas this is not the case in KKLT. That is happening because in LVS, one has

KVF
V = 3m3/2 (A.16)

and this term cancels the m3/2 contribution coming from (A.7). On the other hand, in

KKLT with the nilpotent goldstino, due to the fact that KX = 0 in the vacuum then

KXF
X = 0 (A.17)

and there is no such a cancellation. From here we can conclude that anomaly mediation

contributions are always subleading in LVS , as

Manom
a |LVS= − g2

a

16π2
(3TG − TR)

(Ma)LVS

3
. (A.18)

With respect to the scalar masses, the dominating term for KKLT is

m2
i |anom =

∑
a g

4
aCa(i)

(16π2)2
(3TG − TR) m2

3/2 , (A.19)

whereas for LVS, given the no-scale behaviour at tree level,

m2
i |anom =

∑
a g

4
aCa(i)

(16π2)2
(3TG − TR)

5

8

s3/2ξ

V
m2

3/2 . (A.20)

We see again here how the no scale feature of LVS protects it from any contribution coming

from anomaly mediation given that

m2
i |LVS

anom=

∑
a g

4
aCa(i)

(16π2)2
(3TG − TR) (m2)LVS , (A.21)

whereas for KKLT the anomaly mediation contribution will compete with the one coming

from moduli mediation.

Finally the trilinears satisfy the same pattern as for gauginos and scalars in the LVS

case

Aijk|LVS
anom= Y

(0)
ijk

∑
m=i,j,k

∑
a g

2
aCa(m)

16π2
(Aijk)LVS , (A.22)

whereas in KKLT there will be a new competition with the moduli mediated term

Aijk|KKLT
anom = Y

(0)
ijk

∑
m=i,j,k

∑
a g

2
aCa(m)

16π2
m3/2 . (A.23)

One can conclude that in LVS anomaly mediation contributions are completely irrelevant

but in KKLT they do play a role.
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KKLT LVS

Soft term Anomaly mediation Anomaly mediation

Ma −
(
g2a ba
16π2

)
m3/2 −

(
g2a ba
16π2

)
(M1/2)LV S

m2
i

(∑
a g

4
a Ca(i) ba

(16π2)2

)
m2

3/2

(∑
a g

4
a Ca(i) ba

(16π2)2

)
(m2

0)LV S

Aijk Y
(0)
ijk

∑
m=i,j,k

∑
a

Ca(m)

ba
Ma

Y (0)
ijk

∑
m=i,j,k

∑
a g

2
aCa(m)

16π2

 (Aijk)LV S

Table 2. Summary of different soft terms generated by anomaly mediation branes for both KKLT

and LVS scenarios. The parameter ba is defined as ba = (3TG − TR) = (−33/5, −1, 3). Notice

that in the scalars and trilinears we are giving just the dominating contribution coming from the

anomalous dimension.

B Soft terms on D7-branes

In this section we will analyse the soft-terms in KKLT and LVS for matter fields placed

on D7-branes instead of D3-branes. As we did for the D3-branes, we first analyse the

KKLT case and then we study LVS. In both cases, we will add the nilpotent superfield X

describing the presence of an anti-D3-brane. Here we do not study in detail the interaction

between the anti-D3-brane and the visible sector D7-branes. The presence of the anti-D3-

brane could generate a potential for the deformation moduli of the D7-branes, that would

move the D7-brane but generically it will not break the gauge group and the structure of

the chiral intersections.

B.1 KKLT with matter fields on D7-branes

We assume the parametric effective field theory where the Kähler potential is

K = −2 log (V) + K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + . . . (B.1)

where V = τ3/2. The matter metric is given by

K̃i = α
τ1−λ

V2/3
, (B.2)

where λ is the modular weight, that can take values λ = 0, 1, 1/2. These values correspond

respectively to brane positions, D3-branes (or its dual Wilson line) and D7-branes. We are

interested to the last ones. The matter metric for the nilpotent goldstino is the same as in

the former sections:

Z̃i =
β

V2/3
. (B.3)

Concerning the quartic interaction, it will be parametrised as

H̃i = γ
τ1−λ

V4/3
. (B.4)

– 34 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
6

The superpotential is again (4.3) and the scalar potential can then be written as

V = (VKKLT + Vup) +

(
2

3
(VKKLT + Vup) +

1

3
Vup

(
1− 3γ

αβ

)
+mλ

)
|φ̂|2 , (B.5)

where mλ is a complicated function of the modular weight λ and of the scalar fields. For

KKLT, at the minimum it takes the form

mλ =
W 2

0

2s

1

a2V10/3
(1− λ) . (B.6)

Notice that unlike the D3-brane case the effective Kähler potential cannot be put into the

logarithmic form for any values of the parameters α, β and γ. The non-zero term

1

3
Vup

(
1− 3γ

αβ

)∣∣∣∣
min

=
W 2

0

2sV2

(
1− 1

a2V4/3

)(
1− 3γ

αβ

)
(B.7)

will contribute to the scalar masses. Therefore the soft terms for scalar masses can be

written in terms of the gravitino mass as

m2 =

(
1− 3γ

αβ

)
m2

3/2 −
(
λ− 3γ

αβ

)
1

a2V4/3
m2

3/2 (B.8)

where the case λ = 1/2 corresponds to D7-branes.18

If we include the α′ corrections like in section 4.2, then there is a new term which

dominates over the second term in (B.8) such that

m2 =

(
1− 3γ

αβ

)
m2

3/2 +
s3/2ξ

V
3γ

αβ
(γ1 − α1 − β1)m2

3/2 . (B.9)

Notice that the prefactor
(

1− 3γ
αβ

)
can very easily generate a tachyon. Interestingly if

γ = αβ
3 then the leading contribution to the scalar masses will be given by the α′ corrections:

m2 =
s3/2ξ

V
(γ1 − α1 − β1)m2

3/2 . (B.10)

The gaugino masses are dominated by F T , since the gauge kinetic functions is f = T .

Hence

M = ± 1

aV2/3
m3/2 , (B.11)

where the relative sign ± refers to the choice of W0 ≷ 0. Finally the trilinears can be

written in terms of the gaugino masses as

Aijk = −3

2
(2λ− 1− s∂s log Y

(0)
ijk )M , (B.12)

where in the case of D7-branes one should use λ = 1/2.

18Notice that for λ = 1 we recover the D3-brane case.

– 35 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
6

Cosmological and phenomenological observations. The discussion for the scalar

masses is similar to the one presented in section 6.2, for the case when the log hypothesis

is not fulfilled.

The anomaly mediated contributions together with the gaugino masses for D7-branes

generate the following competition

MKKLT
a =

(
± 1

aV2/3
− g2

a

16π2
(3TG − TR)

)
m3/2 (B.13)

and using the same strategy as in 6, one can see that the parameter α̂ from [56–58] is this

time α̂ = 1. However, this time the mirage scale is given by

Mmir = MGUT e
− 100π

N . (B.14)

Hence, in this case, for N ∼ 11 one could obtain a TeV mirage scale with a compressed spec-

trum scenario. For N < 11 anomaly mediation dominates. The collider phenomenology is

similar to the one described in 6 for LVS. Regarding the KKLT scalar masses, the anomaly

mediation terms are suppressed by the loop factor compared to the leading contribution(
1− 3γ

αβ

)
m2

3/2.

B.2 LVS with matter fields in D7

We now study a visible sector realised on D7-branes wrapping a small cycle, i.e. a four-cycle

whose volume is (proportional to) τs in the Large Volume Scenario. This can be realised

whether the D7-brane cycle is Ds or whether there is a linear relation between the volumes

of the two. The first possibility leads to difficulties in allowing an MSSM chiral spectrum

on the D7-brane and at the same time having a non-perturbative effect contributing to the

superpotential (see [54]). The second situation may be forced by fixing the relation between

the two Kähler moduli at higher energies (see [27] for an example). Here we assume that

this is possible.

In this case the Kähler potential will be described by

K = −2 log
(
V − ξ̂

)
+ K̃i φφ̄+ Z̃i XX̄ + H̃i φφ̄ XX̄ + . . . (B.15)

where V = τ
3/2
b − τ3/2

s and where

K̃i = α
τ1−λ
s

V2/3
, Z̃i =

β

V2/3
, H̃i = γ

τ1−λ
s

V4/3
. (B.16)

Like in KKLT, the scalar potential can be generically written as

V =
(
VLVS + Vα′up

)
+

(
2

3

(
VLVS + Vα′up

)
+

1

3
Vα′up

(
1− 3γ

αβ

)
+mλ

)
|φ̂|2 , (B.17)

where at the LVS minimum mλ takes the form

mλ =
9(1− λ)

(4asτs − 1)2

W 2
0

2sV2
=

9(1− λ)

(4asτs − 1)2
m2

3/2 (B.18)
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KKLT LVS

Soft term D7 D7

M1/2 ±
(

1
aV2/3

)
m3/2 ±

(
3

4aτs

)
m3/2

m2
0 (1− 3ω)m2

3/2

(
9(1−λ)
16a2τ2s

)
m2

3/2

Aijk
3
2(2λ− 1− s∂s log Yijk)M1/2 −3(1− λ)M1/2

Table 3. Summary of different soft terms for the visible sector on D7-branes for both KKLT and

LVS scenarios. Here ω = γ0
α0β0

. Also the modular weight λ is kept explicitly with values λ = 1/2

for D7-branes simplifying the expressions.

and where 1
3Vα′up

(
1− 3γ

αβ

)∣∣∣
min

is subleading, as the Minkowski/dS condition forces

Vα′up ∼ CosmConstLVS ∼
m2

3/2

V
, (B.19)

where CosmConstLVS is the absolute value of the LVS AdS cosmological constant when the

uplift term is absent (i.e. ρ = 0). Hence, the scalar masses at the dS minimum are given by

m2
0 =

9(1− λ)

(4asτs − 1)2
m2

3/2 . (B.20)

Concerning the gaugino masses, the gauge kinetic function is f = Ts and hence they are

dominated by the F Ts :

M1/2 = ± 3

4asτs − 1
m3/2 , (B.21)

where the relative sign ± refers to the choice of W0 ≷ 0. Notice that the relation between

the scalars and the gauginos is given by

m2
0 = (1− λ)M2

1/2 . (B.22)

Finally the trilinears can be written as

Aijk = −3(1− λ)M1/2 . (B.23)

For the case of D7-branes, λ = 1/2 and hence

m2
0 =

1

2
M2

1/2 and Aijk = −3

2
M1/2 . (B.24)

Cosmological and phenomenological observations. The mass of the lightest mod-

ulus is

m2
V = 5asτs

s3/2ξ

V
m2

0 . (B.25)

One can see that in order to avoid the cosmological moduli problem, the bound is

m0 & 103 TeV . (B.26)
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In this scenario, the gauginos are of the same order as the scalars. Hence all the sparticles

are at MSUSY & 103 TeV. The higgsinos will be of the order µ ∼ 10 TeV (if one is able

to saturate the last bound) due to the one loop mass contribution induced by the bino

and the wino. Therefore, this scenario would need of R-parity violation to avoid dark

matter overproduction, and non of the sparticles would be detectable at LHC or at direct

or indirect detection experiments.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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