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Abstract 31 

Idiopathic nephrotic syndrome (INS) represents the most common type of primary glomerular disease 32 

in children: glucocorticoids (GCs) are the first line therapy, even if considerable inter-individual differences in 33 

their efficacy and side effects have been reported. Immunosuppressive and anti-inflammatory effects of 34 

these drugs are mainly due to the GC-mediated transcription regulation of pro- and anti-inflammatory genes. 35 

This mechanism of action is the result of a complex multi-step pathway that involves the glucocorticoid 36 

receptor and several other proteins, encoded by polymorphic genes. Aim of this review is to highlight the 37 

current knowledge on genetic variants that could affect GC response, particularly focusing on children with 38 

INS. 39 
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Idiopathic nephrotic syndrome (INS) is the most frequent primary glomerular disease in the pediatric 45 

population, and affects 16 - 17 per 100.000 children. The onset of the disease occurs usually between the 46 

ages of 2 and 8 years, with a peak of incidence between 3 and 5 years [1, 2]. The physiopathologic 47 

mechanisms of INS have not been completely clarified yet; however, the disease is triggered by an increase 48 

in glomerular permeability caused by an abnormal immunologic response, that results in an alteration of the 49 

capillary structure and of the integrity of the glomerular membrane [1].  50 

Glucocorticoids (GCs) are the mainstay of INS therapy. Response to GCs is highly correlated to 51 

histological subtypes of the disease, and is poor in genetic forms that occur either as isolated kidney disease 52 

or as syndromic disorders. Several gene mutations have been associated to these hereditary forms, in 53 

particular variations in genes encoding for glomerular proteins such as nephrin (NPHS1), podocin (NPHS2), 54 

phospholipase C epsilon-1 (PLCE1), Wilms Tumor gene (WT1), CD2-associated protein (CD2AP) and 55 

others (for a review see [3]). 56 

Also in non-genetic forms of INS, patients’ response to GCs is the best indicator for outcome: indeed, 57 

those who respond poorly to these drugs and do not achieve remission have an unfavourable prognosis and 58 

often develop end-stage renal failure [4]. In minimal change nephrotic syndrome, the most common 59 

histopathological pattern in children, accounting for 70-80% of cases [2], after an initial response to 60 

prednisone, around 80% children relapse and some become steroid-dependent, while others never respond 61 

to GC therapy and are therefore steroid resistant (10%). These patients often require intensified 62 

immunosuppression with cyclophosphamide and/or cyclosporin A [1] [5].  63 

This variable response to GCs is likely not attributable to the characteristics of the disease, and is 64 

clinically difficult to predict. Significant advances have been made over the past years in understanding the 65 

molecular basis of inter-patient variability: recent investigations have led to the hypothesis that genetic 66 

factors influencing the patient pharmacokinetic or pharmacodynamic profiles may account for 20% to 95% of 67 

variability in the efficacy and side effects of therapeutic agents [6]. Pharmacogenetics has therefore a 68 

promising role in personalized medicine, hopefully allowing the identification, a priori, of treatment sensitive 69 

and resistant patients and ensuring the right drug and right dose for each of them. In the context of INS, little 70 

is known about the impact of genetic polymorphisms on steroid response. Nonetheless, identification of 71 

predictive genetic biomarkers would be extremely beneficial, in particular for children with a steroid resistant 72 

disease, preventing their exposure to ineffective drug courses. 73 

 74 
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This review describes the mechanisms of GC action and discusses the molecular and genetic basis of 75 

GC resistance, with particular reference to non-genetic forms. 76 

 77 

MOLECULAR MECHANISM OF GC ACTION (Figure 1) 78 

GCs are anti-inflammatory and immunosuppressive drugs that exert their molecular action through 79 

both genomic and non-genomic mechanisms. Depending on whether or not they modulate gene 80 

transcription, GC induced effects could be delayed in onset but long-lasting or, vice versa, of more rapid 81 

onset and shorter duration.  82 

 83 

Genomic mechanisms 84 

Exogenous and endogenous GCs are lipophilic substances that diffuse across plasma membranes, 85 

thus interacting with a cytosolic receptor (the glucocorticoid receptor, GR), expressed in virtually all tissues. 86 

This receptor is a member of the large nuclear receptor superfamily, which includes receptors for steroid 87 

hormones and other hydrophobic molecules [7]; all these receptors are highly homologous to each other and 88 

have a common modular domain organization with a transactivation domain at the N-terminal part (NTD), a 89 

central zinc finger DNA-binding domain (DBD) and a ligand-specific binding domain (LBD) at the C-terminus. 90 

In the cytoplasm, the ligand-free GR exists in a multimeric complex associated with various chaperones and 91 

co-chaperones, such as the heat-shock proteins Hsp90, FKBP51, FKBP52, p23, Hsp70 and Hsp70/Hsp90 92 

organizing protein (Hop) [8], that keep the receptor in the correct folding for hormone binding [9]. Upon 93 

binding, the receptor undergoes conformational changes and exposes the DBD and the nuclear localization 94 

signals, both hidden in the ligand-free conformation. The nuclear localization signals interact with 95 

transporters located on nuclear membranes (the importins), thus mediating the GR translocation into the 96 

nucleus. Once there, the DBD interacts, through its zinc finger motifs, with specific DNA sequences located 97 

within regulatory regions of GC-responsive genes, the GC-responsive elements (GRE), [10] [11]. The GR 98 

homodimerizes on GREs and recruits transcriptional co-activators and basal transcription machinery to the 99 

transcription start site. These co-activators, that include CREB (cAMP response element-binding) binding 100 

protein (CBP), steroid receptor co-activator-1 (SRC-1), GR-interacting protein (GRP-1) and the transcription 101 

factors p300 and switching/sucrose non fermenting (SWI/SNF), induce histone acetylation and thus the 102 

transactivation of GC-responsive genes (mediated by positive GREs). Through the induction of anti-103 

inflammatory genes, such as interleukin (IL)10, annexin 1 and the inhibitor of nuclear factor (I-κB), 104 
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transactivation is responsible for some of the GCs anti-inflammatory effects [12, 13]; however, 105 

transactivation enhances mainly the expression of genes involved in metabolic processes [14, 15], and is 106 

therefore responsible for the majority of side effects related to GC administration [16, 17]. In contrast, 107 

negative GREs [18] mediate downregulation of transcription of responsive genes and transrepression is 108 

responsible for the majority of the beneficial anti-inflammatory effects of GCs [16, 19-21]. Furthermore, GRE-109 

independent mechanisms of transrepression also exist: the GR physically interacts and inhibits AP-1 [22] 110 

and nuclear factor (NF)-κB [23], two important transcription factors involved in the pro-inflammatory 111 

mechanism. 112 

 113 

Non genomic mechanisms 114 

Non genomic mechanisms have been also described and are responsible for the effects induced by 115 

GCs characterized by rapid onset and short duration. The mechanisms are still not completely clear, but 116 

likely involve non-classical membrane-bound GC receptors. In addition, at higher concentrations, GCs 117 

probably induce lipid peroxidation, with consequent alteration of the characteristics of plasma membranes 118 

and alteration in ion transport [24]. 119 

 120 

MOLECULAR MECHANISM OF GC RESISTANCE 121 

The precise molecular mechanism conferring dependence or resistance to GCs in INS and in other 122 

diseases is still unclear; likely, the mechanism is not unique and probably occurs after impairments at 123 

different levels such as: 1) the GR receptor heterocomplex and proteins involved in nuclear translocation; 2) 124 

the pro- and anti-inflammatory mediators in the downstream signalling pathway of the GC-GR complex; 3) 125 

the P-glycoprotein (P-gp), an efflux transporter of GCs, and the drug-metabolizing enzyme CYP3A5. 126 

 127 

1. The GR heterocomplex and proteins involved in nuclear translocation  128 

The GR 129 

The NR3C1 gene, encoding for the human GR, is located on chromosome 5q31.3 and includes nine 130 

exons [25]. Several polymorphic sites have been described in this gene and have been supposed to affect, 131 

at least partially, the inter-patient variability in GCs response because they might alter the formation and the 132 

dynamic of the GC–GR complex and hence the downstream gene expression regulation [26]. However, only 133 

few variants have been associated with differences in metabolic parameters, body composition and altered 134 
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endogenous cortisol levels and are functionally relevant [26-37]. Single nucleotide polymorphisms (SNPs) 135 

such as TthIIII (rs10052957), ER22/23EK (rs6189/rs6190) and GR-9  (rs6198), have been related to a 136 

reduced sensitivity to endogenous and exogenous GCs, while other NR3C1 SNPs such as N363S (rs6195) 137 

and BclI (rs41423247) have been related to an increased sensitivity [26, 37]. TthIIII is a C>T change in the 138 

NR3C1 promoter region, located 3807 bp upstream of the GR start site [9]; the ER22/23EK polymorphisms 139 

involve two nucleotides changes (GAGAGG to GAAAAG) in codon 22 and 23 of NR3C1 exon 2, which 140 

change the amino acid sequence of the NTD domain from glutamic acid-arginine (E-R) to glutamic acid-141 

lysine (E-K) [38]; the GR-9  polymorphism is located in the 3’-untranslated region of exon 9 , where an 142 

ATTTA sequence is changed into GTTTA [39]. The N363S polymorphism consists of an AAT>AGT 143 

nucleotide change at position 1220 in exon 2, resulting in an asparagine to serine change in codon 363 [40], 144 

the BclI polymorphism was initially described as a polymorphic restriction site inside intron 2, and the 145 

nucleotide alteration was subsequently identified as a C>G substitution, 646 nucleotides downstream from 146 

exon 2 [41]. 147 

So far, only few studies have evaluated the role of the NR3C1 polymorphisms on the response to 148 

exogenous GCs in patients affected by INS. The distribution of BclI and of two other SNPs, rs33389 and 149 

rs33388, (respectively a C>T and A>T substitution, 76889 and 80093 nucleotides downstream from exon 2) 150 

also located in intron B of the GR receptor gene, as well as the three-marker haplotype, has been studied in 151 

136 healthy children and 118 INS pediatric patients who initially responded to oral GC therapy. The GTA 152 

haplotype was associated with a higher steroid sensitivity, determined by time to proteinuria resolution, and 153 

was more prevalent in early (response ≤ 7 days) than late (response > 7 days) prednisone responders (27.7 154 

vs 14.5%, hap-score = -2.22, p = 0.05) [42]. The BclI polymorphism has been also analysed by Cho and co-155 

workers [43] in 190 Korean children with INS and 100 controls, but no correlation with the development of 156 

INS, onset age, initial steroid responsiveness, renal pathologic findings and the progression of renal disease 157 

was found. The authors have also examined two other SNPs, namely ER22/23EK and N363S, but no variant 158 

allele was found in any of the patients or control subjects. Recently, Teeninga et al. [44] have evaluated GR-159 

9β, TthIIII and BclI polymorphisms in a well-defined cohort of 113 children with INS, showing that carriers of 160 

GR-9β+TthIIII mutated haplotype had a significantly higher incidence of steroid dependence compared with 161 

non-carriers (52% vs 25%, OR = 3.04 95% CI 1.37–6.74, log rank test p = 0.003).  162 

Several GR protein isoforms are generated through an alternative splicing: the most abundant and 163 

functionally active isoform is GRα, whereas GRβ is the inactive protein, unable to bind the ligand that exerts 164 
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a dominant negative effect on GRα. The GR-9β polymorphism has been associated with increased 165 

expression of the mature GR-β protein and implicated in steroid resistance in several diseases [45-49]. In 166 

patients with INS, an increased expression of GRβ has been demonstrated in peripheral blood mononuclear 167 

cells (PBMCs) of steroid resistant patients [50], while the expression of the functional isoform GRα was 168 

correlated with a positive steroid response (steroid responders vs partial- and non-responders p < 0.01) [51].  169 

In 2006, Ye et al. [52] sequenced candidate exons of NR3C1 gene and examined all the genetic 170 

variations in 138 Chinese children with sporadic steroid resistant and sensitive INS, founding no significant 171 

association between the SNPs analysed in the study and steroid response; however the analysis excluded 172 

the above mentioned polymorphisms that are located in NR3C1 introns and regulatory regions.  173 

 174 

The GR heterocomplex 175 

Beside the proper functioning of the receptor itself, also the activity of all other components in the GR 176 

heterocomplex is essential for an adequate response to GCs. Altered levels of heterocomplex proteins, such 177 

as Hsp90, Hsp70, FKBP51, FKBP52, p23 and Hop, may contribute to altered GC cellular sensitivity [53] [54]. 178 

In INS, Ouyang et al. [55] have shown that the expression level of Hsp90 mRNA was significantly higher in 179 

adult patients than in healthy controls (1.09 ± 0.17 vs 0.98 ± 0.14, p < 0.05), and both the expression and 180 

nuclear distribution of Hsp90 were increased in PBMCs obtained from GC-resistant patients in comparison to 181 

GC-sensitive ones (1.28 ± 0.25 vs 1.13 ± 0.21; p < 0.05). The same authors have subsequently explored the 182 

interaction between Hsp90 and the GR in the nucleus as well as the DNA binding activity of the GR, showing 183 

that the nuclear enrichment rather than total cellular expression of Hsp90 might contribute to GC resistance 184 

and that the DNA binding activity of the GR was significantly (p < 0.05) decreased in GC resistant patients, 185 

hindering transactivation [56].  186 

Clinical studies on the association between variants in genes coding for GR heterocomplex proteins 187 

and the GC response have been already carried out in several GC-treated diseases. In inflammatory bowel 188 

disease Maltese et al. [57] analyzed the role of FKBP5 genetic variants (rs3800373, rs1360780 and 189 

rs4713916) and evidenced that the variant rs4713916 polymorphism was significantly associated with 190 

resistance to GC treatment in Crohn’s disease (responders = 17% vs resistants = 35%; p = 0.0043). 191 

Moreover, in a cohort of asthmatic patients, Hawkins et al. [58] analyzed the role of FKBP5 genetic variants 192 

in response to GCs, however the studied polymorphisms (rs3800373, rs9394309, rs938525, rs9470080, 193 

rs9368878 and rs3798346) were not correlated with response to these drugs. In the same study, genetic 194 
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variations in the STIP1 gene (rs4980524, rs6591838, rs2236647, rs2236648), which codes for Hop, have 195 

been investigated and shown to have a role in identifying asthmatic subjects who were more responsive to 196 

GC therapy. An association with improved lung function, evaluated as baseline FEV1 (rs4980524, p = 0.009; 197 

rs6591838, p = 0.0045; rs2236647, p = 0.002; and rs2236648; p = 0.013) was found [58]. To date, no data 198 

on these polymorphisms and therapeutic outcome in INS are available. Pharmacogenetic studies are 199 

therefore required in order to understand the importance of these genetic variants in identifying resistant 200 

patients in this condition. 201 

 202 

Nuclear transport factors 203 

Upon binding with the receptor, the GR-GC nuclear translocation is essential to exert the GC 204 

pharmacological function, and this step is mediated by several nuclear receptors known as importins. [59] 205 

[60]. Importin 13 (IPO13) has been functionally characterized as a primary regulator of GC-bound GR across 206 

the nuclear membrane [10]. Altered levels of this protein might affect the therapeutic responsiveness to GCs 207 

and it has been demonstrated that IPO13 silencing prevents GC transport across the cytoplasmic-nuclear 208 

membrane in airway epithelium and abrogates GC-induced anti-inflammatory responses [61]. SNPs in the 209 

IPO13 family have been associated with neonatal respiratory outcomes after maternal antenatal 210 

corticosteroid treatment (SNP impact on fetal bronchopulmonary dysplasia: rs4448553; OR 0.01; 95% CI 211 

0.00-0.92, p = 0.04; SNP impact on surfactant maternal therapy: rs2428953 OR, 13.8; 95% CI 1.80-105.5, 212 

p= 0.01 and rs2486014 OR 35.5; 95% CI 1.71-736.6, p = 0.02) [62]. Polymorphisms of IPO13 (rs6671164, 213 

rs4448553, rs1990150, rs2240447, rs2486014, rs2301993, rs2301992, rs1636879, rs7412307 and 214 

rs2428953) have been investigated in children with mild to moderate asthma in relation with clinical response 215 

to GCs evidencing that IPO13 variants could increase the nuclear bioavailability of endogenous GCs 216 

(subjects harboring minor alleles demonstrate an average 1.51–2.17 fold increase in mean PC20 at 8-months 217 

post-randomization that persisted over four years of observation: p = 0.01–0.005) [63]. To date, no study on 218 

IPO13 genetic variants are available in INS patients, therefore investigation in this population is required. 219 

 220 

2. The pro- and anti-inflammatory mediators in the downstream signaling pathway of the GC–GR 221 

complex 222 

INS was proposed as a T cell dysfunction disorder [64], although mechanisms by which T cells affect 223 

the course of the disease are still unclear. Cytokines are released from activated T cells and play a crucial 224 
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role in the pathogenesis of INS [65] [66]; imbalances in T cells phenotypes, response and cytokines have 225 

been found between steroid sensitive and resistant INS patients [67] as well as between those who relapse 226 

and those in remission [68] [64].  227 

Endogenous GCs are involved in the balance of pro- and anti-inflammatory mediators: a complex 228 

circular interplay between GCs and cytokines takes place, with GCs downregulating pro-inflammatory 229 

cytokines and cytokines limiting GC action [69] [70-72].  230 

Basal cytokine expression levels are fine-tuned by genetic profile. Polymorphisms in the cytokine 231 

genes involved in the pathogenesis of INS (among which IL1, IL12, tumor necrosis factor (TNFA), 232 

macrophage migration inhibitory factor (MIF), IL4, IL6 and IL10) and in glucocorticoid-induced transcript 1 233 

gene (GLCCI1) might in part be responsible of inter-individual variations in therapy.  234 

 235 

Pro-inflammatory mediators 236 

IL-1: IL-1 family is a group of 11 cytokines among which IL-1α and IL-1β are the most studied. In 237 

glomeruli affected by several forms of INS, podocytes are capable of producing IL-1α/β [73]; however, the 238 

role of IL-1 in the immunopathogenesis of INS is still controversial. Saxena et al. found that, in supernatants 239 

of phytohaemagglutinin activated lymphocyte cultures obtained from patients with minimal change nephrotic 240 

syndrome, IL-1 levels were increased when compared to controls [74], while other studies did not confirm 241 

such finding. Chen and co-workers showed an overexpression of IL-1 at the protein and mRNA level in 242 

glomerular mesangial cells of patients affected by IgM mesangial nephropathy but not in those with minimal 243 

change nephrotic syndrome [75], and Suranyi et al. could not find differences between INS patients and 244 

controls in IL-1β levels measured in plasma, urine and culture supernatant of mitogen-stimulated PBMCs 245 

[76]. 246 

Several polymorphisms in IL1 genes have been described [77] and associated with altered levels of 247 

the cytokine level [78]: T-31C (rs1143627) SNP results in the loss of the first T in TATA box and has been 248 

observed to cause a paradoxical increase in IL-1β in the presence of steroids in PBMCs under acute 249 

inflammation [79]. The C-511T SNP (rs16944) has been correlated to loss of the binding site for the 250 

transcription factor AP-2. Carriers of the haplotype composed of IL-1β -31C allele and -511T allele have 251 

showed a 2-3 fold increase in LPS-induced IL-1β secretion measured by an ex-vivo blood stimulation assay, 252 

the association was observed in two independent population (p = 0.0084 and p = 0.0017) [80, 81]; these 253 
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SNPs might therefore be of relevance in the modulation of GC response. So far, no data are available for 254 

INS and studies that investigate this association should be carried out. 255 

 256 

IL-12: IL-12 has also been implicated in the pathogenesis of INS; this cytokine is produced by antigen 257 

presenting cells and regulates the growth and development of natural killer (NK) and T cells; in addition, it is 258 

the major inducer of interferon (IFN)-  [82].  259 

IL-12 serum levels have been investigated in different cohorts of patients: Lin and Chien [83] studied 260 

20 INS patients and found a significant increase of the cytokine in relapsed patients as compared to patients 261 

in remission and to normal controls. The amount of IL-12 was also increased during the active phase of the 262 

disease as compared to the remission and was reported to upregulate the production of vascular 263 

permeability factor, a clinical index of INS [84, 85]. On the contrary, Stefanovic et al. did not find difference in 264 

terms of IL-12 production between concanavalin A-stimulated PBMCs of 20 children with steroid sensitive 265 

INS and 17 healthy control subjects [86].  266 

Genetic variations in IL12 gene have been investigated: a complex bi-allelic polymorphism in the 267 

promoter region of the gene, coding for the p40 subunit (IL12B) has been described (IL-12Bpro, 268 

CTCTAA/GC polymorphisms; rs17860508). IL-12Bpro allele 1 has been related to a reduced IL-12 secretion 269 

in dendritic cells [8, 87]. Surprisingly, this allele had a high frequency in 45 steroid dependent INS children 270 

(46.7%) compared to 34 non dependent (17.6 %; p = 0.016) [8].  271 

 272 

TNF: TNF is a potent pro-inflammatory protein released by monocytes upon stimulation, being almost 273 

undetectable in resting conditions [88]. The TNFA gene is located on chromosome 6p21.3, in the class III 274 

region of the major histocompatibility complex within the human leukocyte antigen [89, 90], which contains 275 

many genes involved in inflammatory and immune responses [91]. An increase in TNFA gene expression, 276 

higher serum TNF levels and TNF production by monocytes has been demonstrated in INS patients with 277 

active disease, in comparison with patients in remission and controls [92]. TNF was the only cytokine found 278 

to be increased in plasma and urine in INS patients affected by segmental glomerulosclerosis and 279 

membranous nephropathy, but not in those with minimal change nephropathy [76]. 280 

Among TNFA polymorphisms, the G-308A (rs1800629) is one of the best documented [93]. This SNP 281 

lies in a binding site for the transcription factor AP-1 and the A allele has been shown to have higher 282 

transcriptional activity than the G allele, increasing TNF production in vitro [94]. Conflicting results have been 283 
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reported for this polymorphism in patients with INS. A study by Kim and colleagues, on 152 patients with 284 

childhood INS and 292 healthy adult controls, investigated the association between cytokine polymorphisms, 285 

among which TNFA G-308A, and disease susceptibility, and did not find significant differences in allele 286 

frequencies between the two populations [95]. This study is in contrast with other results that found a 287 

significant association, both at genotypic and allelic level, with susceptibility and with steroid resistance. 288 

Indeed, on comparing 115 GC sensitive and 35 GC resistant patients, the AA genotype was suggested as a 289 

causative factor of non responsiveness to steroid therapy among INS children (responsive vs non-290 

responsive patients: at genotypic level OR = 14.71, 95% CI = 1.59-136.46, p = 0.0121; and at allelic level 291 

OR = 2.251, 95% CI = 1.09-4.66, p = 0.0433) [96, 97].  292 

 293 

MIF: MIF is also a pro-inflammatory cytokine with a pathogenic role in kidney diseases [98]. MIF is 294 

produced by several cell types, particularly T cells but also monocytes, macrophages, glomerular epithelial 295 

cells, tubular epithelial cells and vascular endothelial cells. Due to its regulatory properties on innate and 296 

adaptive immune responses, MIF is considered a critical mediator in various immune and inflammatory 297 

diseases [99-102]: its expression has been found to be increased in all forms of glomerulonephritis although 298 

not in minimal change nephrotic syndrome [98]. 299 

MIF has the ability to override the inhibitory effects of GCs on the immune system: when present at 300 

low levels, GCs up-regulate MIF, while at higher GC concentrations, a counter-regulatory mechanism is 301 

observed and GCs down-regulate this cytokine expression [103, 104]. The MIF gene is located on 302 

chromosome 22q11, and recently a G-173C (rs755622) polymorphism, that involves a G to C substitution at 303 

base pair 173 of the 50-flanking region, was found to be strongly associated with higher MIF expression in 304 

vitro [101]. Berdeli et al. [105] and Vivarelli et al. [106] have investigated this polymorphism in Turkish and 305 

Italian children with INS (214 and 257 respectively) and found that the frequency of the C allele was higher in 306 

patients than in controls (19 vs 8%, OR=2.5, 95 CI% 1.4–4.2, p = 0.0007 [105] and 32 vs 22% OR=1.67, 307 

95% CI 1.16–2.41; p = 0.006 [106]); in addition, the polymorphism was significantly more frequent in steroid 308 

resistant patients than in sensitive ones (33 vs 12% OR=3.6, 95 CI% 2.2–6.0, p < 0.0001 [105] and 44 vs 309 

23% OR 2.61, 95% CI 1.52–4.47; p = 0.0005 [106]). Interestingly Choi et al. [107], investigating the same 310 

SNP in 170 Korean children with INS could not find any association between the G-173C polymorphism and 311 

clinical parameters, renal histological findings and steroid responsiveness.  312 
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Moreover, in a recent study, Swierczewska et al. [108] investigated the role of seven other 313 

polymorphic variants of the MIF gene: two polymorphisms, rs2070767 (C>T) and rs2000466 (T>G), were 314 

found to have a significantly different distribution between 30 resistant and 41 sensitive INS patients 315 

(rs2070767, CT vs CC, OR=3.00, 95 CI% 1.043-8.627, p=0.047; rs2000466, TG+GG vs TT, OR=0.321, 95 316 

CI% 0.119-0.869, p=0.028); however, when linkage disequilibrium analysis was performed, the significance 317 

was lost.  318 

Finally, a recent meta-analysis of Tong and colleagues [109], considering all the articles cited before, 319 

confirmed that MIF G-173C polymorphism may increase the risk of renal disease and may be associated 320 

with GCs resistance in INS, especially in children. The pooled results, considering eight case–control studies 321 

and 2755 participants, indicated a significant association between MIF −173G/C polymorphism and renal 322 

disease risk (CC+CG vs GG, OR = 1.77, P < 0.01; C vs G, OR = 3.94, P < 0.01). 323 

 324 

Anti-inflammatory mediators 325 

IL-4: IL-4 is a potent anti-inflammatory [110] and a key cytokine involved in the development of allergic 326 

diseases, being required, together with other cytokines, for the class switching of B cells to immunoglobulin 327 

E (IgE) production [111]. INS is frequently associated with allergic symptoms and elevated serum IgE levels 328 

[112]. Increased serum IL-4 levels have been observed in patients with INS [113] and in particular in steroid 329 

sensitive patients in active stage compared with those in remission (p=0.033) and with healthy controls, 330 

(p=0.011) [68]; similar results were obtained by Prizna et al. in INS patients with active stage in comparison 331 

with patients in remission on steroids (p < 0.0001), in remission off steroids (p < 0.0001) and controls (p < 332 

0.0001) [114]. 333 

Genetic variants in IL4 may be associated with predisposition to INS, and to the clinical course of the 334 

disease [115-117]. A C>T exchange at position 590 upstream from the open reading frame of the IL4 gene 335 

(rs2243250) has been shown to be associated with elevated levels of IgE [118]. Tripathi et al. [97] 336 

demonstrated that this polymorphism influences the prognosis of the disease: indeed, the TT genotype was 337 

more frequent in 35 children with steroid resistant INS as compared to 115 steroid sensitive (OR = 7.29, 95% 338 

CI = 1.26-41.69, p = 0.0386). This observation was subsequently confirmed by Jafar et al. in a cohort of 150 339 

INS children (OR = 6.46, 95 CI% 1.11–37.66, p = 0.020) [96]. 340 

IL-4 signaling is mediated by the interaction of the cytokine with its receptor, mainly expressed in 341 

hematopoietic cells. The distribution of the IL-4 receptor  chain genetic polymorphism Ile50Val (rs1805010) 342 
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was studied in 85 Japanese INS patients grouped according to the number of relapses: the mutated 343 

genotype was significantly less frequent in patients who experienced four or more relapses (3.3%) compared 344 

to those who experienced three or less recurrences (29.8%, p = 0.007) [119]. However, these data were not 345 

confirmed by Tenbrock et al. [120] who could not find an association between patient genotypes and INS 346 

clinical courses (measured as frequent relapses (29 children) and steroid dependence (35) or resistance 347 

(11)). 348 

 349 

IL-6: IL-6, a multifunctional cytokine that plays a central role in host defenses [121], and has both 350 

pro- and anti-inflammatory effects. In INS, plasma levels of this cytokine were associated to disease 351 

susceptibility, being increased in patients compared to controls [122], and to treatment responsiveness, 352 

being enhanced in steroid resistant patients compared to steroid sensitive and controls (p < 0.05) [123]. 353 

The IL-6 gene, located on chromosome 7p21-24, presents different polymorphisms. Among these, the 354 

common G>C SNP at position -174 in the promoter region, influences the transcriptional regulation and the 355 

cytokine plasma levels in different renal diseases [124, 125]. Tripathi et al. [97] found that the GG genotype 356 

was more frequent in 35 INS steroid resistant children (11.4%), as compared with 115 steroid sensitive 357 

patients (0.9%; OR = 14.71, 95% CI = 1.59-136.46, p = 0.0121). These results have been confirmed by Jafar 358 

et al. [96] (OR = 31.40, 95% CI = 3.62–272.3, p < 0.001) suggesting that this polymorphism could be a 359 

causative factor for non-responsiveness toward steroid therapy among INS children. 360 

 361 

IL-10: IL-10, known as human cytokine synthesis inhibitory factor, is produced primarily by monocytes 362 

and to a lesser extent by lymphocytes. IL-10 has pleiotropic effects in immunoregulation and inflammation 363 

[126] [127]; it inhibits the production of inflammatory mediators, and can be considered as a natural 364 

immunosuppressant of TNF [128].  365 

GCs upregulate the expression of IL-10 [69], that in turn acts synergistically with GCs, as 366 

demonstrated in whole-blood cell cultures where the presence of IL-10 improved the ability of 367 

dexamethasone to reduce IL-6 secretion. In addition, the cytokine increased the concentration of 368 

dexamethasone-binding sites in these cells, with no effect on the binding affinity [126].  369 

IL-10 expression was significantly reduced in T regulatory cells from adult INS patients (10.3 ± 3.4 370 

pg/ml) compared to healthy donors (19.3 ± 5.9 pg/ml; p < 0.01) [129]; similar results were obtain by Araya 371 
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and colleagues; p<0.0191) [130], while no significant difference was found between IL-10 serum levels of 372 

INS pediatric patients in nephrotic phase (heavy proteinuria) and in remission [111]. 373 

The human IL10 gene is located on chromosome 1q31–q32. Previous studies have demonstrated that 374 

an A>G polymorphism at nucleotide position –1082 in the promoter region (rs1800896) influences the IL-10 375 

transcriptional levels. The mutated genotype has been associated with significantly higher cytokine plasma 376 

levels in acute lymphoblastic leukemia patients [131], as well as with a positive prednisone response in 377 

childhood acute lymphoblastic leukemia [33, 131] and in patients with rheumatoid arthritis [132]. 378 

To authors’ knowledge, association of IL10 polymorphisms and the response to steroid therapy in INS 379 

has never been investigated; in a pharmacogenetic study on rs1800896, the GA/GG genotypes have been 380 

associated, in 191 patients, with the progression of the disease in both IgA nephropathy and focal segmental 381 

glomerulosclerosis (the GA/AA genotypes was over-represented in fast progressors: OR = 1.25, 95% CI 382 

1.07–1.47, p = 0.012) [133]. 383 

 384 

GLCCI1: GLCCI1 was initially identified as a transcript rapidly up-regulated in response to GC 385 

treatment in cells derived from a thymoma [134]. In the kidney, it is expressed specifically in mesangial cells 386 

and podocytes and knockdown of the transcript impairs the glomerular filtration barrier in developing 387 

zebrafish [135]. Recently in a genome-wide association study, which examined the response to inhaled GCs 388 

in 1041 asthmatic patients, two SNPs (rs37972 and rs37973) in complete linkage disequilibrium in the 389 

promoter region of GLCCI1 have been associated with a poorer response to steroid treatment (OR = 1.52, 390 

95% CI = 1.13 - 2.03) [136].  391 

Cheong and colleagues [137] genotyped 211 pediatric patients with INS and 102 controls for the 392 

rs37972 and rs37973, and did not found any statistically significant associations between the SNPs analyzed 393 

and either the development of INS, or initial response to steroid therapy.  394 

 395 

3. P-glycoprotein (P-gp) and drug metabolizing enzyme CYP3A5 396 

P-glycoprotein 397 

P-gp is a 170-kDa ATP dependent membrane transporter, an efflux pump responsible for resistance to 398 

a number of structurally and functionally unrelated drugs, including natural and synthetic GCs [138], that are 399 

actively exported from cells against the concentration gradient [139]. Several studies have been conducted 400 

to evaluate the association of P-gp expression with the responsiveness to GCs in many diseases among 401 



 15 

which INS: Wasilewska et al. [140] found that P-gp expression in CD3 positive lymphocytes was significantly 402 

higher in patients with INS than in controls (p = 0.0004). A significant difference was also observed between 403 

controls (1.24 ± 0.58) and both steroid dependent (7.00 ± 3.09, p = 0.0001), and the frequent relapsing group 404 

(5.56 ± 4.07, p = 0.0002); while the difference with the non frequent relapsing group was smaller (p < 0.05). 405 

Moreover a significant difference was observed between non frequent relapsing (3.02 ± 3.46) and both 406 

steroid dependent (p < 0.001) and frequent relapsing group (p < 0.001) [141]. P-gp mRNA expression levels 407 

in PBMCs were found to be variable in patients with INS prior to remission, but decreased after complete 408 

remission (p < 0.003) [142]. In another study by Stachowski et al. [143], mRNA expression in peripheral 409 

lymphocytes of patients with steroid, cyclophosphamide or cyclosporine resistant INS was higher than in 410 

lymphocytes from patients who were sensitive to these drugs (p < 0.001). Moreover, in a recent work, 411 

Prasad et al. [68] found that steroid therapy in INS decreased P-gp expression in peripheral blood 412 

lymphocytes (absolute P-gp expression at baseline 66.59 ± 21.13 vs remission 35.84 ± 22.26, p < 0.05) . 413 

P-gp is encoded by the ATP-Binding Cassette, sub-family B (ABCB1; multi drug resistant protein 1 414 

MDR1) gene, located on human chromosome 7q21.12 [144], and several studies have demonstrated that 415 

genetic polymorphisms in this gene lead to functional alterations and are associated with altered drug 416 

disposition [145, 146]. A synonymous SNP in exon 26 (C3435T, rs1045642) was the first variation to be 417 

associated with altered protein expression [145]. SNPs at exons 12 (C1236T, rs1128503), 21 (G2677T/A, 418 

rs2032582) and 1b (T-129C, rs3213619) may also be associated with altered transport function or 419 

expression [147].  420 

In 108 pediatric INS patients, Wasiliewska et al. [148] have studied the association between C1236T, 421 

G2677T/A and C3435T polymorphisms and the clinical course and treatment response. All individual 422 

polymorphisms were strongly associated with time to response to initial prednisone therapy (OR = 6.79, 95% 423 

CI: 1.96-23.54, p < 0.001 for 1236 T/T, OR = 13.7, 95% CI: 2.78–67, p < 0.001 for 2677 T/T and OR = 9.92, 424 

95% CI: 3.01–32.71, p < 0.001 for 3435 T/T), and the frequencies of the mutated allele were higher in late 425 

responders (53%, 52%, 66% for the C1236T, G2677T/A and C3435T polymorphisms respectively) than in 426 

early responders (24%, 19%, 32%). The TTT haplotype was also significantly associated with late steroid 427 

response compared to early response (49% vs. 19%, p = 0.0003). 428 

More recently, Choi et al. [107] have investigated the same polymorphisms (C1236T, G2677T/A and 429 

C3435T) in 170 Korean children with INS, finding that the frequencies of the TGC haplotype was significantly 430 

lower in the initial steroid responders (115 children) than in non-responders (35) (15.8 vs 29.0%; OR 0.46, 431 
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95% CI 0.27–0.78, p = 0.004). Jafar at al. [149], in 216 patients with INS and 216 controls, found that the 432 

homozygous mutations of G2677T/A SNP was associated with steroid resistance (18% steroid resistant vs 433 

6% steroid responsive OR = 3.39, 95% CI 1.29–8.93, p = 0.011) and that the combination of mutated 434 

genotype of SNP G2677T/A and C3435T synergistically increased the risk of developing steroid resistance 435 

in patients with INS (5% in steroid resistant patients, 2% in steroid responsive and 1% in controls, p = 0.038).  436 

Chiou et al. [150] also investigated in 74 children with INS the same polymorphisms. They could find 437 

only a significant association of C1236T polymorphism with steroid resistance: the frequency of the T allele 438 

was significantly higher in steroid resistant patients than in sensitive ones (81 vs. 62%; OR = 2.65, 95 % CI 439 

1.01-6.94; p = 0.042). 440 

In a recent study Youssef et al. [151] evidenced that the mutated and heterozygous G2677T/A 441 

variants were significantly more frequent in 46 non-responders INS patients (28%) than in 92 responders 442 

(20%; OR = 2.9, 95% CI 0.95–9.21, p = 0.016). Finally Cizmarikova et al. [152] also found in 46 INS patients 443 

a significantly increased chance of therapeutic response in children carrying the 3435CT genotype (OR = 444 

5.13, 95% CI 1.18-22.25, p = 0.022). 445 

As shown in Table 1, P-gp has been largely studied in INS patients, and the results seem to be the 446 

most coherent among the polymorphisms studied in this disease. 447 

 448 

CYP3A5 449 

The human cytochrome P450 (CYP) family comprises a number of CYP isoforms that have important 450 

functions in the reductive and oxidative metabolism of many endogenous and exogenous compounds, 451 

among which steroids. CYP3A5*3 is an A to G transition (A6986G) within intron 3 of CYP3A5 gene that 452 

creates an alternative splice site in the pre-mRNA, producing an aberrant mRNA with a premature stop 453 

codon. CYP3A5*3 homozygotes (GG genotype) lack CYP3A5 expression, while individuals with at least one 454 

CYP3A5*1 wild-type allele (AA and AG genotypes) express the protein [153]. In a recent study of Chiou and 455 

colleagues, authors investigated polymorphic expression of CYP3A5 in 74 children with INS: the frequency 456 

of the G allele (A6986G SNP) was relatively higher in steroid resistant subjects than in steroid sensitive ones 457 

showing a trend of association, that however did not reach statistical significance (OR 2.63, 95 % CI 0.94–458 

7.37; p=0.059) [150] . 459 

 460 
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Genetic polymorphisms of CYP3A5 and ABCB1 could have a role on the pharmacokinetics of 461 

prednisolone; in particular, intestinal CYP3A5 and P-glycoprotein are important in the absorption, systemic 462 

drug distribution and cellular accumulation of glucocorticoids. However, a study of Miura et al. [154] found 463 

only a small effect of CYP3A5 and ABCB1 genetic polymorphism on prednisolone pharmacokinetics. 464 

Intracellular accumulation of GCs within lymphocytes, influenced by the expression of P-gp on these cells, is 465 

probably more important and could influence steroid response in INS.  466 

 467 

CONCLUSION  468 

GCs are used in the treatment of active INS to induce remission of proteinuria, but inter-individual 469 

differences in their efficacy and side effects have been reported. A main goal for clinicians is therefore to 470 

improve the efficacy and safety of these agents and, when possible, to reduce steroid exposure. This is 471 

particularly important in patients that do not respond and will suffer considerable steroid side effects without 472 

any clinical gain, or in patients that will be dependent to steroid treatment and will not be able to withdraw the 473 

drug, in whom switching to other therapy as soon as possible could be very important. Molecular 474 

mechanisms involved in variability in GC response are still not completely known, but advance in 475 

pharmacogenomics could contribute to the optimization and personalization of therapy.  476 

This review is about the current literature on the molecular mechanisms of GC anti-inflammatory 477 

action and the role of genetic polymorphisms in variable GC response in patients with INS. Results of 478 

reported papers are not conclusive and often in contradiction, and at present none of the potential 479 

pharmacogenetic markers is strong enough to be used in clinical practice.  480 

 481 

FUTURE PERSPECTIVES 482 

In the future, beside candidate gene approach it would be necessary to perform sequencing of all the 483 

genes involved in the GC mechanism of action, to obtain new comprehensive information. Recently, genetics 484 

have focused the attention on copy number variation (CNV) and DNA methylation analyses. CNVs are 485 

genomic alterations that result in the cell having an abnormal number of copies of one or more sections of 486 

the DNA. Some CNVs have already been associated with susceptibility to diseases or response to drug 487 

therapy but, until now, no data are available for GCs in relation to clinical response. In addition, DNA 488 

methylation of gene promoters has been associated with transcriptional inactivation: changes in DNA 489 

methylation can lead to differences in gene expression levels and thereby influence drug response. All these 490 
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approaches need to be performed in larger and well-characterized patient cohorts, uniformly treated and 491 

systematically evaluated, and subsequently validated in other independent cohorts. 492 

In conclusion, these new strategies for the identification of pharmacogenetic determinants associated 493 

with GC response in paediatric INS patients, and the consequent personalization of therapy based on this 494 

information, will result in higher quality and less toxic treatment of children, avoiding inadequate regimens or 495 

time wasting and reducing overall health costs.  496 

 497 

Executive Summary 498 

 INS is the most frequent primary glomerular disease in the pediatric population and GCs are the first 499 
line therapy in these patients. However there is a considerable inter-individual variability in response 500 
to GCs that is clinically difficult to predict. 501 

 Genetic factors could influence GC response, therefore pharmacogenetics has a promising role in 502 
personalized medicine even if, to date, not conclusive results have been reported for steroid clinical 503 
response. 504 

 Several polymorphisms in genes involved in GC molecular mechanism (GR heterocomplex, pro- and 505 
anti-inflammatory mediators and P-gp) could affect GC response in INS patients. 506 

GR heterocomplex  507 

 The NR3C1 BclI, rs33389 and rs33388 SNPs have been associated with a higher steroid sensitivity 508 
while GR-9β and TthIIII haplotype was associated with steroid dependence. 509 

 The expression level of Hsp90 mRNA was increased in PBMCs obtained from GC-resistant patients 510 
in comparison to GC-sensitive ones. On the contrary, to date, no data on Hsp90, FKBP51, FKBP52, 511 
p23, Hop and IPO13 gene polymorphisms and therapeutic outcome in INS are available; 512 
pharmacogenetic studies are therefore still required. 513 

Pro- and anti-inflammatory mediators involved in INS pathogenesis  514 

 A complex bi-allelic polymorphism in the promoter region of the gene coding for the p40 subunit of 515 
IL-12 gene has a higher frequency in steroid dependents compared to steroid responders. 516 

 The TNF-α G-308A polymorphism has also been investigated and the AA genotype has been 517 
suggested to be a causative factor of non responsiveness to GC therapy. 518 

 MIF G-173C polymorphism may increase the risk of renal disease and may be associated with GCs 519 
resistance risk especially in children. 520 

 The IL-4 C590T mutated genotype has been associated with steroid resistance in children with INS. 521 
 The wild type genotype of G-174C polymorphism in IL-6 gene has been suggested to be a causative 522 

factor for GC non-responsiveness. 523 

P-glycoprotein (P-gp)  524 

 Variant genotypes in ABCB1 gene (C3435T,G2677T/A, C1236T) alone and in haplotype have been 525 
correlated with steroid resistance.  526 

527 
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Legend to the figure 918 

Figure 1: Molecular mechanisms of action of glucocorticoids. 919 

 920 

Table 1 921 

Summary of studies reporting genetic analysis of NR3C1 in INS patients. 922 

 923 

Table 2 924 

Summary of studies reporting genetic analysis of pro- and anti-inflammatory mediators in the 925 
downstream signaling pathway of the GC-GR complex in INS patients. 926 

 927 

Table 3 928 

Summary of studies reporting genetic analysis on the role of P-gp in INS patients. 929 



First author Year Ethnicity Case/Control Age (mean) Results 

Results for genetic analysis of NR3C1 in INS patients 

Zalewski G et al. [42] 2008 
Caucasian 

(Poland) 
118/136 5.1/NA 

BclI (G>C), rs33389 (C>T) and rs33388 (A>T) GTA aplotype was associated with a higher steroid 

sensitivity. 

Cho HY et al. [43] 2009 
Asian 

(Korea) 
190/100 4.95/NA 

No correlation between the INS onset age, initial steroid responsiveness, renal 

pathologic findings, or progression to end-stage renal disease and ER22/23EK, N363S, and BclI 

polymorphisms. 

Teeninga N et al. [44] 2014 
Caucasian 

(Holland) 
113 4.1 

Carriers of GR-9β + TthIIII mutated haplotype had a significantly higher incidence of SD compared 

with non-carriers. 

Ye J et al. [52] 2006 
Asian 

(China) 
138 7.1 No association found with the studied polymorphisms. 

SD: steroid dependant; FR: frequent relapser; NFR: non frequent relapse; SS: steroid sensitive; SR: steroid resistant; NR: non responder 

 

 



First author Year Ethnicity Case/Control Age (mean) Results 

Results for genetic analysis of pro- and anti-inflammatory mediators in the downstream signaling pathway of the GC-GR complex in INS patients 

IL-12      

Muller-Berghaus J et 

al. [8] 
2008 

Caucasian 

(Germany) 
79 10.7 

Significantly higher allele frequency of IL12Bpro-1 in steroid-dependent children compared to 

children without SD. 

TNF      

Kim SD et al. [95] 2004 
Asian 

(Korea) 
152/292 NA/NA No association with TNF and IL-1beta. 

Jafar T et al. [96] 2011 
Asian  

(India) 

150/569 

115(SS)/35(SR) 
4.8/NA Association for TNFA (G308A) comparing patient with controls and SR group with SS group. 

Tripathi G et al. [97] 2008 
Asian  

(India) 
115(SS)/35(SR) 4.8 The AA genotype of TNFA (G308A) was associated with lower steroid response. 

MIF      

Berdeli A et al. [105] 2005 
Caucasian 

(Turkish) 

214/103 

137(SS)/77(SR) 
3.5/NA 

Significant increase in MIF G-173C GC genotype and C allele frequency in INS and higher 

frequency of CC genotype in the SR group. 

Vivarelli M et al. [106] 2008 
Caucasian 

(Italian) 
257/355 5.8/NA 

Frequency of MIF -173*C allele was higher in patients with INS than in controls and more frequent 

in SR patients compared with steroid responders. 

Choi HJ et al. [107] 2011 
Asian 

(Korea) 
170/100 5.17/NA No association with MIF G-173C. 

Swierczewska M et 

al. [108] 
2014 

Caucasian 

(Poland) 
71/30 10.1/10.1 

MIF CT genotype of rs2070767C>T associated with the risk of SR, while the distribution of TG 

genotype of rs2000466T>G was higher in SS children compared to SR. 

IL-4      

Jafar T et al. [96] 2011 
Asian  

(India) 
150/569 4.8/NA 

Association for IL-4 (C590T) polymorphism comparing patients with controls and SR group with SS 

group. 

Tripathi G et al. [97] 2008 
Asian  

(India) 
115(SS)/35(SR) 4.8 The TT genotype of IL-4 (C590T) polymorphisms associated with reduced steroid response. 

Ikeuchi Y et al. [119] 2009 
Asian  

(Japan) 
85/127 NA 

IL-4R alpha (Ile50Val) mutated genotype less frequent in patients with 4 or more relapses compared 

to those who experienced fewer recurrences. 

IL-6      



First author Year Ethnicity Case/Control Age (mean) Results 

Jafar T et al. [96] 2011 
Asian  

(India) 
150/569 4.8/NA Association for IL-6 (G174C) comparing patient with controls and SR group with SS group.  

Tripathi G et al. [97] 2008 
Asian  

(India) 
115(SS)/35(SR) 4.8 The GG genotype of IL-6 (G174C) polymorphism associated with reduced steroid response. 

SD: steroid dependant; FR: frequent relapser; NFR: non frequent relapse; SS: steroid sensitive; SR: steroid resistant; NR: non responder 

 



First author Year Ethnicity Case/Control Age (mean) Results 

Results for P-gp expression analysis 

Wasilewska A et al. 
[141]  

2006 
Caucasian 
(Poland) 

88/18 10.0/9.18 Expression of P-gp higher in SD and FR than in NFR. 

Wasilewska A et al. 
[140] 

2006 
Caucasian 
(Poland) 

18/18 5.75/6.50 Expression of P-gp higher in patients in relapse than in controls and decreased in remission. 

Funaki S et al. [142] 2008 
Asian 

(Japan) 
14 10.4  mRNA levels decrease in complete remission in SS. 

Stachowski J et al. 
[143] 

2000 
Caucasian 
(Poland) 

39 (range 3-8) Higher expression of P-gp mRNA in SR than in SS. 

Prasad N et al. 68] 2015 Asian (India) 26/10 8.0/NA Expression of P-gp higher at baseline and at the time of relapse compared to remission. 

Results for genetic analysis of SNPs C1236T, G2677T/A, C3435T 

Wasilewska A et 
al.[148] 

2007 
Caucasian 
(Poland) 

108/135 11.13/6.23 SNPs associated with time to response, TTT haplotype associated with late steroid response. 

Choi HJ et al.[107] 2011 
Asian 

(Korea) 
170 5.17 

Frequencies of 1236CC and CT higher in initial steroid responders than in NR, frequency of TGC 
haplotype lower in the initial steroid responders than in NR. 

Jafar T et al.[149] 2011 Asian (India) 216/216 5.0/6.0 
Frequency of 2677GG/AA higher in SR than in SS. Combination of 3435TT and 2677TT/AA 
increased the risk of SR. 

Chiou YH et al.[150] 2012 
Asian 

(Taiwan) 
74 3.9(SS), 7.2(SR) 1236 T allele associate with SR. 

Youssef DM et 
al.[151] 

2013 
African 
(Egypt) 

138/140 2.7(SS), 4.6(SR) Frequency of mutated and heterozygous G2677T/A higher in SR. 

Cizmarikova M et 
al.[152] 

2015 
Caucasian 
(Slovakia) 

46/100 6.42/7.89 3435TC was associated with SS. 

SD: steroid dependant; FR: frequent relapser; NFR: non frequent relapse; SS: steroid sensitive; SR: steroid resistant; NR: non responder 






