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ABSTRACT

1. The protocols available for sampling and monitoring shallow subtidal rhodolith beds (RBs) are inadequate
for the deep Mediterranean analogues, and need calibration in order to attain comparable results.

2. After reviewing the present knowledge of the specificities of Mediterranean RBs, and in the framework of the
ongoing international effort for their conservation, a two-step approach is suggested for their definition,
identification, delimitation, description, and monitoring.

3. Regional mapping should be improved, and RBs should be identified and delimited as those areas of the sea
floor with >10% cover of live rhodoliths over a minimum surface of 500 m2, on 1:10000 scale. More detailed scales
(at least 1:1000) should be used for monitoring selected RBs, in order to detect significant changes through time.

4. Beside location and areal extent, the description of RBs should include the occurrence of macroscopic
sedimentary structures of the sea floor, thickness of live cover, mean percentage cover of live thalli and surface
live/dead ratio, cover of dominant morphologies of rhodoliths (simplified on a ternary diagram), and
volumetrically important calcareous algal species.

5. For the purpose of assessment of the ecological status and the evaluation of human-induced impacts,
quantitative data about community composition are required. The comparative assessment of ecological status
and the identification of RBs of high conservation value for special protection should consider the natural
geographic and seasonal/annual variability of RBs.
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INTRODUCTION

It was only in recent times that maerl and rhodolith
beds (RBs) were recognized as a non-renewable
resource that is threatened by human activities
(Barberá et al., 2003; Nelson, 2009;
Aguado-Giménez and Ruiz-Fernández, 2012; Basso,

2012). The increasing awareness of the importance
and fragility of the benthic habitats characterized by
red algal concretions led to several international
initiatives, legally binding or not, aimed at their
conservation (Council of the European Union, 2006;
UNEP-MAP-RAC/SPA, 2008).
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For historical reasons and because of a more
focused research effort, our knowledge, definitions,
and evaluation criteria on RBs are largely derived
from shallow-water, extra-Mediterranean examples
(among others Pruvot, 1897; Cabioch, 1970; Bosellini
and Ginsburg, 1971; Bosence, 1983a, b; Birkett et al.,
1998), despite some remarkable early Mediterranean
contributions, primarily devoted to their species
richness and bionomy (Huvé, 1956; Parenzan, 1960;
Jacquotte, 1962; Pérès and Picard, 1964).

Mediterranean RBs are coastal to offshore
macro-, meso- or mega-habitats (sensu Greene
et al., 1999) frequently occurring in the
mesophotic zone, mostly at about 40–60 m of
water depth (Foster et al., 2013). Knowledge of
their species diversity is presently undergoing a
considerable improvement due to advances in
molecular genetics which is also revealing clear
latitudinal and biogeographic patterns in coralline
species distribution (Pardo et al., 2014). In spite of
this fluid taxonomy, Mediterranean RBs appear to
possess more diverse species assemblages of
coralline and peyssonneliacean algae than their
Atlantic counterparts, and to be structured by a
suite of combinations of rhodolith shapes and
coralline compositions: from monospecific
branched growth-forms, to multispecific rhodoliths
(Basso, 1998). Therefore, the protocols available
for sampling and monitoring RBs in shallow
subtidal waters (Steller and Foster, 1995; Peña and
Barbara, 2008; Hall-Spencer et al., 2010; Nelson
et al., 2012) cannot be applied as such, and require
calibrating to the Mediterranean specificities.

Despite their ecological importance and
conservation value, understanding of the
composition, structure, distribution and natural
variability of Mediterranean RBs is still inadequate,
and a standardized protocol to monitor deep
Mediterranean RBs in a proper manner has not yet
been defined (UNEP-MAP-RAC/SPA, 2008;
UNEP, 2011). In light of this gap in knowledge
between international environmental policy
(European Parliament and Council of the European
Union, 2008; UNEP-MAP-RAC/SPA, 2008, 2010)
and Mediterranean research progress, a two-step
protocol, aimed at optimizing the resources through
a clearly focused research strategy is proposed here.
This contribution is based on a critical review of the

published methods for studying and monitoring
RBs, with the aim of clarifying the baseline concepts
for the definition, identification, delimitation and
monitoring of those Mediterranean RBs that lie
below the safe limits for investigation by scuba diving.

RHODOLITH BED VERSUS MAERL BED

Unequivocal terms and definitions foster the
efficacy of legal instruments based on them. The
term ‘maerl’ comes from a Breton word, referring
to an area of calcareous land or deposits of
calcified algae (Grall and Hall-Spencer, 2003).
Since Atlantic maerl, mostly composed of
Phymatolithon calcareum and Lithothamnion
corallioides, was the original reference material
(Lemoine, 1910; Cabioch, 1969), the Breton term
was used to identify the same calcareous gravel in
the Mediterranean, composed of living and dead
coralline branched thalli, twig-like, sometimes
interlocking (Huvé, 1956; Jacquotte, 1962). Beside
the maerl-type coralline branched thalli, the
Mediterranean occurrence of coralline nodules had
already been observed (Walther, 1885).

The first use of the term rhodolith in literature is
found in Barnes et al. (1970), but its formal
definition is due to Bosellini and Ginsburg (1971)
as ‘rhodolite’, later corrected to ‘rhodolith’
(Ginsburg and Bosellini, 1973). Since then,
rhodoliths (sometimes erroneously reported as
‘rhodolithes’, i.e. www.jncc.gov.uk; EUNIS
habitat classification; Davies et al., 2004), are
intended as unattached nodules formed by
calcareous red algae and their growths, as part of
a continuous spectrum of forms, with size
spanning from 2 to 250 mm of mean diameter
(Bosellini and Ginsburg, 1971; Ginsburg and
Bosellini, 1973). On the basis of this definition, the
term rhodolith beds also includes maerl and
calcareous Peyssonnelia beds (Lanfranco et al.,
1999; Steller et al., 2003; Foster et al., 2013;
Figure 1). Although rhodoliths include maerl, the
opposite is not true, and the use of the two words
as synonyms led to the paradox of listing RBs as a
subcategory of maerl beds, which is inconsistent
with the origin of the terms (Davies et al., 2004;
Council of the European Union, 2006). The
misleading use of maerl as a collective term to
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include all kind of assemblages of unattached
calcareous red algae dwelling on sedimentary
bottoms, implies that they are dealt with as an
artificially homogeneous category – despite their
different structural complexity, species composition,
etc. – and consequently, to a misleading
interpretation of their ecology (i.e. Martin et al., 2014).

ECOSYSTEM VALUES AND HUMAN
PRESSURES

The economic value of an ecosystem can be
estimated by identifying and valuing the goods
and services that it provides (Costanza et al.,

1997). Mediterranean RBs are providers of
production, regulation, and supporting services,
with the addition of currently unknown potential
future uses (Beaumont et al., 2008; Salomidi et al.,
2012). Production services correspond mainly to
the economic importance of Mediterranean RBs
as essential fish habitats (EFH) (Barberá et al.,
2003, 2012; Bordehore et al., 2003; Valavanis and
Smith, 2007; Ordines and Massutí, 2009). Unlike
the Atlantic maerl beds, corallines are not
extracted from the Mediterranean for soil
improvement, since they are mostly neither
abundant nor shallow enough to support an
economically viable activity. However, they may
undergo extraction as relict sand for beach
nourishment by dredging (Nicoletti et al., 2006).
Rhodolith beds are also important in climate
regulation, through their role as hot-spots of
carbonate production and deep benthic primary
production (Martin and Gattuso, 2009; Nelson,
2009; Basso, 2012). Finally, the high species
richness associated with long-lived rhodoliths and
the build-up of their dead remains is attributed to
their three-dimensional structure (Foster et al.,
2013). Rhodolith beds provide a supporting service
as ecosystem engineers, thus fostering complex
ecological interactions (Barberá et al., 2003;
Nelson, 2009; Cavalcanti et al., 2014).

Mediterranean RBs, as a biogenic calcareous
habitat, are a matter of conservation concern
because they represent a non-renewable resource
owing to their slow rate of growth and carbonate
deposition (about 1 mm year-1) (Martin and
Gattuso, 2009; Nelson, 2009; Basso, 2012). The
physical damage caused to RBs by humans (i.e.
from dredging, fishing gear, bottom trawling) is a
severe pressure, since habitat modifications can
change the species diversity and functional
relationships (Bordehore et al., 2000, 2003). Other
pressures on Mediterranean RBs include:
degradation of water quality (i.e. pollution from
sewage or from aquaculture effluents; Sanz-Lázaro
et al., 2011; Aguado-Giménez and Ruiz-Fernández,
2012); smothering effects resulting from changes in
sedimentation rates; ocean warming and
acidification (Grall and Hall-Spencer, 2003; Wilson
et al., 2004; Martin and Gattuso, 2009; Basso,
2012; McCoy and Ragazzola, 2014). Moreover, the

Figure 1. Synopsis of the proposed activity-flow. Basic information
should be obtained about RBs located below the safety limits of
scuba-enabled investigation, by mapping and describing their main
features and structure (Step 1). Main categories of RBs can then be
defined based on geographic macroregions, depth-range,
tridimensionality, and major calcareous algal builders. Within each
category, unimpacted RBs are selected as reference for comparative

assessment of ecological status and monitoring (Step 2).
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spread of invasive alien species is a particularly
serious threat for the numerous Mediterranean
endemic species (Sciberras and Schembri, 2007;
Salomidi et al., 2012).

THE LEGAL FRAMEWORK FOR THE
PROTECTION OF MEDITERRANEAN RBs

The vulnerability of this habitat has been
recognized in various European and international
frameworks, through the adoption of a range of
protection instruments such as Directives,
Regulations and Conventions. Within European
legislation, two main tools have been put in place:
the Habitats Directive 92/43/EEC and the
Council Regulation 1967/2006. In particular, the
Habitats Directive includes Phymatolithon
calcareum and Lithothamnion corallioides in Annex
V, among those species subject to exploitation and
for which Member States have to ensure
appropriate management measures. The Council
Regulation 1967/2006 (Council of the European
Union, 2006), concerning management measures
for the sustainable exploitation of fishery resources
in the Mediterranean Sea, establishes the banning
of specific fishing gear on coralligenous or maerl
beds. The latter are defined as ‘…a collective term
for a biogenic structure due to several species of
coralline red algae (Corallinaceae), which have
hard calcium skeletons and grow as unattached
free-living branched, twig-like or nodule coralline
algae on the sea bed, forming accumulations
within the ripples of mudflats or sandflats sea
beds. Maerl beds are usually composed of one or a
variable combination of red algae, in particular,
Lithothamnion corallioides and Phymatolithon
calcareum’ (sic!). Although bottom trawling is
prohibited over maerl beds, the insufficient
information available on their spatial distribution
hampers effective application of the EC regulation
(Council of the European Union, 2006; Barberá
et al., 2012). Moreover, owing to the diverse and
distinctive taxonomic composition of coralline
algae forming Mediterranean RBs (Ballesteros,
1988; Basso et al., 2014; Falace et al., 2014),
where L. corallioides and P. calcareum may be
absent or just minor components of the
rhodolith-forming association, the need to grant

legal protection to other characteristic species of
the Mediterranean assemblages should be
considered (Barberá et al., 2003, 2012).

A special plan for the protection of the
Mediterranean RBs is present within the
framework of the United Nations Programme’s
Mediterranean Action Plan (UNEP-MAP-RAC/
SPA, 2008; Agnesi et al., 2009), which, however, is
not mandatory for the national governments.

More recently, the Marine Strategy Framework
Directive (MSFD; European Parliament and
Council of the European Union, 2008; European
Commission, 2010) aims at achieving the ‘Good
Environmental Status’ (GES) of all marine waters
by 2020, by protecting the resource base and the
biodiversity upon which marine-related economic
and social activities depend. In order to achieve
GES, each Member State is required to develop a
strategy of knowledge-based sustainable
management for its marine waters. On the basis of
the Barcelona Convention (1995) and other
international initiatives for the environmental
protection of the Mediterranean (UNEP-MAP-
RAC/SPA, 2008, 2010; UNEP-MAP, 2011), a
group of special habitat types has been identified
and selected by each member state as being of
special scientific or biodiversity interest (MSFD,
Annex III, Table 1). Among them, RBs have been
included in the national initial assessment process
by several European countries, including France,
Spain, Italy, Malta and Greece (EIONET, 2015).
Consequently, management and GES assessment
must be kept up-to-date and reviewed every 6 years.

It is noteworthy that the overall idea of
protection of RBs as defined in these legal
instruments is derived from human use of this
resource in the Atlantic, where RBs are actively
exploited (Nelson, 2009; Salomidi et al., 2012 and
references therein).

A key conservation measure should therefore
include the upgrade of RB-forming coralline algae
protection status to a higher category under the
Habitats Directive, becoming Annex II species
(species of community interest whose conservation
requires the designation of special areas of
conservation). Alternatively, the habitat type as a
whole should be protected, in order to prevent
disturbance and/or destruction (ecosystem-based
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approach: Barberá et al., 2012; Salomidi et al.,
2012), by RBs being listed as an Annex I Habitat
type (natural habitat types of community interest
whose conservation requires the designation of
special areas of conservation). Whichever
conservation and management strategies are
decided on to be put in place, a programme for
monitoring the state of Mediterranean RBs is
required, based on the knowledge of their
distribution, biodiversity, and 3-D structure.

CONSERVATION AND MANAGEMENT OF
MEDITERRANEAN RBs

The sustainable utilization and monitoring of
resources is a top priority in marine ecosystem
conservation and management (Birkett et al.,
1998). The protection of a specific habitat type
cannot be achieved effectively without access to
sound geospatial data and monitoring plans
(Salomidi et al., 2012). To this purpose, modern
advances in remote sensing and acoustic
habitat-mapping provide effective tools for
assessing the distribution, extent and state of the
RBs (Georgiadis et al., 2009; Barberá et al., 2012;
Savini et al., 2012).

Beside mapping, evaluation of the GES of the
RBs should include: (1) characterization of
the 3-D structure of the bed and identification of
the main habitat-forming red calcareous algae; (2)
measurement of the physical–chemical variables
correlated with the RBs occurrence and status
(PAR, temperature, salinity, pH, nutrient
concentration, suspended matter, hydrodynamics,
sediment grain-size and composition, bed
sedimentary structures, pollutants in the water
column and in the sediment) (Sciberras et al.,
2009; Barberá et al., 2012); (3) comparative
assessment of the natural intra-bed and inter-bed
variability in pristine conditions, in order to set
limits outside of which management action is
needed; and (4) identification of possible pressures
and impacts, with emphasis on the pressures to
which RBs have been proven to be vulnerable.
Since no comprehensive report is available about
occurrence, composition and variability of
Mediterranean RBs, and in consideration of the
heterogeneous policies and research effort dedicated

by the 22 countries bordering the Mediterranean,
the GES evaluation of Mediterranean RBs is a
challenging task.

The most feasible way to address the problem is
to follow a cost-effective, two-step strategy
(Figure 1). All RBs should be mapped (first step),
but the available resources (researchers and
funding) of most Mediterranean countries make
the monitoring (second step) of all of them
unrealistic. A priority group of RBs must be
identified, after considering the different geographic
areas, with at least one of each different type of
RB, as identified from the preliminary descriptions.
The second step should include study of the
ecosystem structure and functionality, and the
identification of threats that may affect it.

Most Mediterranean RBs occur beyond the safe
limits of standard scuba-based sampling designs
and methods (Basso, 1998; Sciberras et al., 2009;
Barberá et al., 2012), thus, investigations have
been affected by logistic and technological
constraints. Therefore, the available techniques for
the investigation of deeper settings that are likely
to produce valuable and comparable data are
discussed here. The proposed sampling protocol is
conceived to minimize the impact on the sea floor,
and to provide quantitative and comparable data;
thus dredging is not considered.

CRITERIA FOR THE IDENTIFICATION OF
RBs

Rhodolith beds are composed of a variable
thickness of live and dead thalli of unattached
calcareous red algae and their fragments, creating
a biogenic, unstable, 3-D architecture typically
exposed to bottom currents (Steller et al., 2007).

Live surface and minimum spatial extent of RBs

The surface of a living RB is naturally composed of
a variable amount of live thalli and their fragments,
lying on a variable thickness of dead material and
finer sediment. An RB is defined as a habitat
(sensu MSFD) that is distinguished from the
surrounding sea floor by having >10% of the
mobile substratum covered by live calcareous red
algae (in the Mediterranean, coralline algae and
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the fully calcified Peyssonnelia species) as
unattached branches and/or nodules (Steller et al.,
2003). The term nodule includes both nucleated
and non-nucleated rhodoliths. The non-nucleated
rhodoliths originate from vegetative reproduction
by fragmentation (Freiwald, 1995), or from spore
germination on a microscopic nucleus. In contrast,
the nucleated rhodoliths possess a macroscopic
nucleus (= detectable with the naked eye in
sectioned rhodoliths), as a lithic grain or a
non-algal biogenic grain, more or less completely
wrapped up by calcareous algae.

Those calcareous algal nodules with non-algal
nuclei making up >50% of the total thickness have
been defined as coated grains (Steneck, 1986).
Coated grains crowded on the sea floor could be
considered as a step in RB development, or a
steady-state situation, depending on the dynamic
equilibrium between available nuclei and coralline
growth rate. Steneck’s definition (1986) includes a
suite of possible intermediate gradings from
sub-millimetre-thick, incomplete algal coating of
lithic pebbles, to nodules with a 50/50
coralline/nucleus ratio. Sparsely coated grains are
extremely common in the Mediterranean
infralittoral and circalittoral sedimentary bottoms.
A sea floor covered by incomplete algal coatings
of lithic pebbles and shell remains should not be
considered as an RB, although there has been no
evaluation so far of the ecosystem service value of
coated grains versus rhodoliths. On the contrary,
for conservation and management purposes, any
grain completely wrapped up by live calcareous
red algae should be equated to a rhodolith, in
order to avoid the need for sectioning to properly
assess the thickness of the algal coating.

Dead RBs were defined as the portion of the sea
floor where >10% of the sediment (surface) is
composed of remains of calcareous red algae
(Tompkins, 2011). However, live RBs are
naturally accompanied by a variable quantity of
dead rhodoliths and their fragments, thus, most
sea floors covered by mixed biogenic sediment
with few live calcareous red algae are likely to
possess >10% of dead calcareous algal remains
(Bracchi and Basso, 2012). Consequently, this
definition (Tompkins, 2011) is much wider than
that of the live RBs, and probably misleading.

Moreover, attention must be paid to transport
phenomena that could have led to the
accumulation of the algal fragments away from
their native biotope. Therefore, a much more
restrictive definition of dead RBs is recommended
here, by indicating a threshold of >50% surface
cover by dead rhodoliths and their fragments as a
condition to identify a dead RB (or its fossil
counterpart, Basso et al., 2012; Sheehan et al., 2015).

The live algal cover of an RB is not
homogeneous across the bed, and the transition to
a different benthic association might be sharp or
gradual, with live rhodoliths becoming sparser.
Moreover, RBs are intrinsically mobile and
unstable, with borders that may shift depending on
hydrodynamics or possible periodical changes in
the sedimentation rate (Steller et al., 2003). Thus,
a hypothetical reference spot within an RB may
appear to be different at different times,
independently of its ecological status. On the
contrary, the ‘healthy’ appearance of RBs (with
vivid pink and red hues) could hide the shift from
one calcareous algal assemblage to another,
following a possible impact. It has been shown
that dead RBs cannot always be assumed to have
lower conservation value than those with a
scattering of live thalli (Sheehan et al., 2015). For
these reasons, the visual analysis, or the sole
monitoring of the areal surface repeated over
defined periods, is not sufficient to describe the
ecological status of RBs.

There are no literature data about the required
minimum spatial extent for a portion of the sea
floor to be defined as an RB. The choice of the
minimum spatial extent is constrained by the size
of Mediterranean RBs and the map scale, the
latter depending on the purpose (i.e. the
framework of a regional assessment at basin level
versus the monitoring of a specific bed in an
MPA) (Burrough and McDonnell, 1998).
Present-day geo-spatial data are managed by
Geographic Information Systems (GIS), allowing
repeated updating and displaying on variable
scales. However, GIS is often not the appropriate
instrument to convey information to stakeholders
(i.e. public agencies, MPA administrators,
fishermen), because of the lack of readily available
software to visualize spatial geo-data. Therefore,
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printed cartography, on different appropriate
scales, still represents an essential tool for any
management plan (Bianchi et al., 2012).
Practically, the scale 1:10000 is the best choice,
since it is suitable for transfer into most
international initiatives for marine habitat
mapping. On this scale, it is possible to delimit
areas down to about 500 m2, which is a good
compromise between precise RB delimitation and
study effort on a regional basis. Conversely, a scale
equal to 1:1000 (or larger) is suggested for detailed
monitoring studies of selected RBs, where the areal
definition and the RB boundaries should be more
accurately located and monitored through time.
Two adjacent RBs are considered separate if, at
any point along their limits, a minimum distance of
200 m separates them (Peña and Barbara, 2008).

Step 1: RB mapping and preliminary description

This first step is focused to fill the gap of basic
information about the occurrence of RBs and their
main features (Figure 1).

The comparison of different survey techniques
showed that the areal extension of RBs is
conveniently defined by the use of acoustic
methods (UNEP, 2011). Acoustic mapping
technology (side scan sonar and multibeam
echosounder) is used for morpho-sedimentary or
biological habitat discrimination, or both
approaches (Smith and Greenhawk, 1998; McRea
et al., 1999; Ojeda et al., 2004; Panadian et al.,
2009), and must be effectively calibrated by
ground-truthing (grab sample, box-corer,
submarine video, ROV, diving) (Ehrhold et al.,
2006; Brown et al., 2011; Barberá et al., 2012;
Savini et al., 2012).

Sediment texture and sedimentary structures are
strictly linked to water movement (such as the type
and size of ripple marks, or the occurrence of
underwater dunes, channels, etc.) (Bordehore
et al., 2003; Barberá et al., 2012; Nelson et al.,
2012) and sedimentation rate, that in turn are
important factors for understanding the
development and fate of RBs (Bosence, 1979;
Basso, 1998; Steller et al., 2003, 2007; Basso et al.,
2009). Routine, grain-size wet analysis can be
conducted on about 200 g of sediment randomly

collected from the upper 10 cm layer of the
original sample (Barberá et al., 2012). It is worth
mentioning that live calcareous algae are supposed
to be the main component of the sediment, and
must not be removed from the sample before
analysis in order to obtain a realistic picture of the
kind of substratum available to the live benthos.

The mean percentage cover of live thalli, the
live/dead rhodolith ratio (Peña and Barbara,
2010), and the thickness of the live layer are an
approximate measure of the algal growth rate and
vitality, although this sole observation is
insufficient for GES assessment and inter-bed
comparison. The percentage cover of live thalli
over a wide area can be assessed by ROV dives
that are also useful for the detection of meso-scale
sedimentary structures. The thickness of the live
cover could be measured through the transparent
or removable side of a box-corer. Alternatively, a
sub-sample could be taken from the recovered
box-core using a Plexiglas core of about 10 cm in
diameter and at least 20 cm long.

Establishing the degree of 3-D complexity of RBs
is a critical feature for understanding heterogeneity
and associated biodiversity (Steller et al., 2003;
Sciberras et al., 2009; Villas-Boas et al., 2013).
Unfortunately, a single RB may include any
gradation of shape and structure from coated
grains and pralines (Molinier, 1956; Pérès and
Picard, 1964) to the largest boxwork rhodoliths
(Bosence, 1983a; Basso, 1998; Basso et al., 2009;
Sciberras et al., 2009). Bosence’s pioneer
classification (1983a) is particularly useful for
describing maerl sensu stricto, that is to say, the
accumulation of mostly non-nucleated branching
forms. Sciberras et al. (2009) attempted to merge
the existing classifications by distinguishing a
series of rhodolith morphotypes. However,
explorative investigations possibly conducted by
non-specialists require a simpler morphological
classification of rhodolith forms. All possible
variations in growth form, shape, and internal
structure of rhodoliths have been already
simplified in a scheme with three major categories
as focal points along a continuum: compact and
nodular pralines, larger and vacuolar boxwork
rhodoliths, and unattached branches (Basso, 1998,
2012; Basso et al., 2009). Each of the three
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end-members within rhodolith morphological
variability corresponds to a typical (but not
exclusive) group of composing coralline species
and associated biota and is possibly correlated
with environmental variables, among which
substratum instability (mainly due to
hydrodynamics) and sedimentation rate are the
most obvious (Basso, 1998; Hinojosa-Arango and
Riosmena-Rodriguez, 2004; Steller et al., 2007;
Sciberras et al., 2009). Thus the indication of the
percentage live cover by the three rhodolith
categories (Figure 2; Basso et al., 2009) at the
surface of each RB is a proxy of RB structural
and ecological complexity, suggesting the possible
identification of a number of different types of
RBs (Hinojosa-Arango and Riosmena-Rodriguez,
2004; Barberá et al., 2012). In this sense, it is
necessary to underline that these morphological
and structural categories have no significance for
the GES evaluation; rather, RBs with very
different architecture are expected to be
sedimentologically, structurally, and biologically
non-comparable for GES assessment.

The high species diversity hosted by RBs requires
time-consuming and expensive laboratory analysis
for species identification. Unluckily, there are no
shortcuts available for obtaining the biological
data necessary for RB monitoring. In particular,
videos and photos provide no information on RB

composition owing to the absence of conspicuous,
easy-to-detect species. Moreover, since most
coralline species belong to a few genera only, the
use of taxonomic ranks higher than species is not
useful, as already assessed for other macroalgal
assemblages (Ceschia et al., 2007). To overcome
this problem, a minimum of three box-cores with
opening ≥0.16 m2 should be collected in each RB.
One box-corer must be collected within the RB
area with the highest percentage of live cover (on
the basis of preliminary ROV dives), and
the others as far as possible from it, following
the depth gradient in opposite directions of the
maximum RB extension. In many instances grab
samples could be useful, but attention must be
paid to sea floor surface disruption and mixing,
and the possible loss of material during recovery.
In those extreme cases of very coarse material
preventing box-core penetration and closure, a
Hamon grab could be used instead, although it
cannot preserve stratification.

The mandatory operations to be performed after
box-core recovery are: (1) colour photograph of the
whole surface of the box-core, at a high enough
resolution to recognize the morphology of single
live rhodoliths and other conspicuous organisms.
In addition, the possible occurrence of heavy
overgrowths of fleshy algae that may affect
rhodolith growth rate must be reported; (2) visual
definition of the live percentage cover of red
calcareous algae; (3) visual definition of the
live/dead rhodolith ratio calculated for the surface
of the box-core; (4) visual definition of the
rhodolith morphologies characterizing the sample,
to be plotted into the triangular diagram
(Figure 2); (5) measurement of the thickness of the
live rhodolith layer; (6) collection and preservation
of live specimens for further analysis; and (7)
collection, drying and preservation of about 200 g
of surface sediment as a whole, including also
dead rhodoliths, empty shells, etc. and their
fragments.

The live material should be analysed for
identification of at least the macroscopic,
volumetrically important calcareous algal species,
with a semi-quantitative approach (classes of
abundance of algal coverage: absent, 1–20%,
21–40%, 41–60%, 61–80%, >81%). The additional

Figure 2. Ternary diagram for the description of the rhodolith bed
tridimensionality. The 3-D structure at the sea floor is provided by
rhodoliths, disregarding vitality. The percentage cover of each
rhodolith morphotype, relative to the total rhodolith cover, can be
plotted on the correspondent axis. The three main rhodolith
morphotypes (boxwork rhodoliths, pralines and unattached branches)
are intended as focal points of a continuum, to which any possible

rhodolith morphology can be approximately assigned.
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identification of conspicuous fleshy algae and
invertebrates (as listed in UNEP-MAP-RAC/
SPA, 2008) is also useful. For molecular
investigations, samples from voucher rhodolith
morphotypes should be air-dried, and preserved in
silica gel (Pardo et al., 2014). The sediment sample
should be analysed for grain-size (mandatory), and
carbonate content.

Step 2: full description and monitoring

After identification of the main RB features
obtained on the basis of the results of Step 1, it
will be possible to define categories of RBs by
geographic area, depth range, 3-D structure, and
dominant algal engineer-species (Figure 1).
Non-impacted sites of each category will serve as
reference sites for monitoring the same category of
RB (Figure 1). Monitoring should address all the
variables indicated in the first step, with the
addition of the description of the RB community
(Sciberras et al., 2009). At the site of the highest
live cover within each RB, three replicate
box-cores ≥0.16 m2 each should be collected
randomly, at the same water depth (variation
should not exceed 1 m). In the event that the
depth interval separating upper and lower limits of
an RB is >5 m, further replicate sampling,
depth-stratified with increments of 3 to 10 m, is
needed in order to highlight possible variability or
ecotones, in agreement with Steller et al. (2007).
All live calcareous algae and accompanying
phytobenthos and zoobenthos should be identified
and quantified, in order to allow for detection of
intra- and inter-bed variability in space and time,
and any changes after possible impacts. A
partitioned sampling by sub-habitats (cryptofauna
of rhodoliths, sediment infauna, epibenthos, etc.)
could be used for specific research purposes
(Steller et al., 2007).

CONCLUSIONS

Implementation of the Habitats Directive has
proved to be problematic, and there is a need for a
revision of the list of protected habitats, with the
aim to include Mediterranean rhodolith beds

regardless of the occurrence of P. calcareum and
L. corallioides (Barberá et al., 2012). For clarity
and consistency of definitions, the use of the term
‘rhodolith bed’ is recommended as a generic name
to indicate those sedimentary bottoms
characterized by any morphology and species of
unattached non-geniculate calcareous red algae
(incompletely-coated grains excluded) with >10%
of live cover (Foster et al., 2013). The name maerl
should be restricted to those RBs that are
composed of non-nucleated, unattached growths
of branching, twig-like coralline algae (Bosence
and Wilson, 2003, pl. 1, Fig. a; unattached
branches in Basso, 1998; Basso et al., 2009; lower
left sector of the ternary plot in Figure 2).
Accordingly, the EUNIS habitat classification
should be improved in order to show rhodolith
beds as a parent level that includes also maerl
beds, and not the other way round (Galparsoro
et al., 2012) (A5.51, EUNIS habitat classification
2007 rev. 2012, http://eunis.eea.europa.eu).

A scale of 1:10000 is suitable for mapping RBs
with areal extent ≥500m2 at regional level. Larger
scales (e.g. 1:1000) should be used for detailed
investigation and specific purposes.

Alternative strategies of investigation are
available for shallow vs. deep RBs. Shallow RBs
(allowing safe and cost-effective scuba diving for
visual description and sampling) can be effectively
described and monitored following Steller et al.
(2007). Deep RBs can be identified, described and
monitored following the two-step approach
suggested here, in a clearly defined, cost-effective
framework. In the first step, the need for
specialized taxonomists and time-consuming
laboratory analyses is kept to a minimum. The
mandatory information here proposed for a first
description of RBs includes (Figure 1): GPS
positioning (corners of polygon) and depth range,
areal extent, sediment analysis and sedimentary
structures of the sea floor (such as ripples,
mega-ripples and underwater dunes), mean
percentage cover of live thalli and thickness of live
cover, live/dead rhodolith ratio, dominant
morphologies of rhodoliths (Figure 2), and
identification of the most common and
volumetrically important species of calcareous algae.
These data should be accompanied by time-series of
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in situ measurements of temperature, salinity, water
motion, water clarity (Secchi disk, nephelometer),
PAR, pH, nutrient concentration, suspended matter,
pollutants in the sea water and in the sediment
(European Environment Agency, 2011).

Acoustic methods are presently the most
convenient technique for mapping RBs, associated
with ground-truthing by ROV and box-coring.
Box-coring with a cross-section ≥0.16 m2 is
recommended because it has the advantage of
preserving the original substratum stratification.
The use of dredges for sampling RBs should be
discouraged, in order to minimize the impact of
the investigation. The information obtained after
the first step allows for an initial description and
identification of categories of RBs (preliminarily
by geographic area, depth range, 3-D structure,
and major builders among calcareous algal
species; Figure 1). Within each of these,
monitoring is required at least on particularly
valuable RBs (selected for their high live/dead
rhodolith ratio and high live percentage cover) by
comparative assessment with non-impacted RBs
belonging to the same category (Figure 1).
Monitoring should address all the variables
indicated in the first step, with the addition of the
full quantitative description of the RB community,
through periodical surveys. The decrease of RB
extent, live/dead rhodolith ratio, live rhodoliths
percentage cover, associated with change in the
composition of the macrobenthic community
(calcareous algal engineers and associated taxa)
and possibly in sedimentology reveals potential
negative impacts on RBs, deserving investigation
as to causal factors, and implementation of
management actions. A focused and practical
planning of the description and monitoring of
Mediterranean RBs is an essential tool for
optimizing research and conservation efforts and
fostering communication, with the final aim to
achieve a basin-wide network of biodiverse,
ecologically connected and protected marine
habitats.
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