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Abstract: It is known that cancelling the noise without blurring the image details is a very difficult task for any 
image denoising technique. The availability of metrics for accurate evaluation of filtering distortion is thus of 
paramount importance for the development of new filters. Peak signal-to-blur ratio PSBR is a recently 
introduced measure of detail preservation that overcomes the limitations of the sole peak signal-to-noise ratio 
(PSNR) and other metrics in evaluating the performance of image denoising filters. Formally, the PSBR is the 
PSNR component that deals with the detail blur, so the method that is adopted for blur estimation plays a key 
role. This paper presents a novel algorithm for PSBR computation that offers significant advantages over the 
first method: it is simpler, more robust and much more accurate. Furthermore, this paper presents new 
validation tools for evaluating the accuracy of this kind of metrics when some well known classes of linear and 
nonlinear filters are considered. Results of many computer simulations dealing with images corrupted by 
different combinations of Gaussian and impulse noise show that the proposed PSBR algorithm outperforms the 
most effective metrics in the field. 
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1 Introduction                                                 
Digital images are very often corrupted by noise, 
hence the development of effective techniques for 
data denoising is a key issue in many research and 
application areas such as robotics, medical imaging, 
remote sensing, video surveillance, consumer 
electronics etc.. Image denoising, however, is not a 
trivial task because the noise should be cancelled 
while preserving image details and textures [1-7]. 
Thus,  metrics that can measure the filtering blur are 
necessary in order to analyze the performance of 
any new denoising method. Peak signal-to-blur ratio 
(PSBR) is a recently introduced full-reference 
measure that aims at overcoming the limitations of 
the sole peak signal-to-noise ratio (PSNR) and other 
methods in evaluating the performance of greyscale 
image denoising filters [8]. Indeed, it is known that 
the PSNR performs badly in distinguishing noise 
cancellation from detail preservation. On the other 
hand, the same limitation also affects metrics that 
aims at mimicking the human perception of image 
quality [9-14], because different combinations of 
unfiltered noise and detail blur can give the same 
score [15]. Conversely, the PSBR represents the 

PSNR component that deals with the unwanted 
distortion produced during noise filtering, so it can 
be used in conjunction with the classical and 
widespread adopted PSNR in order to fully 
characterize the key behavior of a denoising system. 
This approach also reinforces the validity of PSNR-
based quality metrics in image processing [16-19]. 
In the field of image denoising, that is the subject of 
this work, many different attempts have been 
performed to measure the amount of detail blur 
caused by filtering. Some techniques have adopted 
edge detectors in order to focus on the filtering 
errors affecting image details [20-21]. However, the 
extension of image regions degraded by blur 
depends upon the filtering parameters and the 
window size. As a result, when large filtering 
windows are used, the detail blur can cross the 
boundaries of the edge regions and its amount is 
typically underestimated. Furthermore, unfiltered 
noise still present on the image edges can wrongly 
be classified as detail blur. Other approaches do not 
resort to any edge map [22]: for each image pixel, 
the type of noise correction is analyzed and the 
filtering error is classified as blur when an excess of 
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smoothing is revealed. Unfortunately, any wrong 
classification of pixels in the uniform regions 
(where no details are present) produces an erroneous 
result and the detail blur is overestimated. 
In the PSBR approach we aimed at overcoming all 
the mentioned drawbacks. The first algorithm for 
PSBR computation [8] was not affected by apparent 
inaccuracies as commonly occurs for other metrics 
[21-22]. This method can also yield the exact value 
of the detail preservation when edge and uniform 
regions are located in different areas of a synthetic 
(i.e., not real) test picture.  
This paper presents a novel PSBR algorithm that 
offers significant advantages over our previous one: 
- the new method is simpler (it does not need any 
offset-correction procedure),  
- it is more robust (it does not require the heuristic 
choice of thresholds),  
- it is much more accurate and can yield the true 
values of detail preservation for real images, 
whereas all other techniques fail. In this respect, a 
collection of new validation tools is provided in the 
paper for evaluating the accuracy of this kind of 
metrics.  
The rest of the paper is organized as follows. 
Section 2 briefly reviews the PSBR approach, 
Section 3 presents the novel method, Section 4 
provides new tools for metrics validation, Section 5 
discusses the results of many computer simulations 
and, finally, Section 6 reports the conclusions. 
 
 

2  The PSBR Approach 
Let us deal with digitized images having Q gray 
levels (typically Q=256). Let ri,j be the pixel 
luminance at location (i,j) in the reference (noise-
free) image (i=1,…, L; j=1,…, M). 
Let xi,j  and yi,j be the pixel luminances at the same 
location in the input noisy image and in the filtered 
one, respectively. It is well known that the PSNR is 
expressed by the following relationship: 
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where ei,j = yi,j − ri,j  is the filtering error. Now, let B 
represent a measure of the detail blur. If B≠0 (as 
commonly occurs during noise smoothing), we can 
split the PSNR into two components, namely peak 
signal-to-blur ratio (PSBR) and degradation caused 
by noise (D), as expressed by the following 
relationships [8]:  

PSNR=PSBR−D     (2) 
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The PSBR measures how good a filter is at 
preserving image details, whereas D defines the loss 
in image quality caused by unfiltered noise. If no 
noise is added to the input image, we have D=0 and 
thus PSNR=PSBR, according to (2).  
An application example is reported in Fig.1 that 
shows portions of processed images having the 
same PSNR=27.527 (dB) but different amounts of 
filtering blur. To obtain this result, we adopted the 
512 ×512 test picture “Lena” and we produced a 
noisy version of it by adding Gaussian noise with 
standard deviation σ=29.3. We filtered the noisy 
data by means of mean filters with different  
window  sizes  because  their behavior is well 
known. The results yielded by the 7×7 and the 3×3  
mean operators are depicted in Fig.1a and Fig.1b, 
respectively. Clearly, the 7×7 filter gives a stronger 
smoothing than the 3×3 operator at the price of a 
worse detail preservation. The sole PSNR cannot 
distinguish these effects, whereas the PSBR can. 
Indeed we have PSBR=28.389 (dB) for the 7×7 
filter and PSBR=34.736 (dB) for the 3×3 operator.  
 
                         

                       (a)                                  (b) 

Fig.1 - Portions of pictures having the same PSNR 
but different amounts of detail blur: (a) result 
yielded by the 7×7  mean filter (PSBR=28.389 dB); 
(b) result yielded by the 3×3  mean filter 
(PSBR=34.736 dB). 



 
 
Fig.2 – Block diagram of the overall procedure for performance evaluation of a denoising filter through PSBR 
estimation. 
 
 
 
 
Notice that the (PSNR, PSBR) pair suffices: the D 
term can easily be obtained by the difference 
PSBR−PSNR. In principle, different algorithms can 
be adopted for measuring the detail blur B.  
 
 
3  The New Algorithm 
The block diagram of the new technique for PSBR 
computation is shown in Fig.2. The method exploits 
different kinds of information: the reference image, 
the picture that is obtained by filtering the noisy 
data, and the image that is achieved by filtering the 
(noise-free) reference picture. Formally, let )r(

j,iy  be 
the pixel luminance at location (i,j) in the image that 
is obtained by applying to the reference pixel ri,j 
exactly the same filtering that is applied to the noisy 
pixel xi,j. Let j,i

)r(
j,i

)r(
j,i rye −=  be the corresponding 

filtering error. In our new approach, the detail blur 
is evaluated as follows:  
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where  bi,j (error component representing  the  detail 
blur) is given by the following relationship: 
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According to (6), three cases (or rules) are devised. 
1) j,ij,i eb =  

This case occurs for positive ( )r(
j,ij,ij,i yyr ≤< ) or 

negative ( j,ij,i
)r(
j,i ryy <≤ ) filtering errors. Let us 

focus on positive errors. The condition )r(
j,ij,i yy ≤  

means that filtering a noisy pixel would produce a 
smaller error than filtering the corresponding noise-
free pixel. Thus, the actual error j,ie is very likely to 
include detail blur only. A similar situation occurs 
for negative errors. 
2) )r(

j,ij,i eb =  
Focusing again on positive errors, the condition 

j,i
)r(
j,i yy ≤  means that filtering a noisy pixel would 

produce a larger error than filtering the 
corresponding noise-free pixel. In this case, only a 
part of the filtering error is represented by detail 
blur. A reasonable choice is to adopt )r(

j,ie  for 
estimating this quantity.  
3) 0b j,i =  
In all remaining situations, residual noise is very 
likely to constitute the only cause of filtering error, 
so 0b j,i = . 
 
4  New Validation Tools 
The validation of the method would clearly benefit 
from applications where the true value of PSBR, 
namely PSBRT, is known. We shall consider two 
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                             (a)                                                       (b)                                                       (c) 

                           (d)                                                        (e)                                                       (f) 

    Fig.3 – Test pictures: (a) “House” (b) “Peppers”, (c) “Boat”,  (d) “Lighthouse”. (e) “Lena”, (f)  “Airplane”. 
 
 
 
important classes of linear and nonlinear filters, 
where the PSBRT can be theoretically evaluated and 
used for a comparison: the finite impulse response 
(FIR) filters and the median operators.  
 
 
4.1 Computing  the PSBRT for FIR  Filters 
In case of FIR filters, the PSBRT can be 
theoretically evaluated as follows. Let j,if  be the 
output of a (2N+1)×(2N+1) FIR filter:  
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where q,ph are the filter coefficients. Now, let j,in  

be the noise amplitude affecting the pixel at location 
(i,j):  
 
   j,ij,ij,i nrx +=                            (8) 
 
 

 
 
 
Thus, the filtering error ei.j=fi.j − ri.j can be expressed 
by the following relationship: 
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Let di.j be the error component dealing with the 
detail blur: 
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and let j,ij,ij,i deg −= denote the error component 
dealing with the unfiltered noise. 
 



                            N=1                                                   N=3                                                    N=5  
 
Fig.4 – “Lena” image corrupted by Gaussian (σ=20) and impulse noise (prob=10%): results given by 
(2N+1) × (2N+1) mean filters. 
 
 
 
Depending on the signs and amounts of di.j and gi.j, 
the resulting detail blur ti.j is evaluated as follows. 
Case 1: di.j and gi.j have the same signs.  In  this case 
we have ti.j = di.j . 
Case 2: di.j and gi.j have different signs and 
|di.j|≥|gi.j|. In this case, blur prevails: ti.j = di.j +gi.j. 
Case 3: di.j and gi.j have different signs and 
|di.j|<|gi.j|. In this case ti.j = 0. 
The PSBRT is thus evaluated by means of the 
following relationships: 
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4.2 Computing the PSBRT for Median  
Filters 
The method for computing the true PSBR for 
median filters is similar. Let )med(

j,if  be the output of 

a (2N+1)×(2N+1) median filter:  
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where −N≤p≤Ν, −N≤q≤Ν. According to (8), the 
filtering error j,i
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by the following relationship: 
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Let )med(

j,id be the error component dealing with the 
detail blur: 
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and let vj,ui
)med(

j,i
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j,i ndeg −−=−= denote the 
error component dealing with the unfiltered noise. 
Depending on the signs and amounts of )med(

j,id and 
)med(

j,ig , the resulting detail blur ti.j can be evaluated 
as in the previous case. 
 
 
5  Results of Computer Simulations 
In order to evaluate the performance of the proposed 
method we considered for a comparison our 
previous PSBR technique [8] and two measures of 
detail preservation based on edge distortion 
( B~RMSE ) [21] and collateral distortion (RMSECD) 
[22]. Since all comparisons should be performed in 
terms of PSBR, let PSBRP1 and PSBRP2  denote the 
PSBR evaluations that are achieved when 
( B~RMSE )2 and (RMSECD)2 are respectively adopted 
in (3) to estimate B. Let PSBRP3 represent our 
previous technique [8] and  let PSBR briefly denote 
our new method described by relations (5)-(6). We 
performed  several  tests  dealing  with the following  



                                           (a)                                                                                       (b) 

                                           (c)                                                                                       (d)                                               

                                          (e)                                                                                        (f) 

Fig.5 – PSBR values for images corrupted by Gaussian (σ=20) and impulse noise (prob=10%) and filtered by 
(2N+1) × (2N+1) means: (a) “House” (b) “Peppers”, (c) “Boat”, (d) “Lighthouse”, (e) “Lena”, (f) “Airplane”. 

 
512×512 pictures: “House”, “Peppers”, “Boat”, 
“Lighthouse”, “Lena” and “Airplane” (Fig.3). 
We corrupted these images by adopting different 
amounts of Gaussian and impulse noise. We 

processed the noisy data by means of 
(2N+1) × (2N+1) arithmetic mean filters with 
increasing window size because the theoretical 
values of the PSBR (namely PSBRT) are known (see  



                                           (a)                                                                                        (b)  

                                           (c)                                                                                       (d)   

                                          (e)                                                                                        (f) 

Fig.6 – PSBR values for images corrupted by Gaussian (σ=30) and impulse noise (prob=15%) and filtered by 
(2N+1) × (2N+1) means: (a) “House” (b) “Peppers”, (c) “Boat”, (d) “Lighthouse”, (e) “Lena”, (f) “Airplane”. 
 
 
Section 4). In the first experiment, we generated six 
noisy pictures by adding zero-mean Gaussian noise 
(with standard deviation σ=20) and by 
superimposing salt and pepper impulse noise with 

probability 10%. A sample of the processed images 
is shown in Fig.4. The corresponding PSNR and 
PSBR values are reported in Fig.5. The superior 
performance of the novel algorithm is apparent: the 



                                           (a)                                                                                       (b) 

                                           (c)                                                                                       (d) 

                                              (e)                                                                                    (f) 

Fig.7 – PSBR values for images corrupted by Gaussian (σ=40) and impulse noise (prob=20%) and filtered by 
(2N+1) × (2N+1) means: (a) “House” (b) “Peppers”, (c) “Boat”, (d) “Lighthouse”, (e) “Lena”, (f) “Airplane”. 
 

PSBR evaluations (blue points) perfectly estimate 
the true values (blue circles), whereas the previous 
method cannot. The proposed PSBR is better than 
the PSBRP3 (green points) and largely outperform 

both the PSBRP1 (red points) and the PSBRP2 
(magenta points). The incorrect behavior of PSBRP1 
and PSBRP2 is anyway apparent. This kind of 
metrics should never increase when the filtering blur 
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                                          (c)                                                                                       (d) 

(e) (f) 
 

Fig.8 – PSBR values for images corrupted by Gaussian (σ=40) and impulse noise (prob=20%) and filtered by 
(2N+1) × (2N+1) medians: (a) “House” (b) “Peppers”, (c) “Boat”, (d) “Lighthouse”, (e) “Lena”, (f) “Airplane”. 
 
 
grows, because higher PSBR (and PSNR) values 
denote better quality. On the contrary, the proposed 
(and so the previous) PSBR decreases as N  
increases, as it should be. The largest value of the 

proposed PSBR is correctly obtained for the 
smallest value of N that produces the largest detail 
preservation. The results of experiments dealing 
with increasing amounts of Gaussian and impulse 



noise are reported in Figs.6-7. In all cases, the novel 
PSBR is in perfect agreement with the theoretical 
values, whereas all other metrics fail. 
Finally, we processed the noisy data by means of 
(2N+1) × (2N+1) median filters with increasing 
window size. We computed the theoretical values of 
the PSBRT in Section 4, so we can investigate the 
accuracy of the proposed and other metrics when 
this important class of nonlinear filters is adopted. 
The PSBR evaluations for test images corrupted by 
Gaussian (σ=40) and impulse noise (prob=20%)  are 
reported in Fig.8. Again, the superior performance 
of the proposed method is apparent. In all cases, the 
new algorithm can yield results in very good 
agreement with the theoretical values, whereas the 
competing metrics cannot.  
 
 
6  Conclusions  
Achieving accurate measurements of detail 
preservation is of paramount importance for 
analyzing the performance of a denoising filter. In 
this paper we have presented a novel peak signal-to-
blur ratio (PSBR) algorithm that significantly 
improves our previous technique. The new approach 
is simpler and more effective. It does not require the 
choice of thresholds and does not need any offset-
correction procedure. Results of many computer 
simulations dealing with pictures corrupted by 
different amounts of Gaussian and impulse noise 
have shown that the novel PSBR is much more 
accurate than previous metrics in the literature. In 
particular, the new PSBR can correctly estimate the 
true values of detail preservation, whereas all other 
metrics fail. 
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