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subsystems and each subsystem is monitored by one local diagnoser. It is shown that overlapping
of subsystems allows to improve the detectability properties of the monitoring architecture.
Based on this theoretical result, an optimal decomposition design method is proposed, able to
define the minimum number of detection units needed to guarantee the detectability of certain
faults while minimizing the communication costs subject to some computation cost constraints.
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1. INTRODUCTION

Recently there has been a growing interest towards dis-
tributed architectures for fault diagnosis of large-scale
and networked systems (see, for instance Boem et al.
(2011); Ferrari et al. (2012); Zhang and Zhang (2012);
Boem et al. (2013a,b); Keliris et al. (2015); Reppa et al.
(2015)). As it is well known, the drawbacks of a centralized
fault diagnosis architecture are scalability and robustness.
A common solution is to decompose the overall system
into subsystems that are monitored by some local agents,
which we call Local Fault Diagnosers (LFDs). According
to (Šiljak (1978)), the term system decomposition refers to
the clustering of the states, inputs, and outputs system
variables into subsets, which make up the subsystems.
Since each LFD is devoted to monitor a subsystem, the
decomposition of the overall system defines the topology
of the diagnosis architecture. Given a large-scale inter-
connected system and its structural graph (Šiljak (1978))
whose nodes are the state and the input variables of the
system, the goal is to identify: i) the number of local
subsystems (and therefore the number of LFDs) needed
to monitor the system, and ii) how to assign the system
variables of the monitored system to each subsystem. The
latter considers also which variables need to be shared
among more than one subsystem. In this respect, over-
lapping decompositions are considered, that is, some state
variables may be monitored by more than one LFD. An
additional objective is to make the Fault Detection (FD)
problem computationally tractable and to guarantee some
performances related to given monitoring goals.

The problem of system decomposition is well-known
problem in decentralized and distributed control and
there are some recent papers presenting algorithms for
non-overlapping (Ocampo-Martinez et al. (2011)) and

� This paper has been partially supported by the EPSRC STABLE-
NET grant EP/L014343/1.

possibly overlapping decompositions (Anderson and Pa-
pachristodoulou (2012))). On the other hand, the works
proposing distributed monitoring schemes for discrete-
time or continuous-time systems, like Boem et al. (2011);
Ferrari et al. (2012); Zhang and Zhang (2012), assume that
the decomposition of the system into subsystems is given a
priori. The aim of this work is to study the decomposition
problem specifically for the fault detection task. The goal
is to understand how the decomposition and the adoption
of distributed approaches can influence the detectability
performances. In Bregon et al. (2014), a decentralized fault
diagnosis task using structural model decomposition is
considered, but an event-based method is implemented
in a qualitative approach. In Staroswiecki and Amani
(2014), the topology of the information pattern is studied
in order to allow fault-tolerant control reconfiguration.
In Grbovic et al. (2012), the decomposition is designed
using the Sparse Principal Component Analysis algorithm,
but the proposed decentralized fault detection architecture
is a data-driven approach (see Yin et al. (2014) for a
recent survey), while our method is a model-based one
(see Venkatasubramanian et al. (2003)).

The main contributions of the paper are: i) a methodology
to find the minimum number of LFDs needed to detect
a certain set of faults is addressed. Once obtained the
minimum required number of LFDs and the variables to be
shared, an optimal topology is determined that minimizes
the communication costs and satisfies some computational
constraints. We show that the decomposition allows to
improve detectability; ii) a novel stochastic formulation
for the problem of distributed fault detection is proposed,
while previous works by the authors presented determin-
istic approaches 1 ; iii) the effectiveness of a consensus
approach for diagnosis purposes is demonstrated: the pro-
posed consensus protocol is used as a tool for shared

1 The proposed approach is based on the model of the system;
statistics is introduced to manage the stochastic characterization of
the uncertainty and to derive some stochastic thresholds.
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variables estimation and it allows to reduce the uncertainty
and to improve detectability.

It is worth noting that, to the best of the authors’ knowl-
edge, it is the first time that the system decomposition
problem is analyzed specifically for the distributed fault di-
agnosis purposes. Furthermore, it is the first time that the
problem of graph decomposition design is considered in the
overlapping case where the nodes to be shared are selected
before the decomposition process. In this connection, we
remark that in computer science, the problem of graph
decomposition has been widely investigated. For instance,
a multilevel graph partitioning method is proposed in
Karypis and Kumar (1998) and Schloegel et al. (2000),
where a non–overlapping decomposition is obtained.

Notation. Given a stochastic variable x, we represent as
E[x] its expected value, and as Var[x] its variance. Given a
vector a, we denote with a(k) its k-th component. Finally,
let us denote by present A(k) the k-th row of matrix A.

2. PROBLEM FORMULATION

We introduce in qualitative terms the multi-objective op-
timization problem designed to obtain an optimal system
decomposition for fault detection purposes. The proposed
method consists of two phases. Let n+ be a design param-
eter, representing the maximum number of state variables
that each subsystem may contain due to computational
cost limits. Then, we first define the optimization problem
P1(n

+). Let N denote the number of subsystems, n the
number of state variables, and nI be the number of state
variables contained in the I-th subsystem 2 , I = 1, . . . , N .
Let S be the set of the variables shared among more than
one subsystem and dk be the overlap degree (Ferrari et al.
(2012)) of the k-th state variable, k = 1, . . . , n, that is,
the number of subsystems the variable belongs to. The
objective is to find the minimum number of subsystems
N∗ and the overlap degrees d∗k, needed to guarantee some
detectability conditions D(dk) that will be defined in the
following, subject to the computational cost constraint.
Given n+, we formulate

P1(n
+) : N∗ = min

N,dk

N

s.t.

D(dk) satisfied

nI ≤ n+, ∀I = 1, . . . , N.

(1)

The optimal d∗k characterizes the optimal set S∗ of the
variables to be shared. Once the optimal values N∗ and
d∗k are obtained from P1(n

+), we then formulate a second
optimization problem P2(N

∗, d∗k, n
+). The objective is

to minimize the communication cost C (defined in the
following), given the number of subsystems, the variables
to be shared and the computational cost constraint:

P2(N
∗, d∗k, n

+) : min C
s.t.

N = N∗

satisfy d∗k, ∀ k = 1, . . . , n

nI ≤ n+, ∀I = 1, . . . , N.

(2)

The outputs of the second optimization problem are the
minimum communication cost C∗ and the optimal decom-
position Ω∗ of the system graph.

Consider a large-scale system described by the possibly
non-linear model equations:

2 N and nI are variables of the optimization problem.

x(t+ 1) = f(x(t), u(t)) + η(t) + φ(x(t), u(t), t) (3)

where x ∈ Rn is the state vector, u ∈ Rm the control
input, f : Rn × Rm �→ Rn represent the nominal healthy
dynamics, while η describes modeling uncertainties in the
state equation. Finally, φ is a fault function which is null
for t < T0 (T0 is the time of fault occurrence). Each
LFD uses the measurements obtained by some sensors.
We assume that the state vector is completely measurable,
that is we assume that at least n sensors are available, one
for each state component. The possibility of sharing some
variables among different subsystems implies the addition
of some sensors, so that the LFDs sharing the involved
state variable can determine that component value in
different ways 3 . In the case that each state variable can be
measured by more than one sensor, the output equation is

y(t) = Hx(t) + ξ(t),

where y ∈ Rp, with p ≥ n, represents the measurements
vector affected by the measurement noise ξ ∈ Rp and H
is a p × n matrix having for each row all the elements
null but one, equal to 1. The matrix H describes the
relationship between sensors and measured variables: the
(i, j)-th element is equal to 1 if the i-th sensor measures
the j-th variable. One of the tasks of the design problem
is to define the matrix H , that is, to decide how to use
the available sensors: we choose the number of sensors
measuring each variable and so which variables can take
advantage from having redundant measurements. This
includes the possibility to add more sensors in order to
improve the fault detection performances.

The following assumptions are needed:
Assumption 1. The modeling uncertainty η is an unknown
function, modeled as a stochastic process of unknown
distribution. We assume to know at each time instant t
mean and variance of the stochastic variables η(t):

η(t) ≈ (μη(t), ση(t)),

Assumption 2. The measurement noise ξ is a stochastic
process of known distribution. We assume to know at each
t the mean and variance of the stochastic variables ξ(t):

ξ(t) ≈ (μξ(t), σξ(t)).

Once the system decomposition is chosen, it is possible to
define some local models:

SI :

⎧
⎨
⎩

xI(t+ 1) =fI(xI(t), zI , uI(t)) + ηI(t)

+ φI(xI(t), uI(t), t)

yI(t) =xI(t) + ξI(t),

(4)

where xI ∈ RnI is the local state vector, uI ∈ RmI the
local input and y ∈ RnI the local output affected by the
measurement noise ξI , zI ∈ RnI collects the neighboring
state variables affecting local state variables dynamics;
fI is the local nominal function, while ηI describes local
uncertainties. Finally, φI is the local fault function.

Next, we address the model-based FD problem.

3. DISTRIBUTED FAULT DETECTION

We first consider the case in which the k-th state compo-
nent, with k = 1, . . . , n, is monitored by a single LFD. The
local estimation model is based on the local system model:

x̂
(k)
I (t+ 1) = f

(k)
I (yI(t), vI(t), uI(t)) + λ(x̂

(k)
I (t)− y

(k)
I (t)),

where vI is the communicated measurement of zI , so that
vI = zI + ξz,I . In the distributed FD architecture, at time
t+ 1, the state estimate x̂I(t+ 1), computed at time t, is

3 There are many application examples where this fact can be
applicable, especially in the more recent times thanks to the low
cost of sensor and wireless communication capabilities.
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compared component-by-component to the measurement
yI(t + 1), which yields a residual signal �I(t + 1). A
threshold �̄I(t + 1) for the residual �I(t + 1) is derived at
time t so that if the residual exceeds the threshold, then
an alarm signal is triggered and the system is considered
to be faulty. Let us analyze the residual signal:

�
(k)
I (t+ 1) = y

(k)
I (t+ 1)− x̂

(k)
I (t+ 1)

= λ�
(k)
I (t) + Δf

(k)
I (t) + η

(k)
I (t) + ξ

(k)
I (t+ 1), (5)

where

Δf
(k)
I (t) = f

(k)
I (xI(t), zI(t), uI(t))−f

(k)
I (yI(t), vI(t), uI(t))

and λ is a filtering parameter chosen so that 0 < λ < 1 to
guarantee the convergence of the estimator. The following
further assumptions are needed.

Assumption 3. The measurement noise ξI(t) and the mod-
eling uncertainty ηI(t) are not correlated.

Assumption 4. The measurement noise and the modeling
uncertainty are zero-mean: μξI (t) = 0, μηI (t) = 0, ∀t.
We analyze the stochastic part of the residual 4 :

χ
(k)
I (t+ 1) = Δf

(k)
I (t) + η

(k)
I (t) + ξ

(k)
I (t+ 1).

We can then compute

E[χ(k)
I (t+ 1)] = E[Δf

(k)
I (t)] (6)

Var[χ
(k)
I (t+ 1)] = Var[Δf

(k)
I (t)] + σ2

η
(k)

I

(t) + σ2

ξ
(k)

I

(t+ 1)

+ 2Cov[Δf
(k)
I (t), ξ

(k)
I (t+ 1)] (7)

We now derive some time-varying stochastic thresholds.
Chebyshev inequalities can be used, without any assump-
tion on the distribution of the residual. For a stochastic
variable X , with mean μ(X) and variance σ2(X), it holds:

Pr
(
μ(X)−ασ(X) ≤ X ≤ μ(X)+ασ(X)

) ≥ 1−1/α2 (8)

where α is a tunable, real positive-valued scalar. Therefore,
it is possible to obtain a lower and a upper stochastic
thresholds for the residual signal, so that in healthy
conditions

�̄
(k)
I (t)low ≤ �

(k)
I (t) ≤ �̄

(k)
I (t)upp (9)

with probability greater than 1 − 1/α2. If the residual
crosses one of the thresholds, then we can say that a fault
has occurred with false-alarm probability lower than 1/α2.
The thresholds can be computed at each step t as

�̄
(k)
I (t+ 1)upplow = λ�̄

(k)
I (t)upplow + E[χ(k)

I (t+ 1)]

± α
[
Var[χ

(k)
I (t+ 1)]

] 1
2

= λ�̄
(k)
I (t)upplow + E[Δf

(k)
I (t)]

± α
[
Var[Δf

(k)
I (t)] + σ2

η
(k)

I

(t) + σ2

ξ
(k)

I

(t+ 1)

+2Cov[Δf
(k)
I (t), ξ

(k)
I (t+ 1)]

] 1
2

. (10)

The value of α is a tuning parameter by which different
values of guaranteed false-alarms rate can be set.

4. CONSENSUS-BASED FD METHODOLOGY

In the distributed FD architecture, considering possibly
overlapping decomposition, certain state variables may be
measured, estimated and monitored by more than one
LFD. In this section, we address the case in which the
k-th state component is shared by a set of LFDs Ok.
Each I-th LFD in this set communicates with the LFDs
4 At time t, �I(t) is not a random variable, since it can be computed
as �I(t) = yI(t) − x̂I(t).

J ∈ Ok sharing the state variable x(k). In this section,
the extension of the deterministic consensus mechanism
illustrated in Ferrari et al. (2012) to a stochastic context
is illustrated. In this case, the I-th estimation model is

x̂
(k)
I (t+ 1) =

∑
J∈Ok

w
(I,J)
k [f

(k)
J (yJ(t), vJ (t), uJ (t))

+ λ(x̂
(k)
J (t)− y

(k)
J (t))]

=
∑
J∈Ok

w
(I,J)
k [−λ�

(k)
J (t) + f

(k)
J (yJ(t), vJ (t), uJ(t))],

where w
(I,J)
k is the (I, J)-th element of a stochastic matrix

collecting the weights of the consensus for the k-th shared

state component, being
∑

J∈Ok
w

(I,J)
k = 1. In this shared-

variable case, the residual is

�
(k)
I (t+ 1) =

∑
J∈Ok

w
(I,J)
k [λ�

(k)
J (t) + Δf

(k)
J (t) + η

(k)
J (t)

+ ξ
(k)
I (t+ 1)]. (11)

Similarly as before, we obtain the following expressions for
the lower and upper thresholds:

�̄
(k)
I (t+ 1)upplow =

∑
J∈Ok

w
(I,J)
k

[
λ�̄

(k)
J (t)upplow + E[Δf

(k)
J (t)]

]

± α
[
Var[χ(k)(t+ 1)]

] 1
2

(12)

where
[
Var[χ(k)(t+ 1)]

] 1
2

=

[ ∑
J∈Ok

(w
(I,J)
k )2[Var[Δf

(k)
J (t)]

+σ2

η
(k)

J

(t) + σ2

ξ
(k)

I

(t+ 1) + 2Cov[Δf
(k)
J (t), ξ

(k)
I (t+ 1)]]

] 1
2

,

(13)

It is worth noting that, since 0 ≤ w
(I,J)
k ≤ 1 for every

(I, J), then
∑

J∈Ok
(w

(I,J)
k )2 ≤ 1. Therefore, the variance

component of the threshold for the shared case in (12) is
lower that in the non-shared case in (10). Then, we showed
that by using the proposed consensus approach and shar-
ing some state variables among more than one LFD implies
the reduction of the variance of the residual signal, thus
leading to less conservative detection thresholds.

5. DETECTABILITY ANALYSIS

In this section we define some detectability indicators to
be used in the decomposition optimization problem. Let
us first consider the case with one single diagnoser I. In
this case, the residual in (5) can be written as:

�(k)(t) = U (k)(t) +

t−1∑
h=T0

λt−1−hφ(k)(h) (14)

as φ(t) = φ(x(t), u(t), t) = 0 (with some abuse of notation)
for t < T0, and U (k)(t) represents the part of the residual
collecting all the uncertainty terms:

U (k)(t) =

t−1∑
h=0

λt−1−h(χ(k)(h+ 1)),

since x̂(k)(0) = y(k)(0) and �(k)(0) = 0. A fault is detected
at a certain time instant t = Td > T0 with a certain
probability depending on α if

�(k)(t) �∈
(
�̄(k)(t)low , �̄

(k)(t)upp
)

(15)
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for at least one state component k ∈ {1, . . . , n}. Following
(14), condition (15) is equivalent to:

t−1∑
h=T0

λt−1−hφ(k)(h)

�∈
(
�̄(k)(t)low − U (k)(t), �̄(k)(t)upp − U (k)(t)

)
.

The uncertainty term can be expressed as χ(k)(t) =
E[χ(k)(t)] + Δχ(k)(t), where Δχ(k) is the deviation from
its mean, and the thresholds (10) can be rewritten as

�̄(k)(t)upplow =
t−1∑
h=0

λt−1−h(E[χ(k)(h+1)]±αVar[χ(k)(h+1)]
1
2 )

The detectability conditions (15) become:

t−1∑
h=T0

λt−1−hφ(k)(h) �∈
t−1∑
h=T0

λt−1−h
(
−α

[
Var[χ(k)(h+ 1)]

] 1
2

−Δχ(k)(h+1),+α
[
Var[χ(k)(h+ 1)]

] 1
2 −Δχ(k)(h+1)

)
.

Since Δχ(k)(t) is zero–mean, we have that

−α
[
Var[χ(k)(t)]

] 1
2 ≤ Δχ(k)(t) ≤ α

[
Var[χ(k)(t)]

] 1
2

with a certain probability using Chebishev inequalities.
Therefore, the fault detection is guaranteed at time Td
with a certain false–alarms rate depending on α, when the
following detectability condition is satisfied:∣∣∣∣∣
Td−1∑
h=T0

λTd−1−hφ(k)(h)

∣∣∣∣∣>2α

Td−1∑
h=T0

λTd−1−h
[
Var[χ(k)(h+ 1)]

] 1
2

.

(16)

Consider now the problem of detecting a fault φ occurring
at some time t = T0 in the nonlinear system (3).

Assumption 5. Suppose that a value φ̄(k) is given for k ∈
{1, . . . , n} such that for at least one time instant T > T0∣∣∣∣∣

T−1∑
h=T0

λT−1−hφ(k)(h)

∣∣∣∣∣ ≥ φ̄(k).

Note that φ̄(k) represents the minimum magnitude reached
by the fault function component that we are interested in
detecting. It is a given element of the problem, character-
izing the fault that we want to detect. In order to detect
the fault at a certain time Td, from (16) it follows that

2α

Td−1∑
h=T0

λTd−1−h
[
Var[χ(k)(h+ 1)]

] 1
2

< φ̄(k).

We assume that in the initial centralized condition without
consensus, the uncertainty χ(k), and so also the absolute

value of thresholds �̄(k)upp and �̄
(k)
low, are too high and so

the uncertainty can hide the presence of the fault and
the detection may not be possible. Therefore we use the
consensus scheme explained in Section 4 to reduce the
uncertainty. The goal of the optimal decomposition is to

obtain the threshold �̄(k)upp and �̄
(k)
low so that in the faulty

case at a certain time T condition (15) is satisfied. By
remembering that in the shared case, we have (13), we
observe that with the consensus it is possible to reduce the
uncertainty terms on the right in (16). The decomposition
is designed a-priori and it is fixed during the monitoring
process. In applications it is typically possible to analyze

off-line a number of typical modes of behaviour, thus
identifying in which conditions the fault we want to detect
commonly happens and its features in terms of magnitude.
We assume to be able to define the following quantities

Ū (k)(w) = 2α

Td−1∑
h=T0

λTd−1−h
[
Var[χ(k)(h+ 1)]

] 1
2

and

φ̄(k) ≤
∣∣∣∣∣
Td−1∑
h=T0

λTd−1−hφ(k)(h)

∣∣∣∣∣ .

The first one represents the integral of the uncertainty
standard deviation at the desired detection time Td. The
second quantity represents the minimum fault magnitude
we aim to detect 5 . The decomposition is designed to
detect all the faults acting on the k-th component having
a magnitude greater or equal to φ̄(k). In this subsection,
we have defined the detectability conditions in the shared
and non-shared case.

6. THE DECOMPOSITION PROBLEM

In this section, we address the solution of the optimal
decomposition problem. This implies the optimal choice of
which state variables have to be shared between suitable
LFDs in order to guarantee the detectability of a given
class of faults. At the same time, we take into account the
inherent trade-off between sharing and the communication
costs and hardware costs due to the addition of sensors.
The goal is to define the minimum number of needed LFDs
and assign each variable to one or more LFDs.

We refer to the optimization problems defined in (1) and
(2). We are now able to characterize all the terms in a
quantitative way. The computational complexity can be
quantified by the number of nodes in each subsystem I
denoted as nI . We formulate the decomposition problem,
that is the covering Ω of the set of the variables of the
system, as a two-phases optimization problem. Given the
maximum number of nodes for each subsystem n+, (1)
becomes

P1(n
+) : N∗ = min

N,w,dk

N

s.t.

Ū (k)(w) < φ̄(k) ∀ k = 1, . . . , n

nI ≤ n+, ∀I = 1, . . . , N.
(17)

We define the objective function of problem (2): the
communication cost of a decomposition can be computed
as

C = number of cut edges + number of shared variables.

Given the optimal values obtained from (17), (2) can then
be rewritten as

P2(N
∗, d∗k, n

+) : min C
s.t.

N = N∗

satisfy d∗k, ∀ k = 1, . . . , n

nI ≤ n+ ∀I = 1, . . . , N.

(18)

6.1 Optimal Decomposition Algorithm

We here explain how to solve in an analytical way the
problem (17): to find the minimum number of subsystems

5 Let us for example consider a leakage fault: φ̄(k) could represent
the minimum quantity of water loss in the interval time between T0

and Td that we are able to detect.
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and the variables to be shared. Let us assume for the
sake of simplicity that all the sensors related to different
LFDs and measuring the same shared component s of the
state are affected by the same level of uncertainty, that is,

μ
(s)
ξI = μ

(s)
ξJ and σ

(s)
ξI = σ

(s)
ξJ ∀I and J in Os. Moreover, we

assume that in the consensus protocol each LFD weights
equally all the terms of the consensus:

w(I,J)
s =

1

ds
, ∀J ∈ Os,

being the overlap degree ds equal to the cardinality of the
set Os. Therefore, the variance term of the threshold σ2

�̄
of the non-shared case decreases linearly with the number
of LFDs sharing that component in the shared case:

∑
J∈Os

(w(I,J)
s )2σ2

�̄ = ds ·
(

1

ds

)2

σ2
�̄ =

1

ds
σ2
�̄

being σ2
�̄ = Var[χ(k)(t + 1)] = Var[Δf (k)(t)] + σ2

η(k)(t) +

σ2
ξ(k)(t+ 1) + 2Cov[Δf (k)(t), ξ(k)(t+ 1)].

We implement the following steps:

(1) We identify the set S collecting the nodes s for which
the detectability constraint is not satisfied, that is,
Ū (s)(w = 1) > φ̄(s) in the non-shared case.

(2) By using the rule we expressed about the linear de-
creasing of the threshold variance term, we compute,
for each s ∈ S, the minimum number Ns

min of LFDs
sharing s we need to satisfy the detectability con-
straint. In fact, we want that

2α

[
1

Ns
min

σ2
�̄

] 1
2
Td−1∑
h=T0

λTd−1−h < φ̄(s).

We have d∗k = 1 for k /∈ S, while for s ∈ S:

d∗s = Ns
min >

(
2ασ�̄

∑Td−1
h=T0

λTd−1−h

φ̄(s)

)2

.

(3) The minimum number of LFDs needed is

N∗ = max

[⌈ n

n+

⌉
,max

s∈S
Ns

min

]

where the first argument of the max operator guar-
antees the fulfillment of the computational complex-
ity constraint, and the second the detectability con-
straint.

(4) We can then solve the communication cost minimiza-
tion problem (18) to assign each variable to a subsys-
tem. The optimal solution of this problem requires
the exploration of all the possible solutions. Due to
obvious scalability problems of the last step of this
algorithm, in the following simulations section we
propose an heuristic algorithm to solve this second
optimization problem for large-scale systems.

7. SIMULATION RESULTS

In this section we provide some preliminary simulation
results. We tested the proposed decomposition and FD
approach on a 12 tanks system (Fig. 1 left, where each
node represents a state variable). Three pumps are present,
feeding the fourth, sixth and tenth tanks with the fol-
lowing flows: ui = 1 + 0.5 · sin (0.1 · t), i = 1, 2, 3. The
nominal tank sections, interconnecting pipe cross-sections
and drain pipes cross sections are set to 1 m2, 0.2 m2 and
0.02 m2 respectively. All the pipes outflow coefficients are
unitary. The actual cross-sections are affected by random
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Fig. 1. The 12 tanks system graph and its optimal decom-
position. Each node colour represents a different sub-
system. Shared variables have more than one colour.
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Fig. 2. Thresholds and residual signal for LFD 1 tank 6.

uncertainties with variance of 2.5% of the nominal values.
Moreover, the tank levels measurements are affected by
measurement noises with zero-mean and 0.05 standard
deviation. The considered fault is modelled as an incip-
ient leakage (with time profile parameter 8) affecting the
fourth, sixth and tenth tanks, occurring at time 250 s. It
is represented for each tank as a circular hole of 0.13 m
radius in tank bottom, so that the outflow coefficient due
to the leak is 1. We implemented an off-line Monte Carlo
method for numerically estimating the mean and variance
of the non linear function Δf . The procedure in Section
6.1 identifies nodes 4, 6 and 10 to be shared, two, three and
two times, respectively: it is interesting to note how, being
the model and uncertainty parameters equal for all the
nodes, the detectability condition led to sharing more node
6, which has the highest degree and so is more influenced
by the uncertainty of the neighboring nodes. Finally we
assume that the constraint on the maximum number of
nodes for each subsystem is 6: this implies at least 2
subsystems, but the detectability analysis eventually leads
to a minimum number of 3 subsystems. In order to find
the minimum communication cost decomposition, Point 4
of the algorithm in Section 6.1 is addressed by a modifica-
tion of the multilevel partitioning scheme of Karypis and
Kumar (1998) where the coarsening, initial partitioning
and successive refinement stages are constrained so that
the sharing of the nodes in S, as well as the bound on
the maximum number of nodes per subsystem, are au-
tomatically enforced. We obtain the optimal decomposi-
tion in Fig.1 right, having x1 = [1, 2, 3, 4, 6, 10],
x2 = [5, 6, 8, 10, 11] and x3 = [4, 6, 7, 9, 12]. Once
the system decomposition was obtained by this off-line
procedure, we tested the proposed distributed stochastic
FD scheme, with α = 3. We see in Fig. 2 that the designed
optimal system decomposition allows the detection of the
fault at time 251.2 s. Moreover, all the LFDs monitoring
faulty variables are able to detect the fault 6 .

6 The residual decreases after fault detection because the tank is
getting empty.
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Table 1. Performance comparison

Decomposition DD [s] TRR before TRR after COMM COMP
Optimal 1.20 357.33 1.61 9.33 5.33
Other 1 2.20 322.95 1.95 7.67 5.00
Other 2 1.90 863.04 6.51 9.33 5.66

Non overlapping ∞ 740.00 12.55 5.33 4.00

We compared the performances obtained by the same
FD stochastic approach with different decompositions.
We chose the following decompositions (Fig.3): the first

Fig. 3. The non-optimal decompositions considered for the
comparison (Other 1, Other 2 and Non overlapping).

is an overlapping decomposition sharing the same vari-
ables as the optimal one, but with different cardinality
of the overlap sets; the second is an overlapping decom-
position as well, but sharing different variables, while
the third is a non-overlapping decomposition minimizing
the communication and computation costs, irrespective
of the detectability condition. In order to compare the
performances obtained by the different FD topologies, we
introduce in Table 1 the following performance indica-
tors: detection delay (DD); threshold/residual ratio before
(TRR before) and after fault (TRR after) averaged on the
variables affected by the fault function; communication
(denoted in the table as COMM) and computation cost
(average number of nodes of each subsystem, denoted as
COMP). Table 1 shows that the designed optimal de-
composition detects the fault with the lowest delay. Fur-
thermore, it has the lowest threshold/residual ratio after
fault, meaning that the thresholds are less conservative
than the other cases. It is important to note that the
non-overlapping decomposition is not able to detect the
considered fault, even if it is the best decomposition in the
sense of minimum communication and computation costs.
In decompositions Other 1 and Other 2, the LFDs are not
able to detect the fault for all the involved variables. Fi-
nally, we observe that the proposed optimal decomposition
has communication and computation costs similar to those
of the other cases with bigger detection delay.

8. CONCLUDING REMARKS

In this preliminary paper, a novel algorithm for finding an
optimal decomposition of large-scale nonlinear systems is
proposed in order to design a distributed fault detection
architecture able to guarantee fault detectability in some
defined standard conditions under communication and
computation constraints. A novel stochastic framework is
proposed for the problem of distributed fault detection
and the effectiveness of the adoption of an overlapping
decomposition is demonstrated.
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