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Abstract 

In minerals beneficiation, the mineral liberation spectrum of the plant feed conveys valuable information 

for adjusting operations, provided it is available in minutes from particulate sampling. X-ray micro-

tomography is the only technique available for unbiased measurement of composite particle composition 

(on a 3D basis). The bottleneck of current micro-tomographic systems is the X-ray scanning time (data 

acquisition) rather than the slice reconstruction time (data processing). An algorithm capable of 

reconstructing tomographic slices of composite mineral particles from a limited number of radiographic 

projections, thus significantly reducing the overall measurement time, is presented and demonstrated with 

numerical examples. The algorithm is cast around the discrete algebraical reconstruction technique and 

requires less than one tenth of the projection data needed by the currently used filtered back-projection 

methods, thus allowing a dramatic reduction of the scanning time. 

 

Keywords:  
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1.Introduction 

The metallurgical performance (metal recovery and concentrate grade) of an operating plant is determined 

by the liberation spectrum of the particles undergoing concentration and by the efficiency of the separation 

process. Ideally, maximum separation efficiency is achieved when particles are fully liberated. In practice, 

optimum liberation is always a compromise between ore mineralogy and energy required for comminution. 

The latter is often the most energy intensive and costly operation thus capable of compromising the 

profitability of the entire beneficiation process. In this contest, the possibility to assess the minerals 
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liberation in the feed to the plant is a key factor for tuning the grinding systems at one side and to adjust 

the separation circuit at the other side. The potential of process mineralogy and automated laboratory 

characterization is recognized both by academia and industry (Baum, 2014). In short, fast automated 

mineralogy is a necessary component of modern control  strategies able to respond to fluctuations in 

grade, mineralogy and texture that can be detrimental to metallurgical performance.  

The combined use of SEM measurements of areal-grades (QEM-Scan) or linear intercepts on transects 

(MLA) of polished sections of the particles is popular to assess mineral liberation. However, these methods 

provide biased estimates of liberation (G. Barbery, 1991). The stereological correction methods for 

converting (e.g. via kernel correction) these low dimensional measurements into volumetric grade 

distributions are complex and not well established procedures (G.M. Leigh, 1993 ; C. Chiaruttini et al., 

1999). In addition, these kernel correction procedures require time consuming sample preparation and 

measurements and are not free of error. 

The use of X-ray micro-tomographic systems specifically designed for this purpose is very attractive. The 

principle of X-ray computed tomography is conceptually simple: the X-rays are attenuated differently 

while traversing the composite particles. The intensity of the X-ray signal is converted by a scintillator into 

light and recorded by a camera as a radiographic digital image. The object is then rotated by small angular 

steps and the radiographic operation repeated each time until completing full rotation. The collection of 

several hundred projections is employed to reconstruct the inner structure of the particles. 

Commercial tomographic system are available from a number of makers but a tomographic system can 

easily be built in-house by assembling the three basic components (one cone beam micro-focus X-ray 

source, one traditional CCD or CMOS based X-ray digital camera or flat panel, and one precision air-bearing 

rotation stage) in a lead-wall cabinet for X-ray shielding. 

Prof. J. Miller’s research group at University of Utah introduced the micro CT system into the mineral 

processing laboratory (C. Lin et al.,1996 ; J.D. Miller et al., 2003). Today this technique is recognized as 

capable of supporting the engineers in the study of a number particulate processes encountered in mineral- 

and hydrometallurgy-operation. It has been used in typical mineral processing analysis such as washability 

and mineral liberation, to observe particulate leaching advancement (N. Dhawan et al., 2012), to evaluate 

separation efficiency, to observe filter-caking formation (C. Lin et al.,2000), to reconstruct the full 

morphology of porous rocks to simulate fluid multiphase flow through pores and throats (D. Casagrande et 

al., 2014, M. Piller et al., 2014). In short, micro CT is helpful where information on the inaccessible internal 

composition of particles is necessary to supplement the biased observation conveyed by measurements on 

particle surfaces or on low-dimension particle sectioning (i.e. linear intercepts or areal grades). Low 

dimension measurements invariably overestimate the liberation: they could see only one phase in a two-
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phase particle. This new quantitative tomographic technique is now available in a few leading mineral 

laboratories but once disseminated and with well-established operating protocols it will be capable to 

provide data superior to those traditionally provided by mineralogical observations on particle-sections or 

to supplement their information content. The micrometric spatial resolution of X-CT and the capability of 

detecting low density-contrast permits 3D textural characterization. The authors of this paper have also 

explored the use of CT both at synchrotron beam-lines and with laboratory micro-focus sources (G. Schena 

et al., 2003, 2007). Its potential for sorting and micro-diamond detection was also explored (G. Schena et 

al., 2005). 

Unfortunately, the current tomographic systems are not yet fast enough to provide liberation data in a few 

minutes or less, as desirable for a practical use in plant operations. The bottleneck is the scanning time 

required to take a sufficient number of radiographic projections with a full coverage around 360 degrees of 

the rotating sample. Often, several hundred projections need to be taken to satisfy the minimum sampling 

requirements of the filtered back projection (FBP) algorithm that is the standard slice reconstruction 

method. The minimum number of projections prescribed to strictly respect the Nyquist sampling 

frequency principle is: number of projections 
 

 
 , where D is the diameter of the object in pixels. 

Today, the tomographic slice-reconstruction time is not a hurdle as in the past; many commercial codes are 

implemented on graphic board hardware for fast processing the radiographic projections to  reconstruct 

the slices. It is the high number of projections required for reconstruction which still is an issue. 

Roughly, one can envisage that even with a routinely and well-established workflow protocol for sampling, 

scanning, reconstructing and post-processing the tomographic digital volume, not less than a few hours are 

necessary for having the liberation data available for decision making. Most of the time burden is ascribed 

to X-ray scanning. When the number of projections is less than the prescribed minimum, the filtered back 

projection yields a reconstruction that is pathologically affected by radial streak artifacts and unsuitable for 

automatic image analysis procedures. 

The alternative strategy proposed herewith is to reconstruct the tomographic slices with a method that is 

much less demanding in terms of number of radiographic projections and thus appropriate to cut the 

scanning time and in turn the overall time required for having usable liberation data. The method uses 

prior-knowledge of the attenuation of the mineral species that can be easily acquired with one single 

standard tomography. The novelty proposed is in the slice-reconstruction algorithm. Therefore, the method 

does not require any modification of the hardware of the existing tomographic scanning machines. Indeed, 

prior knowledge of the single mineralogical species allows introducing the additional constraints needed to 

significantly reduce the number of projections required for a high quality segmented reconstruction. 
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2.Discrete algebraical reconstruction technique 

Rather than de-convolving the integral information content of the projections with the inverse of the Radon 

transform and its filtered back-projection implementation (Xiaochuan Pan et al., 2009), we set-up the slice 

image reconstruction problem according to the so called algebraical reconstruction technique (ART). We 

aim to reconstruct the image by minimizing the difference between the given projection data acquired 

from scanning and the (forward) projections of the image under reconstruction. The data fidelity (equality) 

constraint is written as a linear set of equations where the right side is the projection data (see Eq. (1)  in 

the next section). The sketch in Fig. 1 illustrates the correspondence between pixels and coefficients of the 

linear equations according the ART framework. For illustration purposes only horizontal (ϴ=0), diagonal 

(ϴ=45) and vertical (ϴ=90) rays are shown. The pixels of the 4x4 sought image are row-wise numbered 

from 1 to 16. The continuous ART is also known as Projections onto Convex Set (POCS); the convex set is 

defined by the constraining hyper-planes. One commercial implementation of ART for continuous  

tomography exists (www.digisens3D.com). 

When the solution sought should take discrete values the method is referred to as Discrete Algebraical 

Reconstruction Technique (DART). A vast literature exists on the DART methods where a binary (0,1) 

solution is required (G.Herman and A.Kuba, 2007), e.g. for applications where it is required to discriminate 

between one material and voids. Much less literature exists for applications similar to that proposed in this 

paper where liberated particles and composite particles made up of more mineral species are to be 

segmented based on their different X-ray attenuation as recorded by the projections (van Aarle et al., 2012, 

Batenburg  and Sijbers, 2011) by discrete tomography techniques. 

The constraint prescribing that the sought image should contain pixels taking luminosity in a small discrete 

set is an extremely valuable a priori information and allows to reconstruct using few tomographic 

projections. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pan%20X%5Bauth%5D
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Fig. 1. Algebraical reconstruction technique framework for a 4x4 tomographic slice. 

 

2.1.Numerical method. 

The number of columns of the ART system matrix is the number of pixels of the square (NxN) image to 

reconstruct (see Fig. 1). The number of equations is the number of rays times the number of projection 

angles. 

Formally, for continuous tomography, the ART equality constraints are: 

 

                           

  

   

                                                                                    

where: 

x is the column vector of pixel values of the sought image, the ((n-1)N+m)-th entry of x is the (n,m)-th pixel 

location of the NxN slice image, 

S is the sparse, real-valued matrix of the severely under-determined tomographic reconstruction problem,  
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p is the projection vector. 

In short, the ij-th  element of the system matrix S is non-zero if the i-th ray beam passes through the j-th 

pixel. Normally the sample undergoing tomography is a cylinder then only the coefficients corresponding 

to a disk contained in the square image domain of the slice are non-zero. S is sometime referred to as 

tomographic projection matrix. The element si,j is the contribution of the pixel j to the measurement i, and 

it is the intersection length between the pixel j and the projection ray i,            

 

In practice, in an operating plant the mineral species and their attenuation are known and the sought slice 

image has a discrete number of gray levels. Thus the pixel values in the vector x (see Eq.( 1)) are bound to 

take discrete values.  The discrete nature of the image constitutes an element of simplicity that is capable 

of further constraining the solution of Eq. (1). Thus transforming the continuous ART into a Discrete ART 

(i.e., DART) reconstruction problem. 

 

To simplify the formalization we assume, at this stage, that composite particles are made up of two 

mineral phases: a high density valuable phase with attenuation H and a low density phase with attenuation 

L. The feasible values of the unknown vector are {0 , L , H}. The value 0 represent the void. However, the 

model can be extended to more than two solid phases as untangled in section 2.1.1. 

The general terms of the i-th equality constraint of the original continuous ART problem is: 

 

                                                                                                  

By introducing a change of variable the equality can re-written as a Discrete ART (DART) problem. 

 

                                                                                                 

where for j=1 then k=1 , for j>1 then k=j·2-1 and j is in the range 1 to N2   The new variable y is boolean. 

In addition, the system of equations (3)  in the new variable y should be augmented appending the 

inequalities:  

 

                                                                                                  

that should be imposed for each k. These constraints (4) prescribing that a pixel can be H or L or 0 (see Eq. 

(5)). 

The DART problem is solved as a Boolean problem, with y taking values in {0 , 1}. The binary solution y is 

then post processed as: 
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And x -the vector of the pixel values of the reconstructed slice image- is retrieved. The image that arises 

from the solution of Eq.s (3 -4) in y ,further post-processed with (5) is already segmented into three gray 

values: 0, L, H. 

In contrast, images reconstructed with continuous tomography have real valued pixels and require further 

filtering and the use of threshold and segmentation procedures to allocate the pixels to the void or to one 

of the two mineralogical phases with different x-ray linear attenuation coefficients. 

 

Eq.(3) can be equivalently and conveniently re-written as system of linear inequality constraints: 

                                                                                            

where   (      is a suitable small parameter allowing violation of the equalities in Eq.(3). This new 

formulation transforms (3) into a constrained linear programming problem that can be solved resorting to 

specialized software.  

For the solution of Eq. (6) supplemented with Eq. (4), we used IBM ILOG Cplex that is a suite of state of the 

art solvers for linear programming problems and includes the binary solver cplexbilp. Independent 

benchmarks show that CPLEX outperforms most of the commercial and open source competitors (see 

benchmark tables produced and continuously updated by Prof. Hans D. Mittelmann at 

http://plato.la.asu.edu/).  

As a tutorial and illustrative example, the sparsity pattern of the matrix of constraints  (see Eq. (3) ) is 

reported in Fig. 2. The example assumes one 4-pixel side image to reconstruct. Only horizontal, vertical and 

diagonal projections are considered. The original S matrix in Eq.(2) is 16 columns and after the change of 

variables (see Eq.(3) ) the new constraint matrix is formed by 32 columns. The appended banded lower 

section Eq.(4) of the full matrix is omitted for visualization purposes. In Fig. 2, also the value of the 

coefficients of the 32 columns matrix is visualized with the diameters of the red circles at the position 

where       >0. In the illustrative example L=1, H=2:      is 0 or 1 for the horizontal and vertical projection 

and            for the diagonal projection (see Fig. 1). 

The fraction of non-zero elements over the total number of elements in real S matrices is often of 10-3. 
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Fig. 2. Sparsity pattern of the matrix of constraints for an image 4x4 (N=4) and 3 projections, number of 

detector pixels   N and detector width   N. 

2.1.1. Extension to multiple solid phases. 

The proposed methodology has been presented for the case of two mineralogical species aforementioned 

with the labels L and H. However, in the real word of mineral processing the operator rarely deals with one 

single valuable phase (H) and most frequently with solid particles containing several mineral species (i.e. 

multi-phase particles). Some phases may be valuable others may be penalizing impurities for the 

concentrate-smelter. In X-ray computed tomography a prerequisite for ‘sensing’ the different phases is the 

diverse attenuation to the X-rays; that is usually attained when there exists a good contrast in their density. 

Two different mineral species with very close density cannot be distinguished by X-ray tomography.    

In the case in which a particle bears two species of interest with different density -e.g. linear attenuation 

H1 and H2 in addition to the gangue L, the model presented above can be straight-forward extended 

provided that the equality (3) -introducing the new Boolean variable y - is re-written as : 

 

                                                                                                               

with:  

 

                                                                                                        

These constraints prescribe that a pixel can be H1 or H2 or L or 0. 
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The DART problem is solved as a Boolean problem, with y taking values in {0 , 1}. The binary solution y is 

then post-processed as: 

 

 
 
 

 
 
                                            

                                            

                                            

                                           

                                                              

 

This extension does add computational complexity to the problem but the solution remains at reach of a 

workstation.   

The proposed DART method can be extended to distinguish even more mineral species by intuitive 

modifications of Equations (7-9). 

 

3.Numerical examples  

In this section the DART method proposed for fast tomographic reconstruction is demonstrated with a 

more complex numerical example. The aim is to reconstruct a slice of a sample of composite particles 

containing particles of pure phase L, pure phase H and middling particles both looked and exposing the 

inclusions. The phantom image is 512 x 512 (N=512). In Fig. 3 the phantom and the corresponding DART 

reconstruction with 36 projections, are reported. The sparsity of the tomographic system matrix ( denoted 

with S in Eq.(1) ) is 0.003. The reconstructed image allows to recognize the mineralogical phase inclusions. 

 

  
 

Figure 3. Left: Composite particles 512X512 pixels phantom. Right:  DART reconstruction with 36 

projections. 
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For comparison in Fig. 4 the classical FBP reconstructions obtained with 36 projections ( the same number 

of projections used for DART) and 1170 projections (           512 as prescribed by Nyquist to avoid 

under-sampling when using FBP) are reported. The FBP reconstruction is obtained with a detector width 

  N and number of detector pixel   N. The FBP reconstructed with 36 projection (Fig. 4, left side) allows 

qualitative recognition of the type of particle but  cannot be segmented automatically; it still contains 

artifacts that can be extinguished only with hundreds of projection.  

  
 

 

Fig. 4. Left: Filter Back Projection reconstruction with 36 projections. Right: FBP reconstruction with 1170 

projections. 

In Fig. 5 the error image shows the pixels different in the DART reconstructed image from the 

correspondent pixels on the phantom . Darker pixels represent values in the reconstructed that exceed the 

pixel value in the phantom. Vice-versa brighter pixels are those with a lower value. The relative mean error 

(RME) is 2.4 percent , it is the number of pixels different in the reconstruction and in the original phantom 

to all  the pixels in the original phantom. 
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Fig. 5. Reconstruction error image. The RME is 2.4 percent. 

The relative error decreases further at the increase of the number of projection view angles but the 

computational effort for the solution of the problem increases as a consequence and requires major 

hardware resources. The reconstructions reported in this paper were obtained with a low-cost workstation 

based on a multi core  E5 Intel Xeon processor. We consider that the size (512 x 512) and the number of 

projections (40 circa)  is the maximum amenable by our hardware. A synthetic pseudocode of the software 

is reported in Appendix A.  

 

4.Conclusions 

Preliminary numerical experiments on synthetic data show that DART methods offer the possibility to limit 

the number of X-ray projections necessary to reconstruct a slice image in a tomographic system applied to 

the characterization of composite particles. By and large, our initial experiences show that discrete 

tomography cast around the algebraical reconstruction methods allows reconstructions with one fraction  

of the number of projections required by the traditional continuous filtered back projection method that is 

in use today. In turn, the scanning time -that is the bottleneck of a tomographic  acquisition- is reduced 

proportionally. Conservatively assuming that one X-ray projection requires two seconds of radiographic 

exposition, the implementation of these findings paves the way for the characterization of a particulate 

systems in minutes from the collection of the sample thus providing an information of higher values for 

plant optimization/tuning.  
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Here the proposed DART method is demonstrated numerically with a two mineralogical phase synthetic 

sample. In section 2.1.1. it is shown as it can be  extended also to a scanned object consisting of more 

mineralogical phases each corresponding to a constant  grey value in the reconstruction. Prior knowledge of 

the grey values for each of the mineralogical phase is necessary to pilot image reconstruction towards a 

slice that contains only these grey values. This prior knowledge can be easily attained with the use of one 

single traditional (i.e. continuous) tomography.  

The discrete tomography method proposed still requires validation with real noisy tomographic projections 

and comparison with continuous tomography. This is currently under investigation. Undoubtedly the 

numerical preliminary experiments show that also a limited set of projections encompass the information 

sufficient to recover the sample morphological and mineralogical composition and that methods of 

tomographic  reconstruction alternative to those in use today deserve attention.      

No modification of the hardware of the existing X-CT machines is required. In addition -due to the lower 

number of projections taken- the X-ray detector component is subjected to less stress and lasts longer. 
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APPENDIX A 

 

% Img is the NxN slice image sought  

% Sys is the tomographic system matrix NxN columns as defined in Eq. 1 

% L & H are the X-ray linerar attenuation coef. of the low and high density mineral species 

% N_proj is the number of projection rays 

N_pix=N*N; % number of unknown pixel values 

N_fs=20; % Number feasible solutions 

 

parfor i: 1: N_fs % parallel loop to generate and save feasible solutions 

   r=randperm(N_proj); %generate one randon permutation of integers 1:N_proj 

   %build new matrix with projection order given by r by re-arranging the rows of Sys 

   Aeq(r,1:2:N_pix*2-1) =Sys(:,1:N_pix).*L; % Eq. 3 

   Aeq(r,2:2:N_pix*2)    =Sys(:,1:N_pix).*H; % Eq. 3 

   Aeq =[Aeq; B]; % append matrix B constraining pixel values to be 0 or L or H, Eq. 4 

   beq=[Proj;ones(N_pix,1)]; % append ones to projection vector data, Eq. 4 right side 

   Y=solve_blp(Aeq,Proj); %solve binaly linerar problem 

   X=convert(Y); % convert binary solution to discrete values Eq. 5 

   save(filename(i));% save binary solutions X 

end % end parallel for loop 

 

% load files to retrive N_fs solutions X and sum up X_sum  

X=X_sum/N_fs; % normalize to L and H  

% Img=reshape(X,[N,N]); % convert DART solution to square NxN image 

% Img is the DART solution image 

 

Appendix 1 is a Matlab style informal pseudo-code with a synthetic high-level description of the 

operating principle of the DART algorithm proposed. 

 

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Algorithm
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