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Abstract. We consider the problem of understanding how DNA methy-
lation fidelity, i.e. the preservation of methylated sites in the genome,
varies across the genome and across different cell types. Our approach
uses a stochastic model of DNA methylation across generations and
trains it using data obtained through next generation sequencing. By
training the model locally, i.e. learning its parameters based on observa-
tions in a specific genomic region, we can compare how DNA methylation
fidelity varies genome-wide. In the paper, we focus on the computational
challenges to scale parameter estimation to the whole-genome level, and
present two methods to achieve this goal, one based on moment-based
approximation and one based on simulation. We extensively tested our
methods on synthetic data and on a first batch of experimental data.
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1 Introduction

Epigenetic marks such as DNA methylation provide a mechanism by which cells
can control gene activity in a manner that is heritable between cell generations
and adaptive to external stimuli [3]. Biochemically, DNA methylation is a cova-
lent modification of the DNA. In vertebrates, DNA methylation occurs almost
exclusively in the context of a cytosine (C) followed by a guanine (G). These so-
called CpG sites are palindromic and can carry one DNA methylation group on
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each strand. As the result, a single CpG site can be symmetrically unmethylated,
asymmetrically methylated on either the forward or the reverse strand of the
DNA (hemimethylated), or symmetrically methylated on both strands. In most
cases, DNA methylation is symmetrical, which provides redundant information
on both strands. When cells divide and the DNA is copied in a semi-conservative
manner (i.e., each daughter cell receives one strand of the double-stranded DNA
molecule), the DNA methylation on the newly synthesized strand can be recon-
structed from the DNA methylation on the conserved DNA strand. The process
of copying DNA methylation patterns is called maintenance methylation.

Compared to the very high efficiency with which the DNA sequence is copied
and maintained during cell division (typically with error rates in the order of
1078), the fidelity of DNA methylation maintenance is much lower. Based on
single-locus studies, error rates have been estimated to be in the order of 1072
to 1073, To maintain high DNA methylation levels in specific regions of the
genome despite the relatively low fidelity of maintenance DNA methylation, cells
utilize a second mechanism called de novo methylation to methylate previously
unmethylated cytosines independent of the DNA methylation status of the sec-
ond cytosine within a CpG site. The rates of de novo methylation during normal
cell growth are relatively low, but they appear to be sufficient to compensate
for the gradual loss of DNA methylation that would normally result from the
limited fidelity of DNA methylation maintenance.

Comprehensive genome-wide assessments of the fidelity of DNA methylation
and of the de novo DNA methylation rate and their comparison between different
cell types have been lacking, and prior work has focused on small parts of the
genome. With genome-wide methods for DNA methylation mapping and analysis
[5,4], even in single cells [7], it is now possible to collect comprehensive datasets
to estimate these important biological parameters in a genome-wide manner
and to systematically search for differences between cell types. In this study, we
address the computational challenges of inferring these parameters in a manner
that is sufficiently high-throughput and scalable to support the genome-wide
analysis of large numbers of samples.

The assumed experimental design is as follows: A single cell is isolated and
left to grow exponentially over n generations, typically n = 20. The resulting cell
population (approximately 22 ~ 1 million cells) is subjected to genome-scale
bisulfite sequencing, the reads are aligned to the reference genome, and for each
CpG site the number of methylated and unmethylated reads are counted for a
subsample of the population (typically 10 to 100 measurements per CpG, with
several million assayed CpGs). In these experiments, we are interested in the
dynamic nature of the methylation process, in particular how it is propagated
through the n cell generations. In order to understand this behaviour, we need a
mathematical model of the methylation fidelity and of the de novo methylation
rate, which must be trained using the experimental data available. In building
the model, our main goal was to predict its parameters from data, which are
directly connected to de novo methylation and fidelity probabilities. The model
we construct is based on those proposed in [2,12], and it is a discrete-time
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Markov chain describing how the methylation progresses through generations at
the population level (i.e. counting how many cells have a specific CpG site are
unmethylated, hemi-methylated, or fully methylated).

The main challenge with this model is computational, as we need to perform
the parameter estimation task genome-wide, for each CpG site and each biologi-
cal sample. The model cannot be solved analytically, and it is too large for being
solved with standard numerical techniques. Hence, we engineered two different
strategies for computing the likelihoods required to train the model parameters,
one based on an analytical approximation, and the other based on simulation.
In this paper, we present and compare the two approaches, both theoretically
and experimentally.

To validate the accuracy of the presented methods we simulated test data
using our model, and we estimated the parameters for these test data sets.
Furthermore, we used our the methods to estimate the parameters in real, ex-
perimentally derived, data sets.

The paper is organised as follows: in Section 2, we discuss the mathematical
model, and in Section 3 we present the parameter estimation techniques. Pre-
liminary results are shown and explained in detail in Section 4, and conclusions
are drawn in Section 5.

2 Stochastic Model of DNA Methylation

We propose a stochastic model for the dynamics of DNA methylation of a cell
population over a certain number of cell divisions. This model is an extension
of previous models that have described the average state of a single CpG site
within a certain cell population [2,12].

Single cell model. To describe the DNA methylation dynamics of a single
CpG site, we consider three possible site states: unmethylated on both DNA-
strands (unmethylated, U), methylated on both strands (fully methylated, F') or
methylated on one out of the two strands (hemimethylated, H). This naturally
leads to a (discrete-time) Markov model description where one time step corre-
sponds to one cell cycle or the time between two cell divisions (in cultured cells,
this time is often on the order of 24h). Over the course of one cell cycle, the
DNA methylation state of the CpG site changes in three phases. In phase one,
the two strands of DNA are separated such that each daughter cell receives one
strand, and a complementary stand is synthesised. This complementary strand
is always unmethylated, such that this step dilutes the DNA methylation levels
compared to the parent cell. Thus, the transitions for this phase are from U
to U and from F to H with probability one, respectively, as well as from H to
H or to U with probability 0.5, respectively (Fig. 1, left). In the second phase,
which occurs during and after the synthesis of the new strand, a special class of
enzymes, called DNA methyltransferases (DNMTs), try to maintain the pattern
of the mother strand by methylating hemimethylated CpG sites. Maintenance
methylation is a stochastic process [2], such that the state of a site changes
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from H to F with probability f,,, and from U to U with probability f,. Success-
ful maintenance typically occurs with a relatively high probability. However, in
both cases maintenance might fail with probability 1 — f,,, (transition from H to
H) and with probability 1 — f, (transition from U to H). The third phase, which
lasts from the end of a cell division to the beginning of the next, allows for de
novo methylation, where methyl groups are transferred by DNMTs to sites that
are in state U or H. Here, the assumption is that de novo methylation occurs at
a given site and strand independently of the DNA methylation state of the CpG
on the other strand [2]. Thus, with probability p the state changes either from
H to F or from U to H (Fig. 1, left). Note that we neglect the extremely rare
transition from U to F through de novo methylation, in order to keep the model
simple. Simulations of the model show no significant differences if the transition
from U to F due to de novo methylation is added (results not shown).
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Fig. 1: The three phases of the single cell model (left) with cell-division (dark grey, the
division of single cells into two new cells is represented by two arrows.), maintenance
methylation (grey), and de novo methylation (light grey) as well as the population
model (right) over 20 generations

Population model. In the proposed population model we consider a fixed
CpG site in a single allele, thus modelling independently CpG sites in different
alleles, and start initially with a single cell. Then, after the next time step we
consider all daughter cells (two at time ¢t = 1, four at time ¢ = 2, etc.). Thus,
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the resulting process is a branching process and after 20 generations we have to
consider 220 ~ 106 cells. In order to describe the state of the CpG site in the
cell population at time ¢, we compute the probabilities that, when a site in the
parent cell is in state X, the two states of the daughter cells are Y and Z, where
X,Y,Z € {U, H, F}, according to the following matrix M

U UH UF HH HF FF

U t%]U 2-tvvtvn 2 -tvutur t%}H 2-tuatur t2UF
M=g 0 tvutum tvutur tvutuny turtom +tuatur turtor |

F 0 0 0 4y 2-tuutur thr

with (tyv, tvm, tur, tam, tar) = (fu-(1=p), (1= fu) (L =p) + fupe, (1= fu)p, (1=
fm)(X — @), fm + (1 — fi)p). Note that the entries for column UH considers
the two symmetric cases that either the site in one daughter cell is in state U
and the other one in state H or vice versa. The same holds for the columns
UF and HF. The entries of M are computed by considering the corresponding
paths in the diagram in Fig. 1, left. Consider for example the entry My gr =
turtyg + tygtgr. During cell division a site in state H is divided into a site
in state U and a site in state H (upper grey block in Fig. 1, left). Next we have
to consider the paths from the nodes in the second line to those in the last line,
ie. from UtoF (typ = (1 — fu)-p) and from Hto H (tgy = (1 — fm)(1 — p)).
Analogously, we consider the paths from U to H and from H to F which yields
the second term tygtyp.

In Fig. 1, right, we illustrate a trace of the population model over time.
Assuming the state of the CpG site is H in the initial cell, then the two daughter
cells of the next generation could be in state U and F, while in the following
generation we could have states U U H and F, etc. After n = 20 generations, in
the final population there are 22° cells, in each of them, the state of the tracked
CpG site will be in one of the three states. Note that we apply matrix M to
all cells of the current generation to determine the possible daughter cells. In
addition, we assume that DNA methylation in a cell and on a given allele occurs
independently of other cells and alleles.

The model we are considering belongs to the well-known family of multi-type
Galton-Watson branching process [8], giving us the possibility of exploiting the
vast theory developed for them.

Our wet-lab data contain only information about how many methylated (m =
m(n)) and unmethylated (u = u(n)) single strand sites are present in a subset
of the final population (after 20 generations). However, this means that for the
unknown full state we have the relationships

m(n) =Y (n) +2-Yr(n) (1)
u(n) =Yu(n)+2-Yy(n) (2)
if Yy(n),Yu(n), and Yr(n) are the numbers of unmethylated, hemimethylated,

and fully methylated CpG sites in the final population. As n = 20 will be fixed,
we will often omit this index it in the following.



6 C. Bock, L. Bortolussi, T. Kriiger, L. Mikeev, V. Wolf

3 Parameter Estimation

Since our ultimate goal is to do whole-genome studies and apply our model to
different cell types, we are interested in parameter estimation procedures that
are computationally efficient. Our model is parametric in © = (fi,, fu, ) as well
as in the state of the initial cell. In order to estimate these parameters we use a
maximum likelihood approach and compute the likelihood of observing m and
u (single strand observations). Computing this exactly is computationally very
expensive due to the large size of the state space and the stiffness of the model
(fm and f, being close to one). In the following we present two methods to
approximate the maximum likelihood and estimate such parameters. The first
one is based on stochastic simulations of the model and a statistical estimation
of the likelihood of the observed data. The other approach uses a moment-based
numerical method to approximate the likelihood.

Description of data. The wet-lab DNA methylation data comprise lists of
integer pairs A = (ue,me). Each pair describes the DNA methylation measure-
ments for a given CpG site e, where one of the strands was observed u, times
unmethylated and m. times methylated (the experimental setup does not allow
to distinguish between upper and lower strand). Since it is known that certain
groups of CpG sites behave similarly we will also use our model to describe the
average behaviour of a CpG site within such a group and collect all observation
pairs for these sites in a set A. If we only consider a single CpG site e, then

A= {(ue,me)}.

Likelihood for single data pairs. Consider a possible state of the model
Y =Y(n) = Yu(n),Yu(n),Yr(n)) after n = 20 generations, whose entries
sum up to Yy + Yy + Y = 220, From this vector it is possible to compute the
numbers m and u of methylated and unmethylated strands (see equations 1 and
2). In the following, we use mx and ux to denote the number of methylated
and unmethylated strands conditional on the site of the initial cell being in state
X € {U,H,F} and we define the two relative frequencies p,x = i and
Pmx = u)(rii):nx =1 — Pux-

We now want to compute the likelihood that a certain data pair A = (u,, m.)
is observed given the parameter set ©. We assume that the measured cells are
randomly chosen and therefore we can reduce the computation of the emission
probabilities to the urn problem (drawing with replacement). Hence, the emission
probability for observation ), if the final state is y = (yu, ym,yr), is given by

Me + Ue

PxoO 9 = (™5 ) ) ()™ 3)

€

Thus, the likelihood of the observation A, conditional on a given initial state
X € {U, H, F'} and the parameters O, is

P\ X,0)=> P(Y(n)=y) - Pxo(A|y) =Ey[P(\ | X,Y)].  (4)
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The exact computation of the expectation Ey [P(A | X,Y')] requires the knowl-
edge of the probability of each possible final stage y, which is computationally
expensive. Therefore, we approximate such an expectation in two possible ways,
either statistically relying on simulations of the model, or by stochastic approx-
imation.

Simulation-based approach. An estimator for the likelihood Ey- [P(A | X,Y)]
can be obtained by taking the sample mean of the emission probabilities of all
trajectories.! We compute the sample mean that approximates the likelihood
by generating 10000 trajectories using the method explained below. Note that
during the optimisation process, we vary this number for performance reasons.

To generate a trajectory of the process, we use a standard simulation algo-
rithm for discrete time Markov chains. The simulation is initialized by computing
the matrix M (see Section 2) as well as setting the initial state Y (0), i.e. the
state of one site of the single initial cell of the zeroth generation. Then in each
step we determine the state of the site of the next generation according to the
distributions in M. Instead of repeatedly generating the two daughter cells for all
parent cells, we draw samples from a multinomial distribution according to the
number of sites in state X € {U, M, F'} and the probabilities in the correspond-
ing line of matrix M. For instance, if the state of the initial site is H (see Fig. 1,
right) we set the initial counting vector Y (0) = (Y7(0), Y (0), Y»(0)) = (0,1, 0).
In the next step a new counting vector, say Y (1) = (1,0, 1) as in Fig. 1, right,
is determined according to the multinomial distribution as described above. We
iterate this process until we reach generation n = 20, thus obtaining a sample of
the final state Y (n).

Moment-based approach. An alternative to simulation is to try to approxi-
mate the likelihood Ey-[P(A | X,Y)] by resorting to ideas of stochastic approx-
imation. Our approach is conceptually simple: first, we compute the first two
moments of the distribution of Y = Y (n), conditional on the initial site state
being X € {U, H, F}, namely its mean eX = E[Y (n)], and the covariance ma-
trix CX = (Cy;), Ci; = Cov[Yi(n),Y;(n)], i,j € {U,H, F}. Then, we assume Y’
takes continuous values rather than integer ones, and invoke the maximum en-
tropy principle [1] to approximate it by a 2-dimensional normal distribution with
mean eX and covariance matrix CX (we can get rid of one dimension exploiting
the fact that the population at generation n equals 2"). By letting fex cx be
the corresponding normal density, we then have

Me + Ue yu + 0.5y \“ (1 —yu — 0.5y \"°
( . ) (s - fux o (¥) dy.

This integral is then numerically approximated by using the two-dimensional
Simpson’s rule [6].

P()\|X76)z/

u,h

! Note that the emission probabilities are dependent on the relative frequencies pux
and pmx, which are random variables as they depend on the random quantities ux
and mx.
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In order to compute mean and covariance of Y (n) = (Yy(n), Ya(n), Yr(n)),
n =0...20, we exploit the fact that Y is a multi-type Galton-Watson branching
process [8]. Following [11], we define the expectation matrix M with elements

M;; = E[Y;(1) | Y(0) = b'], ()

where 7,5 € {U, H, F} and bY = (1,0,0), b? = (0,1,0), b = (0,0,1). We also
define the covariance matrices V¥ k € {U, H, F} such that

— Cov[Vi(1), V;(1) | Y (0) = b (6)
Then, the following recurrence holds [11]:
VU
en+ D+ = emem) | M Vr | = e,
0MxM

where M x M is the Kronecker product, C(n) = (Cyy(n),Cug(n),Cyr(n),
Cru(n), Cur(n), Cur(n),Cru(n), Cru(n), Crr(n)) and V' = (Vi Vi, Ve,
Vo Vit Vire, Vius Vi, V). For each initial state k € {U, H, F'} we also
compute

[e" C¥] = [b* 0] T%.

Estimating the initial state. The previously discussed approach allows us
to compute the likelihood for a single pair A conditional on the initial state
X € {U, H, F}. In order to estimate such an initial configuration, we consider the
estimated likelihoods P(A | X, ©) in a Bayesian context. We start by assuming
a prior distribution P(X | ©) over the initial states, and then compute the
posterior distribution P(X | A, @) according to Bayes theorem as

P(\| X,0)-P(X|©)
Yxewnrm PN X,0) - P(X|0)

In order to fix the prior, we need to take into account that it is unlikely that
the original cell has a hemimethylated site (which is very uncommon for living
cells), so the prior should give it a small probability for X = H. Our solution
is to consider as prior probability the state of the model after one generation,
starting from the distribution (U H F) = (0.5 0 0.5). For instance, we have
P(H | ©) = tyg(tvy + tvg +tur) + tua(tgy + tar) (see also Section 2).
Then, we can compute the model likelihood, for a given A, independent of initial
conditions, as P(A | ©) = X} xc(yar P(A | X,0) - P(X | ©).

P(X|)\0) =

Likelihood optimisation. The model likelihood for all data pairs A = {A1, Az,
..} is finally obtained by taking the product of the likelihood of all individual
pairs. By taking the logarithm, the model log-likelihood then is

log(P(A | ©)) Z log(P(\ | ©))
A€A
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To estimate the parameters we used a simple maximum likelihood approach.
We computed the likelihoods —log(P (A | ©)) for varying © and converged to a
minimum using simple optimisation procedures. In the final version, we use the
Nelder-Mead procedure which is a derivative-free optimisation that performed
best in our tests [10].

4 Results

In order to validate the proposed estimation algorithms, we ran detailed tests
with simulated data (Section 4.1). We also present preliminary results of the
whole genome analysis based on real experimental data (Section 4.2).

4.1 Results for simulated data

Generation of synthetic data. In order to simulate realistic experimental
data with our model, we need two additional parameters governing the behaviour
of the experiment: coverage, which is the average number of measurements per
CpG site, and length, which is the number of CpG sites in the simulated dataset
Agim. Given such information, synthetic experimental data is generated accord-
ing to Algorithm 1. In order to vary the coverage and keep the variance of the
coverage as realistic as possible, we determine for a fixed coverage the number
of measurements per CpG site in such a way that it resembles this number in
the truly measured data.?

1: prepare a list Lyeq: of numbers of measurements per site as follows: choose
randomly a sequence of measurement numbers from the real data with length
entries and compute the average C).q; over all entries of this list
set Agim =0
for i := 1 to length do
draw probabilistically the initial state X (as described in Section 3)
run 20 generations from X
compute p(methylated) = (#methylated sites)/(#sites)
get Crear as the ith entry of Lyeqr
compute C' = Round((Creai - (coverage — 0.5))/(Creat) + 0.5)
draw a random number m from a binomial with p = p(methylated) and C
add A = (m,C —m) to Asim
: end for

—

—_

Algorithm 1: Generation of synthetic data.

2 We avoid the number of measurements C' to be set to zero by subtracting 0.5 from
the reduced coverage and add 0.5 to the quantity to round (Algorithm 1, line 8).
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Scanning the parameter space of simulated data sets. We first examine
the likelihood landscape by deep sampling of the parameter space, fixing the
coverage to 5 and the length to 1000, as these values are typical for some of
the real data sets considered in the following section. We use the moment-based
method described in Section 3 to approximate the likelihood.

We consider synthetic data obtained from the model with the arbitrarily
chosen values of Oy = (fu, frm, p) from Table 7. For each parameter set we
generated a data set using Algorithm 1. To get an impression of the likelihood
landscapes, we computed the likelihood for a fine grid of the parameter space
© with the proposed approximative approach for parameter sets 1-3. In Fig. 2
we show the results. For better visualisation purposes, we report 2-dimensional
plots. We represent for each pair of parameters the negative log-likelihood as a
grey value and restrict to the maximum log-likelihood for each pair of parameters
in the plot.
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Fig. 2: Likelihood landscape for low coverage data. Parameter set 1 (left), 2 (middle),
and 3 (right) from Eq. (7).

In all three cases the estimation resulted in a very flat likelihood landscape
since a low coverage of 5 was used. For high coverage synthetic data (as we
have it in the real data) the estimation was much more accurate (see below). In
particular the sum « := p + (1 — f,,) + (1 — fu), which reflects the probability
of copy mistakes in the methylation pattern, is very close to the true value.
Nevertheless, in the low coverage case for parameter set 1 we find high likelihood
values if the sum g+ (1 — f,) < 0.031, in rough agreement with the value of the
parameter set that was used to simulate the data. Also there is a tendency for
fm to be at a value > 0.97. In all three of the upper plots it can be seen that
there is a dependency between f, and p. Increasing f, seems to have the same
effect on the likelihood as decreasing u, which makes sense because in both cases
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the U state is copied more often and it is less often the case that the daughter
cell has state H.

The parameters of the second and third set resulted in observations that are
similar to real data as maintenance typically occurs with high probability. In the
case of parameter set 3 the likelihood increases significantly when crossing the
line u = f, — 0.97 and becomes maximal at f, = 1 and p = 0.001, while f,, is
estimated to be smaller than 0.999.

O ppSimlation T Bsim| fu | S | | @
120 F ’ 0.999( 0.97 | 0.03 [0.061
0.999|0.999( 0.03 {0.032

100 | i

60 | e 1

0.97 10.999| 0.03 {0.061
0.97 10.999(0.001|0.032
0.999/ 0.97 10.001/0.032

computing time ¢

1
% et 1 3 [0.999[0.999[0.001[0.003  (7)
4
5
6

I I I I
50 100 150 200 250 300
#(different )

Fig. 3: Comparison of the performances of the simulation and the approximation
approach (left). The parameter sets of the simulated data (right). Note that we
also list o := p+ (1 — f,) + (1 — f,,) in this table, which is used as an indicator
number later.

Comparison of simulation and approximation approaches Next we com-
pare the two approaches for approximating the likelihood, namely the simulation-
based and the moment-based methods explained in Section 3 . We used the same
three parameter sets 1-3 from the previous section (see Tab. (7)) but instead of
optimising the third parameter we fix f, = 0.999 and plot the computed likeli-
hood depending on p and f,,,. The results are shown in Fig. 4. It can be seen
that the likelihoods obtained by the moment-based method (lower plots) are
much smoother, being free from the random effects of the simulation approach
(upper plots). Nevertheless, the results of both methods are very similar and the
maximum likelihood points in the parameter spaces are very close. For example
for parameter set 1, 87% of the log-likelihoods differ by not more than 10% from
each other. Furthermore, for the plots in the middle of Fig. 4, both methods find
as optimal f,,, the true value of 0.999, while y is optimal at 0.023 for the moment-
based approach and 0.026 for the simulation approach (true value is 0.03). Note
that the optimal parameters that are recovered with the different methods differ
more for the plots in Fig 4, left and less for the plots in Fig. 4, right, due to
the different kinds of likelihood landscapes. For performance reasons, we restrict
ourselves to the simulative approach for the remainder of the paper. In fact, as
soon as there are more than approximatively 80 different data pairs A in one data
set, the numerical method becomes slower than the simulation. For 80 different
data pairs both methods need approximately 30 sec, while for a data set with
200 different data pairs, the simulation needs 40 sec and the numerical method
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Fig. 4: Comparison between numerical (lower row of plots) and simulative (upper row
of plots) approximation of the likelihood: Parameter set 1 (left), 2 (middle), and 3
(right) from Tab. (7).

needs 100 sec. (see Fig. 3 for a complete comparison). For huge data sets, which
are common in real experimental data, the simulation would clearly outperform
the numerical approach.

Parameter estimation for simulated data To explore the quality of our
estimation procedure, data for all parameter sets O, listed in Tab. (7) with
different coverages and lengths were generated. Then, we estimated ten times
such parameters with the simulation approach (see Section 3). Since we have
seen that the model cannot distinguish well between parameter sets with similar
p+(1—fu), we concentrate in the following on the sum oo = p+(1— fi, )+ (1— fu),
which reflects the probability of copy mistakes in the methylation pattern. If «
is zero, then each site in state U or F' will be in state U or F' in all daughter cells
again. The higher o becomes, the more errors happen during one generation.
The results for the (average of the ten) differences A« between the estimated
«a and the true o with which the simulated data was generated is plotted as a
function of the chosen lengths and coverages in Fig. 5.

It can be seen that the coverage of a certain data set plays a crucial role when
estimating the parameters of the proposed model. For coverages between 16
and 64, a constant value for A« is reached, which becomes greater again for
coverages greater than 100. In contrast, raising the length of a data set is not
leading to less accurate parameter estimations. From length 500 on the distances
are converging. Since parameter estimation on real data is typically done for large
genome regions with many CpG sites and each site produces one data pair of
methylation data, it is very common to have a data set of at least 500 entries.
The estimated o when only a single observation A is given, is obviously rather
inaccurate. In Fig. 5 we see that the estimation based on ten observations gives
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much better results. Since we only have one observation for each CpG site in the
data of the real system and since CpG sites that belong to the same region typ-
ically show similar DNA methylation dynamics, we estimate in the next section
the parameters of the average behaviour of a group of several CpG sites whose
observations are collected by the set A.

4.2 Parameter Estimation for Real Data

The main motivation behind our work is the availability of huge datasets of
DNA methylation data that we will use to investigate methylation fidelities, i.e.
learn the parameters u, f,, and f,. In the following, we use two data sets with
human blood samples and solid tumour samples. We ran the simulation-based
parameter estimation procedure for both cell types and examined the differences
between the estimated fidelities in blood and in tumour cells. In order to estimate
parameters for sets /A of observations of CpG sites in close proximity, we grouped
CpG sites in consecutive ranges of 5000 base pairs into genomic regions and
used our model to describe the average behaviour of a site in each region. For
the analysis, first a region was identified, the methylation data of this region
were extracted from the data of the blood and tumour samples, and if there
was information about at least 100 different CpG sites, the parameters were
estimated for the extracted data. Fig. 6 shows estimated parameters of different
regions of chromosome 7. Both plots look broadly similar, but there is a certain
number of regions where f,, is reduced in tumour samples. In these regions
1 tends to be increased (the points are brighter). To visually investigate this
observation, Fig. 7 shows for each region f,(cancer) as a function of f,(blood),
with £ = m,u. While f, is distributed more or less equally over the whole
pictured region, f,, is more clustered and in average reduced in cancer-cells. The
corresponding plot for u looks similar to the plot of f,, and is not reported. To
validate this visual impression, we tested the null hypothesis Hy 1 : fm (blood) <
fm(cancer) with a Mann-Whitney test. The resulting p-value was p < 2732,

0.05 —— —— 0.02 T — T —
single Oy, + single Oy,
0.04 . average average
' 0.015 - R
003 |* 1
_ . .
3 + 1
5 g oo1 | i
0.02 + : . 4
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0.01 - + - . + ’ .
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Fig. 5: Distances between estimated « and true « for a fixed length of 1000 (left).
Distances for all six parameter sets for a fixed coverage of 6(right).
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Fig. 6: Estimated parameter sets for groups of 5000 base pairs of chromosome 7. Left:
data from 306 blood samples. Right: data from 101 solid tumor samples.
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Fig. 7: Comparison of estimated single parameters. Left: f,,. Right: f,

so we can safely reject this hypothesis. Although the plots for f, and u look
very similar according to the Mann-Whitney test, we also have to reject Ho o :
fu(blood) > fy(cancer) and Hps : p(blood) < p(cancer). Hence, the Mann-
Whitney statistically hints at the fact that blood and tumour samples behave
differently in terms of DNA methylation fidelity, which is relevant for cancer
biology, although the test fails to suggest a clear criterion which can be used as
an indicator for detecting abnormal cells. Visual inspection of Fig. 7 points to
fm as a potential candidate. This issue will be further investigated when running
the analysis on additional data sets.

5 Conclusions

In this paper we introduce a model of DNA methylation fidelity taking into ac-
count the behaviour of individual cells over generations, which can be trained
by experimental data obtained from next generation sequencing technology. We
carefully crafted efficient parameter estimation techniques to scale the analysis
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to the whole-genome level. Currently, parameter estimation for a single group
of sites takes less than one minute on a single core. Given that one chromosome
contains approximately 10° CpG sites, with the grouping of CpG sites consid-
ered, we will need approximately 14 days for the complete analysis on a single
core machine. However, as this code is fully and straightforwardly parallelizable,
the whole-genome analysis is feasible on a high-performance cluster.

In this paper we also present preliminary tests on simulated data and on a
real whole-genome dataset, trying to detect differences in methylation fidelities
between human blood and tumour samples. Preliminary statistical analysis of
data appears to support that there is indeed a systematic difference in the DNA
methylation dynamics of the two samples. Deeper investigations are currently
carried out on the whole-genome scale to better understand the statistical na-
ture and biological significance of these differences. We will also investigate if
and how differences in methylation fidelity reflect on differences in the shape of
methylation profiles, comparing with state-of-the-art statistical tests [9].
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