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Abstract. Pattern formation is an important spatio-temporal emergent behaviour
in biology. Mathematical models of pattern formation in the stochastic setting are
extremely challenging to execute and analyse. Here we propose a formal analysis
of the emergent behaviour of stochastic reaction diffusion systems in terms of
Signal Spatio-Temporal Logic, a recently proposed logic for reasoning on spatio-
temporal systems. We present a formal analysis of the spatio- temporal dynamics
of the Bicoid morphogen in Drosophila melanogaster, one of the most important
proteins in the formation of the horizontal segmentation in the development of the
fly embryo. We use a recently proposed framework for statistical model checking
of stochastic systems with uncertainty on parameters to characterise the paramet-
ric dependence and robustness of the French Flag pattern, highlighting non-trivial
correlations between the parameter values and the emergence of the patterning.

1 Introduction

One of the most fascinating questions in biology is how regular patterns can emerge
from biochemical processes acting at the cellular level, a process known as morphogen-
esis in developmental biology. Some evident examples of these patterns can be observed
in the stripes of a zebra, the spots on a leopard, the filament structure of the cyanobac-
teria Anabaena or the square pattern of the sulfur bacteria T. rosea. Mathematical and
computational methods hold enormous promise in the quest to unveil the underlying
mechanisms of morphogenesis and reproducing, using computer-based simulations, the
patterns observed in nature. Alan Turing, mostly known as the father of computer sci-
ence, was also a pioneer in developing a first mathematical model [28] that provides the
chemical basis of morphogenesis. This model, also referred as the Turing’s reaction-
diffusion system, is able to reproduce the formation of some complex patterns in nature
such as the stripes seen in the animal skin.

Formal analysis of how patterns arise from mathematical models is however chal-
lenging due to the high computational burden of spatio-temporal modelling, as well
as the intrinsic difficulty of defining spatio-temporal patterns in a suitable language.
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Pattern recognition is generally considered as a branch of machine learning [6], where
patterns are classified according statistical descriptors (or features) [21] or the structural
relationship among them [25]. This approach, despite its success and popularity, lacks
of a rigourous foundation to specify such patterns and to reason about them in a system-
atic way. On the other end, formal methods provide logic-based languages [2,10,17,18]
with a well-defined syntax and semantics to specify in a precise and concise way emer-
gent behaviours and the necessary techniques to automatically detect them.

Related work. In the last year, two novel spatio-temporal logics, SpaTeL [18] and
SSTL [10, 24] have made their appearance almost at the same time in the realm of
formal methods to specify the emergence of spatio-temporal patterns.

The Spatial-Temporal Logic (SpaTeL) in [18] is the unification of Signal Temporal
Logic [23] (STL) and Tree-Spatial-Superposition-Logic (TSSL) introduced in [2] to
classify and detect spatial patterns. TSSL reasons over quad trees, spatial data structures
that are constructed by recursively partitioning the space into uniform quadrants. TSSL
is derived from Linear Spatial-Superposition-Logic (LSSL) [17], where the notion of
superposition provides a way to describe statistically the distribution of discrete states
in a particular partition of the space and the spatial operators correspond to zooming in
and out of particular areas. In [17] the authors show also that by nesting these operators
they are able to specify self-similar and fractal-like structures that generally characterize
the patterns emerging in nature. SpaTeL is equipped with a qualitative (yes/no answer)
and a quantitative semantics that provide a measure or robustness of how much the
property is satisfied or violated. In [18] this measure of robustness is used as a fitness
function to guide the parameter synthesis process for a deterministic reaction diffusion
system using particle swarm optimisation (PSO) algorithms. However, the authors do
not consider stochastic reaction-diffusion systems and PSO techniques generally do not
provide any guarantee for reaching the global optimum. Hence, in this paper we will
adopt a method with proved convergence guarantees, introduced previously in [3,4] for
the system design of stochastic processes using the robustness of temporal properties.

The Signal Spatio-Temporal Logic (SSTL) [10,24] is the extension of STL [23] with
three spatial modalities, somewhere, everywhere and surround, which can be nested
arbitrarily with the original STL temporal operator. In [10, 24], the authors provide a
qualitative and quantitative semantics of SSTL and efficient monitoring algorithms for
both semantics. A more detailed description of SSTL is provided in Section 3. While
in this paper we adopt SSTL to specify spatio-temporal patterns, the overall method for
robust parameter synthesis for stochastic reaction diffusion systems presented here can
be performed also using SpaTeL.

Contribution. In this work, we combine formal methods with statistical machine learn-
ing by presenting a novel analysis of a stochastic model of the spatio-temporal be-
haviour of the Bicoid protein in the Drosophila’s Embryo. The spatial gradient of this
molecule has been shown to be at the basis of the subdivision of the embryo along its
main axis, as specific concentration thresholds in its gradient are detected by cells and
lead to the expression of distinct set of target genes.

The main technical contribution of the paper is the combination of SSTL within
the statistical machine learning framework of [4, 7–9], in order to efficiently perform
parameter space exploration and system design of spatio-temporal properties.



From a system biology perspective, instead, we present a detailed spatio-temporal
analysis of the French Flag pattern on the gradient of the Bicoid protein. This analysis
permits novel insights as to how the various model parameters interact to give rise to
the patterning behaviour.

Paper structure. The rest of the paper is organised as follows. In Section 2 we discuss
the spatial pattern formation in the Drosophila embryos. In Section 3 we first recall the
syntax and semantics of SSTL and then use it to specify the French Flag Property. The
smoothed model checking and the parameter estimation is presented in Section 4. In
Section 5, we present the results and we conclude with final remarks and directions for
future work in Section 6.

2 Spatial Pattern Formation and the French Flag Model

In this section, we describe a model of segmentation in Drosophila melanogaster and
the spatio temporal pattern characterising it, known as the French Flag model.

2.1 Pattern formation and reaction-diffusion systems

Patterning is a ubiquitous feature of biological organisms, and the presence of regular
geometric motifs on many organisms has long fascinated scientists. Pattern formation
is also the subject of one of the earliest, and most influential, computational systems
biology works, Alan Turing’s pioneering work on morphogenesis [28]. Turing’s insight
was that biological patterns can be viewed as emergent behaviour (in modern termi-
nology) arising from local interactions of microscopic agents. More precisely, Turing
considered spatially distributed systems whose local concentration vector u obeys a
reaction-diffusion partial differential equation (PDE)

∂u

∂t
=D∇2u + f(u). (2.1)

Equation (2.1) defines the time evolution of the local concentration u as the sum of two
terms: a dispersal or diffusion term D∇2u, which globally drives the system towards a
uniform equilibrium, and a reaction term f(u), which accounts for local interactions of
the chemicals. Turing then proved that, under certain conditions on the reaction/ diffu-
sion parameters, these two counteracting processes could give rise to regular patterns of
concentration, providing a plausible mechanistic model of biological pattern formation.

Turing’s ideas have been empirically demonstrated in many areas of biochemistry
(see [22] for a recent review), and are still influential in particular in the field of devel-
opmental biology (see e.g. [16] for a recent paper building on these ideas). The crucial
idea in the application of reaction-diffusion systems to development is that these mech-
anisms would underpin the local concentration patterns of regulatory proteins, which
would instruct different genetic programs to be executed at different spatial locations.
These special regulatory proteins are called morphogens in developmental biology, as
they are believed to be responsible for the establishment of the shape of an organism
in higher organisms. One of the most widely studied models of morphogenesis is the



establishment of spatial patterning (stripes) along the body of the fruit fly Drosophila
melanogaster. Several morphogens are known in Drosophila; mostly, these are mater-
nal proteins that are produced in a localised area of the embryo (in correspondence to a
maternal deposit of messenger RNA), and then establish a concentration gradient dur-
ing development, effectively providing cells within an embryo with a spatial reference.
An important morphogen is the protein Bicoid, which is the central object of study in
this paper and is described in detail in the next subsection.

Before closing this whirlwind review of developmental biology, it is worth remark-
ing on a fundamental shift of perspective that has happened since Turing’s pioneering
work, the realisation of the importance of stochasticity in biology. Numerous lines of
evidence indicate that biology at the single cell level is intrinsically stochastic. Stochas-
ticity cannot be ignored when modelling early embryogenesis, when only a handful of
cells are present. Morphogenetic reaction-diffusion models can therefore be modified
to account for the intrinsic discreteness of biology at the microscopic level. The natural
analogue, systems of agents moving in continuous space, is however prohibitively ex-
pensive computationally; an approach that is more amenable to analysis is to discretise
space into a number of cells (voxels) which are assumed to be spatially homogenous,
and to replace spatial diffusion with transitions between different cells. Morphogenetic
systems, and in particular the Bicoid system, have already been analysed from a sim-
ulation perspective in [31] and from a statistical perspective in [12]. In this paper, we
present a first analysis of this system from the point of view of (spatio) temporal logic,
to analyse directly the system’s behaviour at the level of the emergent properties of the
trajectories.

2.2 The Bicoid Gradient

The Bicoid (Bcd) molecule was the first protein to be identified among the morphogens.
In the Drosophila embryos, the Bcd protein is distributed along the Anterior-Posterior
axis (A-P axis). The Bcd mRNA is translated at the anterior pole of the embryo, and the
synthesised protein spreads through the A-P axis by diffusion accompanied by decay.

V1
... ... V100

V0l

l 101 × l

Fig. 1. A schematisation of the Drosophila embryo volume. The volume is divided in 101 cubic
subvolumes, V0, ..., V100, with side l = 5µm.

We will describe the dynamics of the Bcd protein by a stochastic reaction-diffusion
system, as reported in [31]. Given a certain volume where the Bcd protein is distributed,



we can divide it into a series of subvolumes or voxels that are small enough to be re-
garded as well mixed. Then, we can consider the decay reaction as a transition that
happens inside the subvolumes and the diffusion as exchange of molecules between
neighbouring voxels. In particular, we consider 101 homogeneous cubic subvolumes
with side l = 5µm that comprise the entire volume as in Fig. 1. The length of the side l
and the number of subvolumes were chosen in light of those of actual Drosophila em-
bryos, which are 500µm long. The first subvolume (j = 0), corresponds to the anterior
pole of the embryo and it is the only subvolume where the Bcd protein is synthesised.

We can describe the set R of reactions governing the stochastic dynamics of Bcd
as:

νp ∶ ∅→ B0 at rate J, (production)
νdegj ∶ Bj → ∅ at rate w, for j = 0, ...100, (degradation)

νdif+j ∶ Bj → Bj+1 at rate
D

l2
, for j = 0, ...99, (diffusion to the right).

νdif−j ∶ Bj → Bj−1 at rate
D

l2
, for j = 1, ...100, (diffusion to the left).

where Bj is a Bcd protein in the jth subvolume.
The state vector of the system is then xB = (xB0 , ..., xB100) where xBj is the num-

ber of Bcd molecules in the jth subvolume. From the setR we can derive the infinitesi-
mal generator matrix of the CTMC that formally represents the dynamics of the system.
The CTMC can then be simulated with a standard algorithm, like SSA or tau-leaping.

Note that, from the set of reactionsR, we can easily revert the discretisation process
and obtain a semantics in terms of Reaction-Diffusion Rate Equation (RDRE). This
is obtained by converting variables into concentrations, taking the length of voxels to
zero, and interpreting each rate as a flow, both in the degradation and in the diffusion
reactions. In this way, we can define the system

∂u

∂t
=D∂

2u

∂y
−wu, (2.2)

where u(y, t) is the concentration of Bcd at time t in position y, measured in µm,
y ∈ [0,500], giving the boundary conditions ∂u

∂y
∣
y=0 = − J

∆
and ∂u

∂y
∣
y=500 = 0, where

∆ = l3.

2.3 Segmentation and the French Flag model

The spatial distribution of the Bicoid protein has a crucial role in the formation of the
horizontal segmentation in the development of the Drosophila’s embryo. One of the
most important interpretations of this distribution is given by the French Flag model
[29], and more generally by the theory of gap genes [19, 30]. The body of the fruit fly
Drosophila melanogaster, as in most arthropods, exhibits a particular type of spatial pat-
terning called segmentation, whereby the main body is composed of several segments.
Gap genes were discovered and named following mutagenetic experiments, whereby
biologists observed that deletion of certain genes resulted in the omission of a segment



in the fly’s body, as if the mutant organism had a gap. This observation implies that gap
genes must be expressed in a precisely spatially co-ordinated manner, i.e., the biochem-
istry of the fruit fly must possess a way of measuring distances.

The French Flag model is a simplified model of gap gene regulation in early em-
bryogenesis involving only four genes, the Bicoid morphogen protein and three tar-
get genes. The underlying assumption is that the spatial distribution of Bicoid protein,
which as we have seen tends to decrease along the A-P axis (see Fig. 2), provides the
ruler with which the Drosophila embryo measures distances. Gap genes are activated
in a concentration dependent manner by Bicoid, so that a set of genes are activated at
the high concentrations near the anterior part of the embryo (the blue in the French
Flag), a different set of genes is activated in the central part (the white) and a third set
is activated a low concentrations near the posterior end (red). This model has survived
with some modifications [20] until this day, its beauty providing a paradigm for pattern
development in many areas of biology. From our point of view, this model is partic-
ularly interesting because it refocuses attention from local intensive quantities (local
concentrations) towards the importance of a global emergent property of the system
(the establishment of a gradient), which is ideally suited for reasoning upon in terms of
spatio-temporal logics. We will see in the next section this how to describe the French
Flag pattern using a spatio-temporal logic.

3 Formula specification of Spatio-Temporal Behaviour

In this section, we describe Signal Spatio-Temporal Logic (SSTL) which will then be
used to specify the spatio-temporal behaviour of the French Flag pattern.

3.1 Signal Spatio-Temporal Logic

The Signal Spatio-Temporal Logic (SSTL) [10,24] is a linear time logic suitable to spec-
ify spatio-temporal behaviours of traces generated from simulations. It is an extension
of Signal Temporal Logic (STL) [23] with two spatial modalities.

The space is described as a weighted graph G = (L,E,w) where L is a set of loca-
tions, E is a set of edges and w ∶ E → R≥0 is the function that returns the cost/weight
of each edge, typically encoding the distance between two nearby locations.

The syntax of SSTL is given by

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 UI ϕ2 ∣ �[w1,w2] ϕ ∣ ϕ1 S[w1,w2]ϕ2,

where the STL operators are the atomic proposition µ, the standard boolean con-
nectives conjunction and negation and the bounded until operator UI , with I a dense-
real interval. The new spatial operators are the somewhere operator, �[w1,w2], and
the bounded surround operator S[w1,w2], where [w1,w2] is a closed real interval with
w1 < w2. The spatial somewhere operator �[w1,w2]ϕ requires ϕ to hold in a location
reachable from the current one with a total cost greater than or equal to w1 and less
than or equal to w2. The surround formula ϕ1 S[w1,w2]ϕ2, instead, is true in a loca-
tion ` when ` belongs to a subset of locations A, a region, satisfying ϕ1, such that its



external boundary B+(A) (i.e., all the nearest neighbours of locations in A) contains
only locations satisfying ϕ2. Furthermore, locations in B+(A) must be reached from `
by a shortest path of cost between w1 and w2, i.e. they have to be at distance between
w1 and w2 from `. There are also three derivable operators: the eventually operator
FI ϕ ∶= trueUI ϕ, the always operator GI ϕ ∶= ¬FI ¬ϕ and the the everywhere oper-
ator �[w1,w2] ϕ ∶= ¬ �[w1,w2] ¬ϕ that requires ϕ to hold in all the locations reachable
from the current one with a total cost between w1 and w2.

SSTL is interpreted on spatio-temporal traces x ∶ T × L → Rn, where T is the time
domain, usually a real interval [0, T ], with T > 0; we can write the trace as x(t, `) =
(x1(t, `),⋯, xn(t, `)), where each xi ∶ T × L → R, for i = 1, ..., n, is the projection on
the ith coordinate/variable.

Similarly to STL, SSTL has two semantics, the classical boolean semantics and a
quantitative semantics.

The boolean semantics returns true or false depending on whether the trace satisfies
the SSTL property, i.e. (x, t, `) ⊧ ϕ is true if and only if the trace x(t, `) satisfies ϕ. By
convention, the whole trace satisfies a property in location ` iff it satisfies the property
at time zero, i.e. (x, `) ⊧ ϕ⇔ (x,0, `) ⊧ ϕ.

The quantitative semantics, instead, returns a real value ρ(ϕ,x, t, `) that quantifies
the level of satisfaction of the formula by the trajectory x at time t in location `. The
absolute value ∣ρ(ϕ,x, t, `)∣ can be interpreted as measure of the robustness of the sat-
isfaction or dissatisfaction. Furthermore, the sign of ρ(ϕ,x, t, `) is related to the truth
of the formula: if ρ(ϕ,x, t, `) > 0, then (x, t, `) ⊧ ϕ, and similarly if ρ(ϕ,x, t, `) < 0,
then (x, t, `) /⊧ ϕ. The definition of this quantitative measure ρ is based on [13,14], and
it is a reformulation of the robustness degree of [15]. In accordance with the boolean
semantics, the quantitative value of the whole trace in location ` is given by its value at
time zero, i.e. ρ(x, `) = ρ(x,0, `).

SSTL is equipped with efficient monitoring algorithms for both the boolean and the
quantitative semantics, whose description, together with a formalisation of the seman-
tics, can be found in [10, 24].

3.2 The French Flag property

To describe the French Flag pattern we have first to define the trajectories that we want
to characterise and its related graph.

Let consider a trace (a simulation) (xB(t))t∈[0,T ] = (xB0(t), ..., xB100(t))t∈[0,T ]
of the Bicoid model described in the previous section, where [0, T ] is the time domain,
with T > 0. We can transform the temporal trace in a spatio-temporal trajectory defining
xB ∶ L × [0, T ] → R s.t. xB(Vi, t) ∶= xBi(t), where L = {V0, ..., V100} is the set of
locations. The graph G = (L,E,w) of the system is a one-dimensional graph where
each Vi is connected only to Vi−1 and Vi+1, with w(Vi, Vi+1) = 1, i.e. all the edges have
weight equal to 1. The weight between two arbitrary locations is given by the weight of
the shortest path connecting them.

We can now use the logic to specify the French Flag model. As we described in
Section 2, this pattern is used to represent the effect of a morphogen in the expression
of different genes, i.e. to represent the correlation between the concentration of the
morphogen and the activation or repression of other genes. In particular, the spatial



distribution of the morphogen, at the steady state, is divided in three regions: a blue, a
white and a red region, as shown in Fig.2 (left), that activate different target genes.

We can describe this behaviour with the property

ψflag ∶= ϕblue ∧ ϕwhite ∧ ϕred (3.3)

ϕblue ∶= �[0,wblue](xB >Kblue − hbw)
ϕwhite ∶= �[wblue,wwhite]((xB <Kblue + hbw) ∧ (xB >Kwhite − hwr))
ϕred ∶= �[wwhite,wmax

(xB <Kwhite + hwr)
(3.4)

The verification of the formula is done in the location V0. (x,V0) ⊧ ψflag iff it
satisfies each subformulae ϕblue, ϕwhite, ϕred; (x,V0) ⊧ ϕblue iff, in all the locations
Vi s.t. w(V0, Vi) ≤ wblue, the number of Bicoid molecules is higher than Kblue − hbw,
i.e xB > Kblue − hbw. In a similar way we can describe ϕwhite and ϕred. The meaning
of the property is that the spatial distribution of the Bicoid protein is divided in three
regions, the blue, where the xB > Kblue − hbw, the white, where Kblue + hbw > xB >
Kwhite−hwr, and the red, where xB <Kwhite+hwr. Note that hbw and hwr parameters
have the role to relax the thresholds that define different regions, to properly deal with
noise in Bcd expression, we will discuss this point more in detail in the Section 5.1.

At steady state, the concentration of the Bicoid protein is exponentially distributed
along the anterior-posterior (A-P) axis, with higher concentrations towards the anterior.
We can identify the insurgence time of this pattern, and if it remains stable, combining
the spatial property with temporal operators as follows:

ψstableflag ∶= F[Tflag,Tflag+δ](G[0,Tend]ψflag) (3.5)

ψstableflag means that eventually, in a time between Tflag and Tflag+δ, the property
ψflag remains true for at least Tend time units.

4 Methodologies

The main objective of this work is to study the effects of the Bicoid parameters on the
satisfaction of the French Flag property. Exhaustive parameter exploration is particu-
larly expensive for the model in question, due to the high cost of stochastic simulation.
In this section, we briefly introduce the methodologies that we use to perform parameter
synthesis and model checking in presence of parametric uncertainty.

4.1 Smoothed Model Checking

The Smoothed Model Checking algorithm [7] relies on the characterisation of the satis-
faction probability of a formula ϕ as a function of the parameters. Given a CTMCMθ,
whose transition rates depend on a set of parameters θ, the satisfaction function of ϕ is
defined as follows:

f(θ) ≡ p(ϕ = true∣Mθ)



It has been proven in [7] that, if the transition rates of Mθ depends smoothly on the
parameters θ and polynomially on the state of the system, then the satisfaction function
of ϕ is a smooth function of the parameters.

The smoothed model checking approach leverages of the smoothness of the satis-
faction function and transfers information across nearby parameter values. More specif-
ically, we place a Gaussian Process (GP) prior over the space of possible functions, and
we evaluate the satisfaction function for a set of parameter values. We then calculate the
GP posterior under the light of these observations, which constitutes analytical approx-
imation to the satisfaction function. This implies that we can estimate the satisfaction
probability at any point in the parameter space with no additional cost.

The premise is that fewer samples are required to achieve a given level of accuracy.
In the experiments of [7], it has been possible to accurately approximate the satisfaction
function over a wide range of parameters using less than 10% of the simulation runs
required to obtain the same result with exhaustive parameter exploration. This resulted
in a decrease of the total analysis time nearly by 90%.

4.2 Robust Parameter Synthesis
The problem of robust parameter synthesis constitutes of identifying the model param-
eters that maximise the robustness of some desired property. According to the quanti-
tative semantics of SSTL, the robustness value ρ(ϕ,x, t, `) expresses the level of satis-
faction of ϕ by a trajectory x at time t in location `. Since trajectories are random for a
stochastic system, we designate the robustness of ϕ for a CTMC as a random variable
Rϕ. We are therefore interested in maximising the expected quantitative score:

E[Rϕ] = ∫ ρ(ϕ,x, t, `)p(x)dx (4.6)

where p(x) is the probability density of trajectory x. For a specified time t and lo-
cation `, the expectation E[Rϕ] constitutes an objective function, for which we can
obtain noisy estimates by generating samples from the trajectory space via stochastic
simulation.

Since evaluating the expected robustness is computationally expensive, we employ
the Gaussian process optimisation algorithm described in [9]. In short, the objective
function is approximated by a Gaussian Process (GP). The algorithm is initialised with
a random grid of points, for each of whichE[Rϕ] is approximated via statistical means.
Using these points as a training set, a GP is used to make predictions regarding the
E[Rϕ] value at different parts of the search space, without exhaustive exploration of
the parameter space. We calculate the GP posterior for a set of test points; that involves
calculating an estimate of the expected robustness and its associated variance. The GP
optimisation algorithm dictates that the point that maximises the an upper quantile of
the GP posterior is added to the training set, after being evaluated for its associated
robustness via SMC. A high value for the upper quantile at any point in the parameter
space indicates the possibility of an undiscovered maximum nearby. This feature allows
us to direct the search towards areas of the parameter space that appear to be more
promising. This process is repeated for a number of iterations, and the training set is
progressively updated with new potential maxima. For a smooth objective function, the
algorithm is proved to converge to the global optimum in [27].



5 Results

In this section, we perform a series of experiments to explore the sensitivity and ro-
bustness of the French Flag property w.r.t. changes in the rates of production J and
degradation w, and the diffusion rate parameter D. The size of the cubic subvolumes is
known, that is l = 5µm, as it is one of the main modelling assumptions.

5.1 Experimental Data

Following [26, 31], we chose as parameters of the ψstableflag property (3.5), specified
in Section 3.2, Tflag = 3950, δ = 10, Tend = 1000, wblue = 35.5, wwhile = 67.5 and
wmax = 101. The wblue and wwhile parameters mean that the blue area involves the
subvolumes between V0 and V35, the white area extends from volume V36 to V67, and
finally the red one from V68 to V100; the time is in terms of seconds.

In order to fix the thresholds parameters Kblue, Kwhite and hbw,hwr we use the
Bicoid fluorescence concentration at cycle 13 (where the gradient is considered to be
in the steady state) downloaded from the FlyEx database [1]. The choice of the data
follows the analysis doing in [31]. To the best of our knowledge, all the quantifica-
tions of the Bicoid protein in the Drosophila embryo refers to the measurements of
fluorescence concentrations, rather than direct observations of the Bicoid molecular
population. From [31], we define the fluorescence concentration I = m × xB , where
m is a scaling factor that denotes the fluorescence-to-molecule ratio. Our approach is
to rescale the thresholds reported in terms of fluorescence concentrations with the m
factor.

The data has been given originally in the form of two-dimensional coordinates
paired, the A-P and D-V coordinate, from the central 10% strip. As in [31], we choose
the embryos where the variation inside each spatial subregions is low, in particular in
these embryos the inverse of the spatial exponential coefficient varied by less that 1%.
We have transformed the data so that we have a single concentration value for each of
the 101 discretised locations. Fig. 2 depicts the result. On the left-side figure, we see
how the different locations lie within the areas prescribed by the French Flag property.
Although the shape of the data is apparently negative exponential, there is a consider-
able amount of noise, which has to be taken into consideration in terms of the French
Flag property. We therefore define the thresholds in the form regions, rather than strict
values. On the right-side of Fig.2, we see a magnified version of the figure, where only
the white area is depicted. The majority of the concentrations recorded for volumes
from V36 to V67 are between 60 and 2. In the same way, we can empirically derive
zones of desired concentration levels for the blue and read areas. Therefore we have
Kblue = 45/m, hbw = 15/m, Kwhite = 6/m, and hwr = 4/m.

5.2 Optimisation of Expected Robustness

We now explore how the model parameters (including the scaling factor m) can be
tuned to increase the robustness of the French Flag pattern.

We applying the GP optimisation algorithm discussed in Section 4.2, for a four-
dimensional space that involves the parameters: w ∈ [0.001,0.01], J ∈ [10,400],
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Fig. 2. Left: Fluorescence concentrations of the Bicoid protein for 17 embryos during the cycle
13. Right: The same concentrations in the area between locations 35 and 67, which define the
white area in the French flag property.

D ∈ [1,40], and m ∈ [0.01,1]. The parameter ranges have been selected so that the
resulting space is a superset of the explored space in [31]. Regarding the fluorescence-
to-molecule ratio in particular, we note that the extremes considered in [31] have been
0.07 and 0.7.

For each evaluation of the expected robustness, the system has been simulated up to
time t = 4000 sec, which is when the steady-state is approached according to [31]. The
robustness expectation has been approximated statistically using 12 simulation runs for
each parameter set. The algorithm has been initialised by 80 evaluations of the objec-
tive function at random points; a number of 282 evaluations were performed at points
selected by the optimisation process, until convergence was detected. Convergence has
been determined when no significant improvement of the expected robustness has been
observed for 200 iterations. An improvement is considered significant, if it is more than
1% increase over the previously recorded maximum robustness.

In the end, a total of 362 function evaluations have been performed, which is ar-
guably a small number of samples to explore a four-dimensional space. The execution
times have been 85 minutes for the initial 80 evaluations, and 263 minutes for the actual
optimisation process. Stochastic simulations have been performed in parallel using 12
threads. The experiments have been performed on an Intel® Xeon® CPU E5-2680 v3
2.50GHz. The majority of the computational effort was spent in simulation, despite the
fact that only 12 trajectories have been generated for each parameter set considered.
Therefore the idea of reducing the number of samples by exploiting the smoothness of
the objective function has been a sensible practice.

The values returned by the optimisation process have been: w∗ = 0.0038, J∗ =
390, D∗ = 32.5, and m∗ = 0.048. The robustness of the optimum returned has been
2.99, implying that the property is robustly satisfied for the given solution. In Fig. 3,
we present a sample trajectory for the given parameter configuration, and the average
of 40 random trajectories, along with the associated 99.8% confidence bounds. The
sample trajectory is plotted against the experimental data that were used to adjust the



threshold parameters of the French Flag property. We see that the optimised model has
a behaviour very similar to the one observed in real-world experiments. However, it
appears that the simulation results are much less noisy, when compared to the actual
observations. This finding is in agreement with the result of [31], where it was argued
that the intrinsic noise as modelled by the stochastic dynamics of the master equation
is not sufficient to explain the variability in the data, i.e. the noise in the fluorescence
measurement as a crucial role that has to be taken into account.
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Fig. 3. Left: Sample trajectory for the parameter configuration that maximises the robustness of
the French Flag property. Right: Average of 40 random trajectories; the dotted lines indicate the
99.8% confidence interval.

5.3 Parameter Exploration with Smoothed Model Checking

In this section, we perform a more thorough exploration of the parameter space. Our ob-
jective is to discover dependencies among the parameters, considering the satisfaction
probability of the French Flag property. On that respect, the fluorescence-to-molecule
ratio m is not significant, as this will have an obvious effect on the thresholds for the
property. We fix the fluorescence-to-molecule ratio m to 0.048, which is the optimal
value reported by the optimisation algorithm in the previous section. The rest of the
model parameters, w ∈ [0.001,0.01], J ∈ [10,400], and D ∈ [1,40], are explored via
the smoothed model checking approach.

During the initialisation step of the algorithm, we have performed 216 evaluations of
the satisfaction function of (3.3), for a regularly distributed set of values. As in the pre-
vious section, the satisfaction probability is approximated by statistical model checking
using 12 simulation runs for each parameter configuration, where the system is simu-
lated up to time t = 4000 sec.

The duration of this initial statistical model checking process has been nearly 170
minutes, on an Intel® Xeon® CPU E5-2680 v3 2.50GHz, using 12 threads in parallel.
The hyperparameter optimisation that is required to tune the GP probit regression model



subsequently required only 20 seconds, which is a trivial price to pay compared to
the massive simulation cost. The final GP probit regression for a grid of 4096 points
required only 1.2 seconds. Most importantly, it is only this last cost that we are required
to pay to produce any further estimations of the satisfaction function.

Fig.4 depicts the satisfaction function for the French Flag property for parameters
θ = {w,J,D}, as this has been approximated by smoothed model checking. Each of
the depicted subfigures shows the satisfaction probability as function of the production
rate J and the diffusion parameter D, for a different value of the degradation rate w.
Regarding the confidence of the estimated probabilities, we report that the 73.6% of the
values are associated with 95% confidence intervals of width less than 0.2.

As a general remark, it appears that the manifestation of the gradient pattern, as this
is captured by the French Flag property, is associated with a fine balance among the
model parameters. There is a small area in the parameter space for which the property
is satisfied with high probability. As we increase the decay parameter w however, we
observe two behaviour regarding this area: its size is being increased, and its location
is being shifted to the right. This implies that w is positively correlated with the pro-
duction rate J . In other words, a particular ratio between protein production and decay
is required for the formation of the particular pattern. At the same time, increasing the
decay rate means that the formula may be satisfied for a wider range of the diffusion
parameter.

It also appears that there is a negative correlation between the production rate J and
the diffusion parameterD. This behaviour is present for the entire range ofw examined,
but it tends to become more obvious as w is increased. It is reasonable to conclude that
a simultaneous increase of J and D would destroy the exponential shape of the Bicoid
distribution across space.
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Fig. 4. Emulated satisfaction probability of the French Flag property as function of θ = {w,J,D}.
Each subfigure has the w parameter fixed.

6 Conclusions

We present a framework for the formal analysis under parametric uncertainty and the ro-
bust parameter synthesis of spatio-temporal properties emerging in a stochastic reaction-
diffusion system. These properties are specified using the spatio-temporal logic SSTL.
The framework combines statistical machine learning techniques based on Gaussian
processes with the algorithm for monitoring SSTL properties.



As a case study, we analyse the occurrence of the French Flag pattern in the Bicoid
gradient, during the development of Drosophila embryo. Analysing how this property
depends on the parameters of the model is challenging due to the very high compu-
tational cost of simulating a spatio-temporal model, and has only been possible by
adopting recent efficient verification techniques that employ machine learning method-
ologies [8]. Furthermore, the combination of these new techniques with SSTL permits
exploring behaviours that are extremely difficult to express (and monitor) with standard
temporal logics, where each individual location would need to be accounted.

The natural extension of this work is the analysis of more complicated models and
properties, for example adding to this model the proteins of the target genes related
with the spatial distribution of the Bicoid protein, enabling the study of the spatial
dependency between proteins. To be independent from the spatial approximation, we
plan also to consider different discretisation of the Drosophila’s volume. Another future
work could be the consideration of a model rescale with a random factor that mimics the
extrinsic noise due to the fluoresce measurements. We plan also to extend our previous
result in mining temporal logic properties [5, 11] for the spatio-temporal case. Finally,
we are considering an extension of the logic to continuous spaces and we would like to
compare the expressiveness of SSTL with SpaTeL.
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