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SUMMARY 8 

Free vibrations of a taut-cable with an attached passive Targeted-Energy-Transfer (TET) device 9 

are investigated using an analytical formulation of the complex generalized eigenvalue problem. 10 

This problem is of considerable practical interest in the context of stay-cable vibration 11 

suppression in bridges, induced by wind, rain-wind and parametric excitation. The TET device is 12 

a nonlinear apparatus, which has been investigated and successfully applied to the vibration 13 

suppression in several structural or mechanical systems. This study proposes, for the first time, 14 

the use of the TET device as a simple passive apparatus for stay-cable vibration mitigation. In 15 

this application the device was modelled as a dashpot with a viscous damper in parallel with a 16 

power-law nonlinear elastic spring element and a lumped mass restrained to one end (Figure 1b). 17 

The “flexibility of the support” (imperfect anchorage to the deck) was also simulated by placing 18 

an elastic support (linear elastic spring) in series between the dashpot and the deck. The study 19 

derives a new family of “universal design curves” for the TET device, by accounting for the 20 

effects of nonlinear elastic stiffness, lumped mass and flexibility of the support. To verify the 21 

adequacy of the universal curves and to evaluate the effectiveness of the TET devices, 22 

parametric numerical simulations were performed on a reference stay-cable. As an application 23 

example, analytical results were employed to design the dampers of two flexible stays, installed 24 

on two existing cable-stayed bridges. In all the investigations, theoretical and numerical results 25 

were obtained and compared. 26 
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1. INTRODUCTION 29 

The mitigation of large-amplitude oscillation on inclined stays, associated with the effects of 30 

wind, rain-wind [1-3] and various sources of parametric excitation [4-7], has been the focus of 31 

several investigations in recent years due to the potential high costs of maintenance or repair that 32 

can be caused by, for example, fatigue in the cables. To suppress the problematic vibrations, 33 

passive damping systems have been widely studied and employed. The most common, simple to 34 

install and effective solution considers the use of a hydraulic damper placed in the proximity of 35 

the deck and connected to a stay. The taut-string theory has been traditionally employed to 36 

examine the stay-cable dynamics [8]. Analytical solution and closed-form asymptotic 37 

approximations have been developed for the taut-string problem with attached linear viscous 38 

damper, perfectly “fixed” and anchored to the deck [9-11] and for a linear viscous damper with 39 

internal stiffness [12]. Other authors have evaluated the effectiveness of the damping system by 40 

introducing the influence of the flexibility in the damper support [13] or the influence of a 41 

friction threshold in a viscous damper (e.g., [14]). The use of a hydraulic damper with nonlinear 42 

dissipation has also been proposed to increase the performance of the linear devices (e.g., [15-43 

17]). Finally, semi-active control via magneto-rheological dampers, either attached to the deck 44 

(e.g., [18]) or incorporated into a “TMD-like” device (tuned-mass damper [19]), has also been 45 

considered to suppress the vibration. 46 

Preferable requirements for the practical implementation of any damping device are its 47 

simplicity of installation and maintenance. Despite the technological advancements in recent 48 

years, it seems that the manufacturing, installation and long-term maintenance of a hydraulic 49 

device with prescribed nonlinear or semi-active dissipation characteristics still present some 50 

challenges.  51 

As a result, this study explores the use of a new concept and damping device for stay-cable 52 

mitigation. The new device is a derivation of the “increasingly popular” TET (Targeted-Energy 53 

Transfer) device [20,21], a passive device with linear damping and cubic elastic restoring effect, 54 

which has gained considerable attention in various fields of engineering (mechanical, 55 

aeronautical [21] and civil [22]). This TET device would be much simpler to assemble and easy 56 

to maintain, compared to other devices above. It has been shown that a further advancement of 57 

the TET concept (the Nonlinear Tuned Vibration Absorber, or NLTVA [23]) is effective for 58 

vibration suppression in nonlinear mechanical systems as well; in particular, as demonstrated in 59 
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[23], the degree of stiffness nonlinearity (polynomial) in the NLTVA should be selected in 60 

accordance with the anticipated stiffness nonlinearity in the primary system. This would also 61 

make the TET device attractive if nonlinear geometry effects may become of concern in wind-62 

induced stay-cable vibration (e.g., [24]). 63 

Inspired by the recent technical advancements of TET devices and after examining the above-64 

mentioned studies on damping devices for stay-cables, the theory of stay-cable vibration 65 

suppression is extended in this work to a generalized TET model (Figure 1b). In this model a 66 

nonlinear stiffness element, simulated by a power-law elastic spring element with generic odd 67 

exponent, is placed in parallel with a linear viscous damper and a third spring element is used to 68 

simulate the effects of an imperfect anchorage to the deck (elastic support). 69 

The TET device, proposed in this paper, acts as a passive “sink” of unwanted vibrations, 70 

generated by external impulsive excitation [20,21] that simulates an aeroelastic loading source. 71 

In fact, it can be shown that, depending on amplitude conditions, the vibrational energy of the 72 

cable (main system) gets passively “pumped” [20] into the damping device (subsystem) in a one-73 

way irreversible fashion. Moreover, if carefully calibrated, the TET device is able to operate on 74 

various frequencies, attracting multi-frequency transient disturbances. Depending on the 75 

environment conditions, this last aspect is of particular importance since cable oscillations may 76 

occur in the first modes of vibration; also, this mechanism seems quite interesting since it can 77 

promote the energy transfer from lower modes to higher modes of the cable [25]. 78 

The performance of a stay, equipped with the proposed device, is based on the simulation of 79 

the free-vibration dynamic cable response by including the nonlinear effects of the TET device. 80 

This approach is meaningful because the oscillations are predominantly aeroelastic and not 81 

aerodynamic, bearing in mind that the ultimate goal is to provide simple solutions for 82 

engineering design. The aim of the study was not to examine other effects, such as the response 83 

induced by wind turbulence. Also, since a unique model for the simulation of aeroelastic forces 84 

under various excitation mechanisms (e.g., rain-wind-induced vibration, dry galloping, etc.) is 85 

not available, the use of free-vibration dynamics has been often suggested as a sufficiently 86 

accurate simple method, based on systematic frequency and damping studies, to analyse and to 87 

design mitigation devices for stays.  88 

Furthermore, in the simulations of the cable dynamics, the hypotheses of non-shallow cable, 89 

no mechanical damping and no flexural stiffness in the link elements are utilized. Even though 90 
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several studies have emphasized the need for nonlinear cable dynamics simulation (e.g., [26-91 

32]), the taut-cable theory, first introduced by Irvine [8], has been used in this study to describe 92 

the stay dynamics as this theory is usually adequate for design of dissipation devices and has 93 

been often employed by researchers (e.g. [9,10,13,15,33-36]) to analyse the motion of the 94 

system. Our experience with full-scale investigation (e.g., [37,38]) suggests that the shallow-95 

cable effect in the long stays of a cable-stayed bridge with lengths in the range between 150 and 96 

200 m (approximately) leads to a variation in the frequency of the symmetric extensional modes 97 

of the order of few percent only for the longest stays (and for first-mode frequency only); this 98 

approximation is also usually acceptable from the practical point of view, i.e., for the actual 99 

design of the dissipation device [2]. Preliminary results of this study can be found in [39]. 100 

This paper is organised as follows. The analytical formulation of the complex generalized 101 

eigenvalue problem for a generic TET device is presented in Section 2; under the hypothesis of 102 

small frequency shift, an asymptotic solution of the previous problem is derived in Section 3 103 

(“universal design curves” of modal damping). A discrete model of a cable equipped with a TET 104 

device is derived in Section 4, and subsequently used to verify the adequacy of the approximate 105 

analytical solutions. The same model is also used in Section 5 to perform a parametric study of 106 

the TET device, starting from the case of the “linear hybrid TET” and extending the analysis to 107 

the general case of nonlinear TET device. Application of hybrid TET devices to a real stay is 108 

illustrated in Section 6, while discussion of the results and concluding remarks are presented in 109 

Section 7. 110 

2. PROBLEM FORMULATION 111 

The model for simulating the vibrations of a stay-cable with damper device is derived from basic 112 

formulations and results in this field [9,10]. The cable of length L  equipped with the TET, is 113 

depicted in Figure 1a. The TET is located at a distance 1 1x L  from the left end (deck side); the 114 

cable force is T  and the mass per unit length is  . As outlined in the previous section, the 115 

dissipation mechanism in the TET device is modelled as a dashpot (Figure 1b) with viscous 116 

damping coefficient c  in parallel with a power-law elastic spring with stiffness Mk  and exponent 117 

n , defined as a positive and odd number ( 1,3...n  ). In order to ensure the “energy pumping” 118 

between the cable (main system) and the damper device (subsystem), a secondary lumped mass 119 
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Am  is incorporated in the apparatus at one extremity of the dashpot (Figure 1b). A linear elastic 120 

spring with stiffness Sk  is also added between the dashpot and the ground to account for an 121 

imperfect anchorage of the device to the deck [13]. It must be noted that the layout of the 122 

proposed apparatus with additional spring-type connection to ground is compatible with one of 123 

the configurations comprehensively analysed in [20,21], as it ensures transfer of momentum and 124 

energy redistribution from the main system to the secondary system; more details may also be 125 

found in [20,21] and in Section 3.2. In the following analysis it is convenient to introduce the 126 

complementary coordinate  2 1x L x   and the complementary length  2 1L L L  . 127 

Assuming that the tension T  is large compared to the weight of the stay and under the 128 

hypotheses of small vibration, negligible bending stiffness and small mechanical damping in the 129 

stay, a taut-string model is used to simulate the dynamics of the system [10]. Linear oscillations 130 

of the cable, under the assumption of virtually unchanged cable force, are described by the linear 131 

wave equation [8]: 132 

 
   2 2

2 2

, ,k k k k

k

y x t y x t
T

t x

 


 

, (1) 133 

with  ,k ky x t  the transverse vibration and kx  the coordinate along the cable chord axis in the 134 

kth sub-string (with  1,2k  ). Equation (1) is valid everywhere except at the TET attachment 135 

point; at this location continuity of displacement and equilibrium of internal forces must be 136 

satisfied. To solve Equation (1) subjected to boundary, continuity and equilibrium conditions a 137 

non-dimensional time 0,1t   (e.g., [11]) is introduced, with 
0,1 / /L T    undamped 138 

natural frequency of the first native cable mode. Separation of variables is used to describe the 139 

motion over the cable segments in the form      , exp  k k k ky x t Y x  (e.g., [9]), with 140 

 1,2k  ,   non-dimensional eigenvalue,  k kY x  complex mode shape on kth cable segment, 141 

and 1    the imaginary unit. This substitution into Equation (1) leads to an ordinary 142 

differential equation where the solutions are the complex mode shapes of the system [9,10]. 143 

Enforcing the continuity of displacement at the TET device linkage and the boundary conditions 144 

of zero displacement at the cable end leads to      sin / / sin /k k k kY x x L L L     (e.g., 145 

[10]), in which   is the vibration amplitude of the cable at the TET device location, and kL  is 146 
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the length of the kth cable sub-string. The equilibrium equations at node A and B (Figure 1b) for 147 

the TET device are formulated as follows: 148 

    
1 1 1 1

0
n

A S x L M x Lm s k s c y s k y s        , (2) 149 
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, (3) 150 

where n  is positive and odd,  
1 1 1 1 1,x Ly y x L t   , the “dot” marker denotes a differentiation 151 

with respect to time t , and the variable    0 exps t s    is used to represent the displacement 152 

at node A (Figure 1a). To solve these equations, an energy-based approach is adopted, in which 153 

the nonlinear force-displacement relationship of the elastic spring with stiffness Mk  is reduced to 154 

a linear equivalent law (Figure 2). After this simplification, the equilibrium equations yield: 155 
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    
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, (4) 156 

where /c T   is the non-dimensional damper coefficient, /S Sk L T   and /n

M Mk L T   157 

are the two non-dimensional spring stiffness coefficients,  /A Am L   is the non-dimensional 158 

TET mass coefficient, and ,sec  is the relative peak displacement amplitude between nodes A 159 

and B for the system characterized by the linear equivalent spring. It is interesting to note that 160 

Equation (4) is a generalized version of the equation first found in [9]. As reported in Equation 161 

(5) below, the value of ,sec  is derived from the peak vibration amplitude at the damper location 162 

 0max exp       s  of the nonlinear system (Figure 2), through energy-based approach, 163 

by equating the elastic energy of the two systems: 164 

  
,sec

1

,sec

0 0

d d






  
n n

M Mk x x k x x . (5) 165 

In Equation (5) the variable x  represents the relative displacement between node A and B 166 

(Figure 1b); the integration of the previous equation leads to the following expression for the 167 

“secant” maximum relative vibration amplitude (linearized) as a function of the corresponding 168 

nonlinear variable: 169 



7 

 

 1
,sec

2

1
n

n
 
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

. (6) 170 

3. COMPLEX EIGENFREQUENCIES AND DAMPING RATIOS FOR SMALL 171 

FREQUENCY SHIFT 172 

3.1. General equation for complex frequency shift and TET’s universal design curve 173 

Equation (4) is also called frequency equation [9,10]. The complex roots of this equation 174 

represent the “eigenvalues” (null space) of the system, each of which corresponds to a distinct 175 

mode of vibration. Each eigenvalue i  can be written in terms of real and imaginary parts as 176 

  2

0,1/ 1i i i i       , where i  is the damping ratio, and i  is the modulus of the 177 

dimensional eigenvalue [9,13]. 178 

For specific values of  , S , M , A  and 1 /L L  Equation (4) can be numerically solved to a 179 

designated degree of accuracy to obtain frequencies and, most importantly, damping ratios of as 180 

many “modes” as desired (keeping in mind the approximation introduced by the linearization). 181 

Equation (4) is also based on the hypothesis that the vibration of the systems with non-linear 182 

device can still be approximately described by linear modes [15]. If the damper-induced 183 

frequency shifts are small ( 1 / 1L L  ) the complex eigenfrequencies are i ii i    , where 184 

i  is the complex valued frequency shift [9]. Substituting the sinusoidal approximations 185 

   sin 1
i

i     ,  1 1sin / /L L i L L   and      2 1sin / 1 /
i

iL L iL L      , 186 

proposed by Krenk [9], in Equation (4) and solving for i  leads to the following expression: 187 
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, (7) 188 

with 
      

1
1 21

11 / S Ai
L L i   


     

 
 “generalized flexibility” of the TET apparatus, 189 

which includes the flexibility of the support  
1

11 /S L L 


   first introduced by Huang and 190 

Jones [13]. The designation “generalized flexibility” is used in this context to indicate the ability 191 

of the device to deform (through the spring attachment) or transfer momentum (through the 192 
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secondary TET mass). The flexibility term is mode dependent with  1,2,...i   due to the effect 193 

of the secondary TET mass, which influences the energy pumping mechanism. For small masses 194 

and low-order modes it can be approximately assumed that the variation  i  is small compared 195 

to other terms, since the effect of 1

S
  is dominant compared to  

1
2

A i 


 
 

. For 0 0.005A   196 

the second term can be neglected, leading to an approximate formulation (still acceptable, as 197 

later shown in the example)with  i
     similar to the formulation proposed by Huang and 198 

Jones [13]. 199 

As shown at the beginning of this subsection, the imaginary part of the eigenfrequencies i  200 

represents the attenuation due to damping. Under the hypothesis of small damper-induced 201 

frequency shifts, the modal damping ratio i  in a given mode  1,2,...i   can be calculated as 202 

   Im / Im /i i i i i      [9]. Using this approximation along with the solution of  Im i203 

(imaginary part of the root) leads to the following approximate formula of the normalized modal 204 

damping ratios  1/ /i L L : 205 

 

       

2

22 121
1 ,sec

/
1 / /

i

n

Mi i

L L
L L L

  

   



     

   

, (8) 206 

where  1/ /i L L    is a non-dimensional parameter group, referred to as the normalized 207 

damper coefficient [10] in the following sections. Equation (8) is also labelled as the “universal 208 

design curve” [11] of the modal damping ratio versus normalized damper coefficient  . The 209 

non-dimensional parameter group   varies between zero and infinity. If 0   the system is 210 

undamped and the cable is attached to an elastic device made of two elastic springs arranged in 211 

series, respectively S  and M , with the TET mass interposed among them. If    the 212 

damper is perfectly clamped to the stay, the elongation between node A and B tends to zero with 213 

no dissipation and cable vibration controlled by the flexibility 1

S
 . 214 

3.2. Considerations on energy pumping mechanism and dual-modality dissipation of the TET  215 

As shown in Equation (8), the flexibility of the TET apparatus is a function of the non-216 

dimensional TET mass coefficient A , the dimensionless stiffness of the support S . A 217 
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predefined value of  i
  may always be found by appropriately combining the values of the two 218 

parameters. 219 

If 
 

1
i

   the TET device is rigidly restrained to ground in correspondence of node A; this 220 

limit coincides with the condition that either A  or S  must tend to infinity. In this case the TET 221 

device is reduced to a dashpot composed of a linear viscous damper in parallel with a power-law 222 

nonlinear elastic spring element connected to a rigid support.  223 

If  i
  is greater than one, three regimes are possible. If both A  and S  have a finite non-zero 224 

value the mechanical apparatus is analogous to the one depicted in Figure 1b. Since the mass of 225 

the subsystem is usually quite small compared to the main system in real applications (226 

0 0.05A  ), the device must be weakly coupled to the ground (“compliant support”) to 227 

enhance the energy pumping mechanism. In this regime the apparatus behaves like a 228 

“Configuration-I” TET device according to the classification by Vakakis et al. [21] and, as 229 

described in the previous section, the performance is mode dependent due to the effect of the 230 

TET mass in the flexibility  i
 . On the contrary, if the device is strongly coupled to the ground 231 

(relevant stiffness of the support with large S ), the effect of the secondary mass can be 232 

neglected (as if it were 0A  ) and the energy pumping is less likely to be activated. In this 233 

second scenario the apparatus behaves like a passive dashpot on an elastic support. 234 

Finally, if the elastic stiffness of the support 0S   there is no connection between the deck 235 

and the device and the mechanical apparatus acts like a “Configuration-II” TET device [21], also 236 

referred to as Nonlinear Energy Sink (NES). The NES apparatus has a strongly nonlinear 237 

behaviour and might be installed in any position along the cable length. Nevertheless, the use of 238 

the universal design curve to predict the performance is only applicable if the device is installed 239 

near the cable anchorage. The performance of this device is usually worse compared to the one 240 

of the Configuration-I device [21] due to a generally higher  i
  for the same values of A , even 241 

though it might be capable to absorb and dissipate energy by transient resonance captures [21] 242 

for a wider spectrum of frequencies. The various regimes will be described in a later section. 243 

3.3. Optimal design point of the TET 244 
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The optimal damping ratio can be derived from Equation (8) by setting the derivative with 245 

respect to   equal to zero; this gives: 246 

 

 

     
1

opt 1 ,sec2

1
1 / /

n

Mi

i

L L L  

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  

 

, (9) 247 

and the corresponding “optimal damping ratio” [10] can be written as: 248 

 

       
,opt

1
1

1 ,sec

1

/ 2 1 / /

i

n

Mi i
L L L L L



  



  
 

. (10) 249 

Equation (10) shows that the optimal damping ratio of a TET device is amplitude dependent 250 

as long as n  is greater than one, while there is no relationship between the peak displacement 251 

amplitude at the TET device linkage and the damping ratio if n  is equal to one (Linear TET 252 

device). Since   is proportional to the mode number i , the optimal damping ratio can usually be 253 

achieved in one mode at a time (which is also common in linear devices, e.g., [10]). In particular, 254 

if the TET device is designed optimally for a particular mode, it will be more “rigid” in the 255 

higher modes and less “compliant” in the lower modes, showing moderately suboptimal damping 256 

ratios in both situations. 257 

4. FORMULATION OF THE EQUALLY-SPACED LUMPED MASS MODEL 258 

A second numerical model has been used to evaluate the effectiveness of the TET devices (linear 259 

and nonlinear) and the simplified solution by linearization (e.g., Equation (8)). This model is a 260 

time-domain lumped-mass model of a stay, equipped with the TET device. In the cable model n  261 

concentrated masses, equally spaced at a distance x  (simulating the distributed mass of the stay 262 

 ) are linked by massless cable elements, axially loaded by a constant internal force T  (Figure 263 

3a). Each discrete degree of freedom in the transverse direction,  i iy y t , is associated with 264 

each concentrated mass iM x   [40]. An additional degree of freedom 1Aj n   and a mass 265 

Am  are employed to simulate the behaviour of the lumped TET mass, restrained at the bottom of 266 

the TET device, and the flexibility of the support. The degree of freedom of the cable to which 267 

the TET device is attached (node B, Figure 1b) is defined as Bj . For compatibility with Equation 268 

(1), hypotheses of non-shallow cable, no mechanical damping, and no flexural stiffness in the 269 

link elements are used. From the free-body equilibrium diagram (Figure 3b) of each non-270 
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restrained mass element of the taut-cable (inertial forces and effect of cable tension T , simulated 271 

by transverse forces LF  “left” and RF  “right”) the dynamic equilibrium equation is: 272 

  1 12 0i i i i iM y T x y y y      , (11) 273 

being 2 2d / di iy y t , with 1...i n  and Bi j . Two additional equilibrium equations are 274 

introduced at the Bj  and Aj  degrees of freedom to locally characterize the TET device: 275 

  
B1 12 ,

B B B B Bj j j j j jM y T x y y y f        
   A

;
A A BA j j j jm y k y f   (12-13) 276 

where    
B B A B A

n

j j j M j jf c y y k y y     is the interaction force provided by the dashpot, with 277 

d / di iy y t . The matrix form of the dynamical system is: 278 

       t t tMy Ky f  (14) 279 

with  ty  and  ty  column vectors of the transverse displacements and accelerations, and M  280 

and K  mass and stiffness matrices of the cable and elastic support, assembled as: 281 

 
 

 

cable 1

1

n

An
m





 
  
  

M 0
M

0 ,   
 

 

1 1

1

n

Sn

T

x

k





 
 
 
  

K 0
K

0

,
   1

2 1 0 0

1

0 0

1

0 0 1 2

 
 
 
 
 
 
  

K ; (15-17) 282 

in which cable n nx    M I  is the lumped mass matrix of the cable, and 1K  in Equation (17) is 283 

an n n   indicator-matrix of zeros, ones and minus twos. In Equation (14)  tf  is the column 284 

vector of external “forcing” functions, in which the only two non-zero elements collect the actual 285 

forces transmitted between the TET device and the stay (degrees of freedom Aj  and Bj ). The 286 

following non-dimensional dynamic system is later obtained, with non-dimensional transverse 287 

displacements     /i iz t y t L , non-dimensional time 0,1t  ,  0,1d / d d / di iz t z   and 288 

 2 2 2 2 2

0,1d / d d / di iz t z  : 289 

 
 

   
2

nd nd2

d

d


 


 

z
K z f ,   

 

 

2

d
1 12

1

nd 2
d0,1

1 2

1 n

Sn

A

N

Nx

m













 
 
  

 
 
 

K 0

K M K

0

, (18-19) 290 
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where vector  z  collects all iz  terms, while d /N L x   is a scalar parameter. The only two 291 

non-zero elements of the non-dimensional vector    2 1

nd 0,1     f M f  are, respectively: 292 

   d
nd

d d
f

d d

B A

j B AB

nj j M
j j

z zN
z z


 

   

   
         

   
,      nd ndf f

j jA B

A

x

m


 


   (20-21) 293 

To solve the nonlinear dynamic problem of Equation (18), z  is recast in state-space form as 294 

 ,d / d
T

w z z , with  2 2d / d d / d ,d / d
T

  w z z  and 
T

  denoting transpose operator. This 295 

leads to a state-space linear system of (2 2)n   equations with   *

nd( 1) 1
,

T

n 
f 0 f : 296 

 *d

d
 

w
Sw f ,      

       

   

1 1 1 1

nd 1 1

n n n n

n n

        

   

 
  

  

0 I
S

K 0
, (22, 23) 297 

The vibration response of the discrete nonlinear dynamic system of Equation (22) is 298 

numerically solved, with zero initial conditions    2 2 1
0

n


 
 w 0 , by means of a fourth-order 299 

Runge-Kutta integration algorithm. At the beginning of each simulation, the system is subjected 300 

to an initial transitory forced-vibration phase, in which a set of concentrated harmonic forces, 301 

suitably placed at selected degrees of freedom, is applied to excite the cable motion in one 302 

specific mode. After this initial phase the forces are removed and the free-vibration response is 303 

analysed. Modal damping ratio, supplied through the TET device, is evaluated by applying the 304 

logarithmic decrement method [41] to the motion of a reference degree of freedom, relevant to 305 

the dynamics of the entire system. 306 

5. NUMERICAL SIMULATIONS 307 

Parametric numerical simulations investigate the free-vibration response of the first five modes 308 

of a prototype reference stay, composed of a 20m-long stay-cable with 1900kNT  , diameter 309 

0.14mD  , 47.9kg/m  , and a TET device located near an anchorage. 310 

The first set of simulations have been performed with a hybrid formulation of the mechanical 311 

apparatus discussed in the previous sections (Hybrid TET, H-TET), in which the effects of the 312 

TET mass Am  are negligible ( Am L  and  i
  ). The hybrid formulation is used to 313 

investigate the effects of the elastic stiffness Mk  in parallel with the viscous damper. Two types 314 
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of H-TET are examined: a Linear device (H-L-TET) characterized by 1n  , and a Nonlinear 315 

device (H-NL-TET) with 3n  . Five different flexibility coefficients   have been considered to 316 

realistically simulate the support conditions [13]. 317 

The second set of analyses investigated the general formulation of the TET considering a 318 

mass Am  sufficiently large to activate the “energy pumping”. Within this second set of 319 

simulations, a nonlinear cubic elastic spring element ( 3n  ) has been examined and two 320 

configurations have been investigated: the case of an apparatus weakly coupled to the deck and 321 

the NES configuration with the device uncoupled from the ground.  322 

5.1. Hybrid Linear Targeted-Energy-Transfer device (H-L-TET) 323 

The H-L-TET device under investigation is placed at 1 / 0.02L L  , with 10M   and exponent 324 

1n  ; for each mode analysed, the peak oscillation of the cable   at the end of the transitory 325 

forced-vibration phase is three times the diameter of the stay ( / 0.02L  ). As mentioned 326 

before, if n  is equal to one (linear device) there is no dependence of the damping ratio on the 327 

peak displacement amplitude at the H-L-TET device linkage (Equation (8)). Figure 4a shows the 328 

normalized damping ratio  1/ /i L L  versus the normalized damper coefficient   for the first 329 

five modes of the reference cable and for five flexibility coefficients   ( 1  : rigid support to 330 

ground, 5  : “flexible” or imperfect support). A distinct curve is plotted for each mode. The 331 

quantity  i
  is independent of the mode and it is  i

  . The universal design curves (thick 332 

lines of various line types without marker), obtained from Equation (8), agree very well with the 333 

curves generated by numerical integration (thin continuous lines with marker). Equation (8) has 334 

been subsequently used, for specific values of the flexibility of the support  , to exploit the 335 

effects of the linear stiffness M  on the performances of the H-L-TET device. Figure (4b) 336 

shows the universal curves obtained with 1.2   and with M  varying between zero (linear 337 

damper with no spring in parallel) and fifty; a circle marker is used to label the local maxima, 338 

achieving optimal damping ratios. The range of M  has been derived from values typically used 339 

for the design of such devices (e.g., [13]). An increase in the elastic stiffness M  yields a 340 

reduction of both the optimal damping ratio and the slope of the curve in the proximity of the 341 
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optimal-damping points, by “flattening” the bell-shaped curve in the interval of   at which the 342 

highest damping ratios are achieved. 343 

5.2. Hybrid Nonlinear Targeted-Energy-Transfer device (H-NL-TET) 344 

The following analyses describe a parametric study to evaluate the behaviour and the 345 

effectiveness of the H-NL-TET devices on cable vibrations suppression. Since wind and wind-346 

rain induced vibration can cause peak oscillations ( ) between one and three times the diameter 347 

of the stay in the first cable modes [42], the device used to perform the analyses is optimized for 348 

the second mode of the reference cable by considering two peak displacement amplitudes 349 

belonging to the range previously mentioned. As suggested in [20,21], the H-NL-TET device 350 

analysed in this chapter is characterized by 3n  . In fact, it would be possible to physically 351 

build a cubic spring in a very simple way by exploiting stiffness nonlinearity influenced by 352 

change in geometric configuration of a flexible element with negligible bending stiffness (as 353 

shown in a number of prototype units, manufactured and tested in [21]). Moreover, as outlined in 354 

the introduction, if large-amplitude cable vibration is anticipated, the optimal order of the 355 

polynomial used in the nonlinear spring element of the TET device should be tuned in 356 

accordance with the “order” of geometric nonlinearity in the primary system [23]. 357 

Figure 5 shows the normalized damping ratio  1/ /i L L  versus the normalized damper 358 

coefficient   for a H-NL-TET placed at 1 / 0.02L L   (Figures 5a-5b) and 1 / 0.04L L   359 

(Figures 5c-5d-5e-5f) when the non-dimensional elastic stiffness parameters are 1.5e 05M    360 

(Figures 5a-5c-5e) and 2.0e 06M    (Figures 5b-5d-5f), and the peak displacement of the 361 

cable, normalized with respect to the cable length, is / 0.01L   (Figures 5a-5b-5c-5d, about 362 

one stay diameter) and / 0.02L   (Figures 5e-5f, about three stay diameters). In Figures 5a-5b 363 

with 1 / 0.02L L   the curves (thin continuous lines with marker), numerically generated by 364 

lumped-mass model and corresponding to each of the first five modes of the cable agree very 365 

well with the analytically-derived universal design curves (thick lines of various line types 366 

without marker). For 1 / 0.04L L   the lumped-mass-model numerical curves (Figures 5c-5d-5e-367 

5f) are affected by a larger frequency shift than those of the previous case (neglected by the 368 

universal curve [9,10]). Numerical results agree somewhat less well with the asymptotic 369 



15 

 

analytical solution, especially around the points achieving optimal damping ratio. Differences 370 

are, however, still acceptable (less than 5% in terms of damping ratio). 371 

The results reveal that, for a fixed value of the peak vibration amplitude / L , an increase in 372 

the elastic stiffness M  yields a reduction of both the optimal damping ratio and the slope of the 373 

curve in the proximity of the optimal-damping points (Figures 5a and 5b; Figures 5c and 5d; 374 

Figures 5e and 5f). These effects produce a “flattening” in the bell-shaped curve in the interval of 375 

  at which the highest damping ratios are achieved. An analogous reduction is also visible 376 

when the elastic stiffness M  is kept constant while the peak oscillation / L  is increased from 377 

0.01 to 0.02 (Figures 5c and 5e; Figures 5d and 5f). In this second situation the reduction is 378 

slightly lower than before and it is due to an increase of the elastic force within the damping 379 

device, associated with the effects of the nonlinearity, which reduces the damping proprieties and 380 

transfers the motion to the elastic support. 381 

It must be noted that the damping ratios, shown in Figure 5, are normalized with respect to the 382 

device position along the cable’s length. For this reason [9,10] the damping ratios   in Figures 383 

5c-5d-5e-5f have doubled in comparison with those in Figures 5a-5b. The results also reveal that 384 

the damping ratio is predominantly influenced by the flexibility of the support, compared to the 385 

elastic stiffness in parallel with the linear viscous damper. For instance, doubling the flexibility 386 

of the support from 1.0   to 2.0   causes a 40% reduction of damping ratios while 387 

increasing more than ten times the elastic stiffness leads to a reduction lower than 5%. 388 

The universal design curves of Figure 5 (thick lines of various line style without marker) have 389 

been obtained from Equation (8) by defining, for each analysed case, a reference value of ,sec . 390 

As shown in Equation (6), the peak vibration amplitudes   of the nonlinear system must be first 391 

estimated and later converted to equivalent “secant” vibration amplitude ,sec  of the linearized 392 

system in order to be used in Equation (8). Therefore, a set of “reference curves”, assessing the 393 

peak displacement amplitude   of the non-linear system in the section of the damper, must be 394 

determined a priori. Figure 6a shows an example of the reference “abacus” curves for the device 395 

simulated in Figure 5e. First, the relationship between   and the non-dimensional parameter 396 

group   is established by numerical simulations (thin continuous lines with marker), repeated 397 
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for the first five modes of the cable as a function of flexibility  ; inspection of the simulations 398 

has revealed that lumped-mass-model numerical curves tend to overlap (at the same   with 399 

1 / 1L L   and / 1L  ). Second, the “reference curves” (thick lines of various line types 400 

without marker), independent of the mode, are obtained for a given   from the five numerical 401 

simulations by means of the least-squares method.  402 

It must be noted that the shape of the curves presented in Figure 6a depends on several 403 

factors, such as the peak vibration amplitude of the cable, the cross-section at which the TET 404 

device is installed, the non-dimensional nonlinear elastic stiffness parameter M , the flexibility 405 

of the support   and the normalized damper coefficient  . In order to calculate the exact values 406 

of the universal design curves (e.g., Figure 5e) it is important to identify the shape of the 407 

reference curve by preliminary simulation using the lumped-mass model (Figure 6a). Since this 408 

kind of approach is time-consuming and it is not practical for design when combined with the 409 

universal design curves, a simplified approach has been preferred. A “conservative” set of 410 

universal design curves can be estimated for the H-NL-TET by using a constant value of the 411 

peak amplitude ,sec , obtained for the undamped system with 0   and irrespective of the 412 

actual relationship   vs.   (e.g., Figure 6a). The resulting curves, related to the device 413 

described in Figure 5e, are plotted in Figure 6b. In comparison with the results of Figure 5e, the 414 

damping ratios are lower near the optimal damping point (with maximum reduction of the order 415 

of 10%); however, negligible differences are observed everywhere else in comparison with the 416 

“exact” solution. A simplified abacus has also been proposed to predict the peak amplitude 417 

displacement of the undamped system in the section of the TET device; Figure 7 shows the 418 

results achieved for a device placed at 1 / 0.02L L  , when the optimal mode is the second one 419 

and the peak vibration amplitude of the cable is, respectively, / 0.03L   (red line) and 420 

/ 0.02L   (blue line). The curves have been obtained by combining the results of the first five 421 

modes by least squares (thin continuous lines with markers) and can be used to find the 422 

conservative universal design curves, previously mentioned. 423 

5.3. Targeted-Energy-Transfer device with 0A   424 
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The performance of a generalised apparatus configuration, derived from the case in Figure 5f, is 425 

examined. This study aims at highlighting the differences between a hybrid and a general TET 426 

device by taking into account the effect of the secondary TET mass Am . 427 

The first set of simulations considers an apparatus connected to the deck with 3n  , 428 

2.0e 06M   , 1 / 0.04L L   and / 0.02L   by studying the influence of the non-dimensional 429 

lumped mass parameter, with 0.03A   (3% of cable mass, Figure 8a) and 0.05A   (5% of 430 

cable mass, Figure 8b). The analyses have been performed by considering the same flexibility 431 

coefficients   used in Figure 5f. In order to enable the comparison with the previous results, the 432 

universal design curves shown in Figure 8a and Figure 8b have been obtained from Equation (8) 433 

by neglecting the contribution of the mass Am  ( 0A   and ( )i  independent of the mode 434 

number) , whereas the contribution of the mass is included in the numerical simulations by 435 

lumped-mass model. For 5  , the lumped-mass-model curves (thin continuous lines with 436 

marker) have negligible differences with the analogous results of Figure 5f. For 5   the 437 

damping ratios provided by the device are generally quite low, suggesting that the device is not 438 

suitable to mitigate the oscillations. In all the simulations, the energy pumping mechanism 439 

appears to be partially enabled only. Even though the lumped-mass-model results are affected by 440 

a non-negligible frequency shift between the undamped case and the damped one, the asymptotic 441 

solution obtained with 0A   and ( )i   is still acceptable (the differences are lower than 5% 442 

in terms of damping ratio).  443 

The second set of simulations has been performed on a NES apparatus (Section 3.2), i.e., a 444 

device completely detached from the bridge deck. The setup used in the analyses is analogous to 445 

the one used in the previous set: 3n  , 2.0e 06M   , 1 / 0.04L L   and / 0.02L  . Two 446 

non-dimensional TET mass configurations have been investigated, 0.03A   (Figure 8c) and 447 

0.05A   (Figure 8d). In both situations, the universal design curves (thick lines without 448 

marker) obtained from Equation (8) agree quite well with the lumped-mass-model numerical 449 

curves (thin continuous lines with marker) of the second mode. However, there are significant 450 

differences in all the other modes. The performances are generally lower compared to the results 451 

depicted in Figures 5f and 8a-b, and are strongly influenced by the mode analysed and by the 452 
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value of the TET mass Am . For example, the fifth-mode damping of the numerical curve in 453 

Figure 8d is doubled compared to the analogous curve of Figure 8c. The high peaks, observable 454 

in the lumped-mass-model numerical curves of the third and fourth mode (Figure 8d), are more 455 

clearly associated with energy pumping, even though it could not be noted in any other 456 

configuration. 457 

6. SIMULATED APPLICATION OF THE H-TET DEVICES 458 

Numerical simulations have been carried out to investigate the performance of the device on stay 459 

AS16 of the Fred Hartman Bridge (Houston, Texas, USA). Since the performance of the TET 460 

apparatus with a consistent value of the secondary TET mass Am  have shown limited differences 461 

compared to the analogous hybrid configuration, in the following application examples the latter 462 

configuration with 0.001A   has been considered . 463 

The Fred Hartman Bridge is a twin-deck, cable-stayed bridge over the Houston Ship Channel; 464 

it has a central span of 380m and two side spans of 147m; the deck is composed of precast 465 

concrete slabs on steel girders, carried by a total of 192 cables, spaced at 15-m intervals in four 466 

inclined planes. The stay under evaluation is an 87m-long cable with 2260kNT  , 467 

47.9kg/m   and 0.141mD   [1]. The first-mode frequency of AS16 is equal to 1.24 Hz; 468 

damping ratio of the order of 0.4% was noted in the absence of damping device on this cable 469 

[37]. This stay was selected in this study since a passive viscous damping device is actually 470 

installed on the full-scale system. In contrast, other and longer cables are equipped with both 471 

cross-ties and dampers to reduce vibration [38], making a direct comparison not directly 472 

possible. More information on the cable properties including indication of supplementary devices 473 

may be found in [37].  474 

In order to evaluate the effectiveness and the applicability of the TET device in relation to the 475 

mitigation of wind and rain-wind induced phenomena, the criterion based on the Scruton number 476 

of the cable is utilized [1,43,44]. The Scruton number cS  and the criterion are defined as 477 

 2 10c iS D    where   is the air density (standard value 
3= 1.225 kg/m ) and i  is 478 

the structural damping ratio, provided by the external damping device, of the mode being 479 

investigated [43,44]. As suggested by FHWA and PTI [1,44], since the inherent mechanical 480 



19 

 

damping in the cables is extremely low (e.g., [2]) the condition 10cS   can only be satisfied if an 481 

external damping device is installed. A second criterion has alternatively been used (e.g., in 482 

Japan [45]):  2ˆ 2 40c iS D   , where 2i i   is the logarithmic decrement of the 483 

structural damping for a lightly damped system. In the following comparisons the more 484 

conservative criterion  2 10c iS D    has been adopted. 485 

The H-NL-TET devices is designed to achieve the best performance in the fundamental mode 486 

of vibration and in the second one, which should still provide adequate damping to suppress 487 

wind and rain-wind induced vibration in several of the higher modes. The peak displacement 488 

amplitude in the section of the damper, used to design the optimal damper coefficient, has been 489 

obtained considering a peak vibration amplitude of the cable equal to / 0.02L  , measured in 490 

the anti-nodal cable section and observed in the mode designed for optimal damping. Mechanical 491 

damping of the stay and negative aerodynamic damping in the case of aeroelastic vibration are 492 

not included in the calculation of the minimum damping ratio needed to satisfy the Scruton 493 

number criterion [37]. 494 

The H-NL-TET device is placed at 1 / 0.045L L   with 2.0e 05M    and exponent 3n  . 495 

The first eight modes of the cable and four different flexibility coefficients 496 

{1.0, 1.2, 1.5, 2.0}   have been examined since these are predominantly excited by wind, as 497 

documented by full-scale investigation [37]. Figure 9a shows the modal damping ratios provided 498 

by the H-NL-TET when the optimal performance is achieved in the fundamental mode of 499 

vibration while Figure 9b depicts analogous results obtained when the damping device is 500 

designed to be optimal in the second mode. The lumped-mass-model numerical curves (thin 501 

continuous lines with marker), corresponding to each of the five modes of the cable, agree quite 502 

well with the universal design curves (thick lines of various line types without marker); a thick 503 

dotted line is used to define the minimum threshold given by the condition 10cS  . As depicted 504 

in Figure 9a, for a H-NL-TET device with 2.0   the Scruton number criterion is satisfied in the 505 

first three modes only, while it appears inadequate for the higher modes and for larger flexibility 506 

in the support. It is important to note that the criterion based on the Scruton number is usually 507 

valid for the first few modes of vibration while its applicability to higher ones is less acceptable, 508 

and smaller values of damping ratio supplied in this last case might be adequate to mitigate the 509 
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vibrations due to aeroelastic phenomena [43]. Analogous considerations are applicable to the 510 

results shown in Figure 9b, in which the optimal damping ratio is achieved in the second mode of 511 

the cable. In this second figure the Scruton criterion is satisfied in all the simulations; the TET 512 

device under evaluation appears more “rigid” in the higher modes and less “compliant” in the 513 

lower modes, showing suboptimal damping ratios in both cases. 514 

Figure 9 suggests that the performance of the TET device is influenced by the relative 515 

distance between the installation point on the stay and the nearest anti-nodal cable section, mode 516 

by mode. This behaviour has negligible effects in the first modes (modes 1 to 5 in Figure 9), 517 

whereas it becomes relevant for the higher ones. In particular, after reaching the lowest 518 

performance around the sixth mode, the damping ratios provided by the TET device and 519 

calculated by lumped-mass model improve in the subsequent modes. It must be noted that the 520 

damping ratios predicted by the analytical formulation are always lower than the exact value 521 

obtained from the lumped-mass model; this behaviour is due to the approximation introduced to 522 

estimate the universal design curves. Nevertheless, lower damping values are acceptable from 523 

the design standpoint; the universal design curves can still be used since they provide a safe 524 

estimation, useful for practical design. 525 

7. CONCLUSIONS 526 

The use of new passive damper device, inspired by the Nonlinear Targeted-Energy-Transfer 527 

(TET) device, was examined for mitigating stay-cable vibrations. A new family of “universal 528 

design curves” has been found analytically, and numerically verified on a reference stay by a 529 

time-domain lumped-mass model and through a prototype application on a cable-stayed bridge. 530 

The original aspects and main conclusions of this study are:  531 

1) A new passive damping device is proposed and developed for stay-cable vibration 532 

mitigation, induced by wind or rain-wind. The device is derived from the TET device, 533 

recently investigated for reducing vibrations in mechanical and dynamical systems. 534 

2) The main advantage of the TET device is the fact that the peak region of the universal 535 

amplitude-dependent damping curve is usually wider (or flatter) than the corresponding 536 

universal curve of a viscous damper. As a result, the device has a broader operational 537 

range of high damping. The control of more modes at the same time, for example through 538 
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the empirical procedure suggested by Weber et al. [46], can be achieved with a smaller 539 

dashpot and without a more sophisticated apparatus.  540 

3) A new class of generalized “universal design curves”, which could be employed for 541 

design of the new device, is derived analytically.  542 

4) The new apparatus is applied to improve damping of two existing stays. The paper shows 543 

that the damping ratios of a passive device, installed very close to the anchorage, can still 544 

satisfy the Scruton number criterion even for very long cables (more than 200 meters 545 

long). It is also suggested that the use of semi-active damping, such as magneto-546 

rheological dampers with negative stiffness (e.g., [47-49]), which has been usually 547 

preferred in these extreme situations, may not be the only practical solution. 548 

Future studies will possibly examine the performance of the device in comparison with similar 549 

passive damping devices and analyse the behaviour of cable-damper systems under aeroelastic 550 

vibrations. 551 
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NOMENCLATURE 671 

The following symbols were used in this paper:  672 

c  Viscous damper coefficient (kN∙m/s)  

D  Diameter of cable (m) 

,L RF F  Transverse force component due to the cable deflection for the ith mass (kN) 

f  Vector employed to account for the effect of the TET device 

Bj
f  Interaction force provided by the dashpot 

ndf  Non-dimensional column vector to account for the effect of the TET device 

*
f  State-space formulation of the non-dimensional force vector ndf  

i  Mode number 

Bj  Degree of freedom at which the TET device is attached to the cable 

Aj  Degree of freedom at which the lumped mass is attached to the TET device 

K  Stiffness matrix of the cable and elastic support 

1K  n n   indicator-matrix of zeros, ones and minus two 

ndK  Non-dimensional stiffness matrix of the cable and elastic support 

Mk  Stiffness coefficient for the power-law elastic spring (kN/mn) 

Sk  Stiffness coefficient for the elastic support (kN/m) 

L  Length of cable (m)  

kL  Length of kth sub-string (m) 

M  Mass matrix of the cable and elastic support 

cableM
 

Lumped mass matrix of the cable 

Am  Secondary TET mass attached to one end of the dashpot (kg) 

iM  ith lumped mass of the discrete model, with {1,..., }i n  (kg) 

dN  Non-dimensional scalar parameter 

n  Exponent of the power-law elastic stiffness, with {1,3,...}n   



27 

 

n  Total number of lumped masses along the cable length (degrees of freedom) 

S  State-space matrix of the lumped model 

ˆ,c cS S  Scruton number of the cable 

 s t  Transverse vibration of the TET device support 

T  Tension in cable (kN) 

t  Dimensional time variable (s) 

w  State-space vector of the lumped mass model at time   

x  Relative displacement between node A and B in the TET device (m) 

kx  Coordinate along the cable chord axis in the kth sub-string (m) 

 k kY x  Complex mode shape of kth cable element  

   , ,t ty y  Vectors of the transverse displacements and accelerations at time t  

, ,i i iy y y  Transverse displacement, velocity and acceleration of ith mass at time t   

 ,k ky x t  Transverse vibration of kth sub-string from equilibrium position 

z  Vector of the non-dimensional transverse displacements at time   

iz  Non-dimensional transverse displacement of ith mass at time  

  Vibration amplitude of the cable at TET device location (m) 

  Peak displacement amplitude at damper location (m) - Nonlinear spring 

,sec  Peak displacement amplitude at damper location (m) - Linear secant spring 

x  Horizontal spacing between two adjacent lumped masses (m) 

i  Complex valued frequency shift introduced by the spring and the dashpot 

  Logarithmic decrement of the structural damping 

  Non-dimensional damper coefficient 

1    Imaginary unit 

  Normalized damper coefficient (non-dimensional parameter group) 

i  Non-dimensional complex frequency (eigenvalue) of mode i  

  Mass per unit length (kg/m)  
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A  Non-dimensional TET mass coefficient  

  
Flexibility coefficient of the elastic support 

  Air density 

  Non-dimensional time variable 

M  Non-dimensional stiffness coefficient for the power-law elastic spring 

S  Non-dimensional stiffness coefficient for the elastic support 

  Generalized flexibility of the TET apparatus 

0,1  Undamped natural frequency of the first mode (rad/s)  

i  Modulus of the dimensional frequency (eigenvalue) of mode i  (rad/s) 

 673 

Subscripts: 674 

k  Cable segment number (  1,2k  ) 

i  Lumped-mass index (degree of freedom of the discrete model); also used to 

designate mode number in the universal design curves 

 675 
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