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Abstract: Results are presented of a feasibility study of three-dimensional
X-ray tomographic mammography utilising in-line phase contrast. Exper-
iments were performed at SYRMEP beamline of Elettra synchrotron. A
specially designed plastic phantom and a mastectomy sample containing
a malignant lesion were used to study the reconstructed image quality as
a function of different image processing operations. Detailed evaluation
and optimization of image reconstruction workflows have been carried out
using combinations of several advanced computed tomography algorithms
with different pre-processing and post-processing steps. Special attention
was paid to the effect of phase retrieval on the diagnostic value of the
reconstructed images. A number of objective image quality indices have
been applied for quantitative evaluation of the results, and these were
compared with subjective assessments of the same images by three experi-
enced radiologists and one pathologist. The outcomes of this study provide
practical guidelines for the optimization of image processing workflows in
synchrotron-based phase-contrast mammo-tomography.
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1. Introduction

Breast cancer is one of the two leading causes of cancer fatalities among women in most in-
dustrialised countries [1,2]. Some types of breast cancer can be aggressive, with success of its
treatment depending heavily on its early detection when it is small in size and less likely to
have spread to other vital organs. Therefore, health authorities in many countries recommend
regular mammographic screening of women over 40 years of age. Two-view 2D mammography
is currently the technique used for this purpose.

The application of screening programs over large populations has contributed to an important
reduction of breast cancer mortality [3,4], however X-ray 2D conventional mammography still
has two important limitations. The technique is intrinsically limited as it represents a 3D struc-
ture as a 2D projection image, leading to false negative cases where cancers are camouflaged
by adjacent tissues, and false positive cases when “pseudo lesions” are created by superimpo-
sition of normal overlapping structures. The other major limitation is related to the minimal
difference in X-ray attenuation between normal breast tissues, and also between normal and
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abnormal breast tissues that implies low sensitivity imaging. These problems increase with in-
creasing breast tissue density. The reduced sensitivity in patients with dense breast tissue has
been only partially overcome with the introduction of new digital detectors [5]. Digital Breast
Tomosynthesis (DBT) and Computed Tomography (CT) solve the overlap of anatomical struc-
tures/tissues affecting planar 2D mammography and prospectively give considerable improve-
ment in the sensitivity and specificity of breast cancer diagnosis [6—9]. Despite that, the intrin-
sic limitation of standard radiology due to the small differences in X-ray attenuation between
the tissues composing the breast (mainly the glandular and tumor tissue) remains unsolved.
This has pushed the scientific research towards the development of new imaging modalities for
breast cancer diagnosis. In this scenario, the use of synchrotron X-rays, as gold standard radi-
ation, and phase contrast (PhC) techniques play an interesting role [10-14]. Among the PhC
techniques [15], propagation-based imaging (PBI) is particularly attractive as its implementa-
tion requires simply that the detector is moved a certain distance from the sample under study,
without the need for any additional experimental hardware.

The main concern for the application of CT in breast imaging with synchrotron radiation
(SR) is the dose delivered to the patient. If the dose could be kept at a level comparable to
that delivered in the present-day clinical 2D mammography or tomosynthesis, still ensuring
sufficient image quality, mammographic CT is likely to outperform the other imaging tech-
niques in terms of diagnostic value. To this aim, as a pre-requisite for successful translation
of SR tomo-mammography into clinical practice, it is essential to evaluate, quantify and opti-
mize the main parameters of the PBI-CT imaging technique, i.e. the choice of X-ray energy,
sample-to-detector distance, detector characteristics, strategies for CT scans and the reconstruc-
tion workflow. This needs to be done in order to maximize the image quality and therefore the
diagnostic information [16].

In this article, a comparison of different low-dose CT reconstruction workflows for tomo-
mammography is proposed. The opinion of expert radiologists was considered to support the
evaluation process. With the ultimate aim of an unsupervised comparison, several quantitative
metrics were computed to assess the quality of the reconstructed images. In addition to the
evaluation of common image characteristics (e.g., spatial resolution and signal-to-noise ratio -
SNR), new image quality indexes are also presented, which are supposed to take into account
the spatial resolution and noise sensitivity of the imaging setup simultaneously. The results
presented here refer to a study performed at the SYnchrotron Radiation for MEdical Physics
(SYRMEP) beamline of the ELETTRA synchrotron light source (Basovizza - Trieste, Italy),
which is so far the only synchrotron beamline where trials on human patients have been already
conducted in 2D projection mammography mode [17-19]. In this framework the SYRMA-CT
(SYnchrotron Radiation for MAmmography) project aims to set-up a new clinical trial of PhC
breast CT with synchrotron radiation in near future [20].

2. Materials and Methods
2.1. Imaging setup

The X-ray source at the SYRMEP beamline is a bending magnet and the monochromator is
based on a double Si(1,1,1) crystal working in Bragg configuration, it can deliver an X-ray
beam with an energy in the 8.5-40 keV range and an energy resolution of 103 [21]. The
horizontal acceptance covered by the front-end light port is 7 mrad. Therefore, the beamline
provides at the sample position located 23 m from the source, a laminar section X-ray beam
with a maximum area of about (160 x 3)mm? at 30 keV. A custom - built ionization chamber,
placed upstream to the sample, is used to determine the entrance air kerma on the sample and
hence to calculate the delivered dose. The detector used in this study is a DALSA Argus high
resolution CCD TDI sensor with a pixel size of 27 um and a maximum X-ray resolution up to
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15 Ip/mm. The phase contrast CT scans were taken in PBI modality with a sample to detector
distance of 1 m.

2.2.  Samples description and radiation dose assessment

A polycarbonate phantom with the diameter of 10 cm (Fig. 1(a)) containing 8 holes filled with
different materials to simulate X-ray absorption and refraction characteristics of breast tissue
was scanned at both high and low photon statistics (i.e. with different photon flux obtained by
interposing filters between the source and the sample). A tissue specimen sampled during a sur-
gical mastectomy obtained out of overleft material to be wasted was also scanned at high and
low statistic (Fig. 1(b)). Before data acquisition, in addition to standard fixation, the specimen
was sealed in a plastic bag under vacuum for a better conservation and handling. Prior to the
surgical mastectomy the patient expressed the agreement about the possibility to use this ma-
terial for scientific experiments. For both the considered samples the experimental parameters
are: energy = 32 keV, sample-detector distance = 1 m, number of projections = 3600, detector
binning = 2x2 with resulting voxel size = 54 um (due to a small geometrical magnification
of 24/23 =1.043 the effective pixel size of the detector, in the sample plane, is 51.75 yum).
CT scans at low statistic were performed with 3600 projections at an Average Glandular Dose
(AGD) calculated in the irradiated volume of 136 mSv. In order to obtain a value of AGD com-
parable to the clinical mammography, for each dataset only 1/10 of total projections with added
simulated Poisson noise were considered. To be specific, noise was increased by measuring the
standard deviation of a background area and multiplying it by a factor 3, thus the resulting AGD
released to the sample is reduced to about 1.5 mSv. The evaluation of AGD has been performed
from the values of air kerma measured by the ionisation chamber of the beamline and applying
a Monte Carlo simulation code for the assessment of the delivered doses in the glandular tissue.

(b)

Fig. 1. (a) Polycarbonate phantom where 1 = Glycerol (C3HgO3), 2 = Unknown tissue (Ma-
lignant), 3 = Water (H,0), 4 = Fibrous tissue, 5 = Calcium Chloride (CaCl,), 6 = Adipose
tissue, 7 = Paraffin wax, 8 = Ethanol (ErOH); (b) Reference image for the mastectomy
sample reconstructed with FBP algorithm and considering 3600 high statistic projections.
The red square indicates the region-of-interest used for the image quality assessment (see
Visualization 1).
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2.3.  Reconstruction workflows

In this manuscript reconstruction workflow refers to the entire process from the acquired pro-
jections to the final images, this means that it includes pre-processing steps, the reconstruction
algorithm and post-processing steps. In all the considered workflows, before the actual recon-
struction, the projections were flat-field corrected and normalized by considering the air win-
dows on the left and right side of the image as a reference. Then a ring removal filter [22] was
applied in order to better compensate the detector inhomogeneity [23, 24].

The considered CT reconstruction algorithms are: Filtered Back Projection (FBP) [25], Si-
multaneous Iterative Reconstruction Technique (SIRT) [26], Simultaneous Algebraic Recon-
struction Technique (SART) [27], Conjugate Gradient Least Squares (CGLS) [26], Equally
Sloped Tomography (EST) [28], Total Variation (TV) minimization [29] and an iterative FBP
algorithm based on the image histogram updates [30]. In addition, the effect of in-line single
distance phase retrieval was considered. The phase retrieval was performed prior to the actual
reconstruction by processing each projection independently, in accordance with the Homoge-
neous Transport of Intensity (TIE-Hom) Algorithm [31], using 6 /8 = 1000 (i.e. a value close
to the theoretical value of the ratio of the imaginary part to the real decrement of the relative
X-ray refractive index for glandular and adipose tissues) as implemented in X-TRACT soft-
ware [32]. A post-processing of the reconstructed images was also considered based on sim-
ple spatial filtering over a neighborhood of w x w pixels, including the optimal Epanechnikov
kernel [33] and the edge-preserving image denoising by the SUSAN method [34]. All these
reconstruction algorithms and image filters are available in X-TRACT software which can be
downloaded and verified on request (X-TRACT software, link to sign-up form available here:
http://www.ts—-imaging.net/Services/SignUp.aspx). A summary of the con-
sidered workflows is reported in Table 1 which also contains the abbreviations used throughout
the manuscript.

Table 1. Considered reconstruction workflows.

Abbreviation Phase retrieval Reconstruction  Post-processing
FBP no FBP [25] no

FBP-ITER no FBP-ITER [30] no

SIRT no SIRT [26] no

SART no SART [27] no

CGLS no CGLS [26] no

EST no EST [28] no

phr FBP yes FBP [25] no

phr FBP-ITER yes FBP-ITER [30] no

phr FBP-ITER Epanl7 | yes FBP-ITER [30] Epanechikov [33] (w =17)
phr FBP-ITER Susan5 | yes FBP-ITER [30] Susan [34] (w=5)
phr TV-MIN yes TV [29] no

phr SIRT yes SIRT [26] no

phr SART yes SART [27] no

phr CGLS yes CGLS [26] no

phr EST yes EST [28] no

2.4.  Quantitative evaluation of the images

The evaluation of the reconstructed images was carried out by means of full-reference and no-
reference image quality assessment indexes [35]. In the full-reference approach, a complete
reference image is assumed to be known. In this work, the reference image (Fig. 1) is the one
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obtained by applying the FBP reconstruction algorithm and considering all the available projec-
tions acquired with high statistics. The underlying assumption is that, when a large number of
high quality projections is available, the well-known and widely used FBP algorithm gives good
results and therefore it can be assumed as the reference reconstruction workflow. The adopted
indexes are: MSE - Mean Squared Error, SNR - Signal-to-Noise Ratio, UQI - Universal Quality
Index [36], NQM - Noise Quality Measure [37] and SSIM - Structural Similarity Index [35].
These characteristics are typically evaluated within a representative sub-region of the image
where the pixel intensity values can be considered approximately spatially stationary [38, 39].
While low values for the MSE index suggest a better image quality, higher values for SNR,
UQIL NQM and SSIM are instead expected when a higher quality image is considered.

The dimensionless no-reference intrinsic quality characteristic Qs which incorporates both
the noise propagation and the spatial resolution properties of a linear system was computed

according to the equation:
_ SNRyyu

ST p2A,

in

e))

where Fj, is the mean value of the incident photon fluence (the number of incident photons
per n-dimensional volume, in the current context, per unit area), Ax is the spatial resolution
of the imaging system and SNR,,; = Syut/Oour is the output signal-to-noise ratio (see details
in [33], [16]). The Contrast-to-Noise ratio (CNR) and the Full Width Half Maximum (FWHM)
no-reference indexes were also taken into account. The CNR was calculated by selecting two
meaningful areas of the image containing two strongly different gray levels: a region inside the
lesion and a region within the adipose tissue. Then, the following formula was applied:

1/2 ‘<ﬁlesion> - <ﬁadipose>|

CNR=A" 2)
feature 1/2
[(O-lzesion + O-jdipose)/Z] /

where A}éitm is the area of the corresponding image feature measured in pixels, (Bj.sion) and

<Badip()se> are the average values of the imaginary part of the refractive index in the lesion
and in the adipose tissue, respectively, and Glzesi o and Gazdi pose AT€ the variance of noise in the
lesion and the adipose tissue, respectively [16]. Since the evaluation of FWHM requires a well
defined image edge, this index was evaluated by considering the images of the polycarbonate
phantom sample. The measure was carried out by taking ten line profiles (60 pixels length) at a
polycarbonate - CaCl, detail interface. The profiles were then fitted with a non-linear sigmoid
function. This function was then differentiated and the FWHM of the obtained Gaussian curve
was evaluated (Fig. 2) [40]. The choice to evaluate edges quality on this particular detail was
made because CaCls is the only detail that presents sufficient differences in gray levels allowing
the measure; further in some images reconstructed without phase retrieval it is the only visible
detail. It has to be pointed out that the /f ratio, used for the phase-retrieved reconstructions,
is not optimized on the CaCl, but on the glandular and adipose tissue, so the selected detail is
heavily affected by the phase-retrieval blurring effect.

2.5. Radiological assessment

Three experienced radiologists and one pathologist with long experience in pathological cor-
relation with radiological imaging expressed a blind opinion in terms of identification of the
lesion borders and spiculations, visibility of small connectival residues included in the adipose
tissue, perceived contrast and spatial resolution of each reconstructed image. They were asked
to give a global score from 0, for the worst case, to 4, corresponding to the best image, i.e.
the FBP reconstructed slice obtained from the full statistic dataset with 3600 projections (float
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Fig. 2. Edges quality measurement method. On the left part, the figure shows ten individual
profiles (blue dots) and the fitted sigmoid function (red dots) used for the evaluation; the
right part displays the obtained Gaussian curve where FWHM was calculated.

values were allowed). After a first evaluation, they did a more detailed rating comparing groups
of two or three images that previously received the same assessment.

Based on their opinion, the images were then classified into three categories: no-diagnostic
power (mean radiological score from O to 2), i.e. it seems to be hard to diagnose the tumor; poor
diagnostic power (mean radiological score from 2 to 3), i.e. it would be possible to diagnose the
tumor but without an accurate evaluation of spiculations and/or connnectival residues existing
in the tissue; full diagnostic power (mean radiological score higher than 3), i.e. all the relevant
features are detectable and quantifiable.

3. Results and discussion

Figures 3, 4, 5 report some of the reconstructed images considered in this study. The images
are grouped according to the three categories mentioned above.

Table 2 reports the computed values for the full-reference indexes when considering the im-
age of the breast tissue sample after the application of all the considered reconstruction work-
flows. First, it has to be pointed out that the most widespread and well known reconstruction
method based on the FBP algorithm is definitely outperformed by the other approaches. In-
deed, the computed indexes suggest that the global quality of the images reconstructed with
iterative algorithms is significantly higher than the one obtained with FBP. This is in line with
the general consensus that when dealing with a limited number of noisy projections, algebraic
techniques are better suited for the reconstruction of tomographic images. The benefit of the
phase retrieval pre-reconstruction processing should be noted as well. When comparing the
performance of the same reconstruction algorithm with and without the application of phase
retrieval (e.g. SIRT vs phr SIRT), better MSE and SNR are revealed as well as a higher NQM
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(a) FBP (b) FBP-ITER (c) CGLS

Fig. 3. No-diagnostic power. Due to the specific clinical context the main lesion is still
noticeable but a global poor contrast to noise ratio can be perceived and connectival
residues are not visible. For the high resolution images see the additional supplemen-
tary material available in Visualization 2, Visualization 3, Visualization 4, Visualization 5,
Visualization 6, and Visualization 7.

- | |
(a) phr FBP-ITER Epanl7 (b) phr FBP-ITER Susan5 (c) phr TV-MIN
Fig. 4. Poor-diagnostic power. Here the main lesion is well detectable thanks to the in-
creased CNR, however the small connectival residues in the parenchimal area are yet not
fully resolved, as well as the spiculations and the lesion borders. For the high resolution im-

ages see the additional supplementary material available in Visualization 8, Visualization 9,
Visualization 10, Visualization 11, Visualization 12, and Visualization 13.

value. The structural similarity index suggests an increased image quality as well. On the other
hand, the UQI index seems to be less sensitive to the benefits of phase retrieval. A lower UQI
is recorded for e.g. the phr SART with respect to the SART reconstruction workflow while, in-
stead, the MSE, SNR, NQM and SSIM suggest a better global image quality for the phr SART.
Moreover, a similar situation is observed for the group of FBP-ITER methods. The MSE, SNR,
NQM and SSIM indicate a better quality for this groups compared with the other reconstruc-
tion approaches when phase retrieval is considered. However, the UQI index does not seem to
highlight the performances of this FBP-ITER based group. When adding post-processing filters
to the FBP-ITER algorithm, the UQI index again seems unable to reveal differences that, on
the other hand, MSE, SNR, NQM and SSIM seem to suggest.

The values of the no-reference quantitative metrics are reported in Table 3. Both the phantom
and the tissue sample were considered to validate this approach. Since the the resultant trend
was quite similar in both cases, for simplicity and experimental relevance, it was chosen to
report only the numerical values computed for the tissue sample. For the sake of clarity, these
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| | |

(a) phr SART (b) phr SIRT (c) phr EST

Fig. 5. Full-diagnostic power. The main lesion with all the relevant features is clearly visi-
ble and quantifiable.For the high resolution images see the additional supplementary mate-
rial available in Visualization 14, Visualization 15, and Visualization 16.

Table 2. Numerical results of the full-reference quantitative image quality assessment.

MSE SNR[dB] UQI NQM SSIM
FBP 167.0E—07 291 0.0073 891 007
FBP-ITER 21.1E—07  6.09 0.0204 694  0.12
SIRT 62E—07 1141 0.0403 10.00 0.28
SART 47E—-07  12.54 0.0475 931 0.9
CGLS 95E—07  9.54 0.0338 9.19  0.25
EST 20.1E—07 629 0.0103 924  0.15
phr FBP-ITER 21E—-07 1617 0.0496 13.10 0.47
phr FBP-ITER Epanl7 | 1.6E—07  17.25 0.0352 1422 0.71
phr FBP-ITER Susan5 | 1.5E—07  17.57 0.0374 1475 0.71
phr TV-MIN 15E—07  17.52 0.0419 1429 0.69
phr FBP 22E—-07 1588 0.0403 1291 0.51
phr SIRT 1.JE—07  16.92 0.0402 1299 0.67
phr SART 1.7E—07  16.94 0.0408 12.82 0.67
phr CGLS 1.8E—07  16.88 0.0419 1295 0.65
phr EST 1.8E—07  16.68 0.0361 1298 0.61

metrics were also applied to the image reconstructed with the FBP algorithm and considering
all the projections acquired at high statistics (reference image).

The two general trends that have been identified with the use of full-reference image quality
indexes (i.e. the improvement of the quality as the consequence of using iterative CT reconstruc-
tion algorithms, compared to FBP, and also as a result of including the TIE-Hom phase retrieval
into the reconstruction workflow), are repeated in the measured values of the no-reference qual-
ity index Q; (Table 3). The negative effect of lower spatial resolution on the Qy values can be
seen for ”phr FBP-ITER Epanl7” method, where the use of a broad (17-pixel wide) Epanech-
nikov filter led to the deterioration of the spatial resolution and, as a result, to a lower Q; score,
even though the CNR was considerably higher than in the ”phr FBP-ITER” method, i.e. without
the post-processing with the Epanechnikov filter. On the other hand, the use of edge-preserving
filters in the methods like ”phr FBP-ITER Susan5” or ”phr TV-MIN” did not lower the spatial
resolution to the same degree and thus resulted in higher Q; values.

As regards to the CNR and the FWHM values it has first to be reminded that they require
a joint discussion since CNR solely can lead to misleading conclusions when computed after
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e.g. post-processing the reconstructed image with a low pass filter. In fact, in this case, the the
smoothing process produces an enhancement in contrast and noise but it negatively affects the
spatial resolution. To better understand the duality of these two no-reference indexes, Fig. 6
reports in graphical form the relation between CNR' (contrast to noise ratio normalized by the
selected area) and FWHM. The values for the reference image are also plotted to better show
that an optimal reconstruction workflow should be as close as possible to the reference, i.e. it
should present a low FWHM value and high CNR. The results for the FBP workflow are not
represented in Fig. 6 because it was impossible to identify an edge in the reconstructed image
to be used for the computation of the FWHM. This confirms what already underlined after the
application of the full-reference indexes, i.e. the iterative approaches overcome the FBP when
dealing with a reduced number of noisy projections. From both Table 3 and Fig. 6 it could be
noticed that the already underlined benefit of the phase retrieval pre-processing is due mainly
to an increased CNR but, as expected, a degradation of the edges quality, i.e. a lower value for
the FWHM, is also noticeable in the images where phase retrieval has been applied. In order to
better appreciate the effects of this pre-reconstruction processing, phase retrieval was applied
also to the reference image and the no-reference indexes were assessed. The computed values
are: CNR’ = 30.53 , FWHM = 5.82, QO cancer = 62 and Qadipose = 38. Again, a substantial
improvement in the contrast with a slight reduction of the edges quality is noticeable. This
confirms that the quality of the reconstructed image is altered mainly by the phase retrieval step
and not by the specific reconstruction algorithm.

Table 3. Numerical results for the no-reference quantitative image quality assessment.

CNR’ FWHM [pixel] | Qscancer Qsadipose
Reference image 8.88 2.03 18 12
FBP 0.20 - 1 0.5
FBP-ITER 0.67 11.47 2 1
SIRT 1.53 12.17 3 2
SART 1.89 13.56 4 3
CGLS 1.14 10.52 3 2
EST 0.73 8.48 2 1
phr FBP-ITER 4.62 11.01 8 5
phr FBP-ITER Epanl7 | 15.18 12.88 5 4
phr FBP-ITER Susan5 | 1647 12.67 17 13
phr TV-MIN 14.06 6.03 22 13
phr FBP 5.37 17.16 8 6
phr SIRT 12.58 16.35 13 10
phr SART 12.60 16.32 11 8
phr CGLS 10.58 16.43 14 10
phr EST 8.55 15.97 11 8

Table 4 reports the results of the subjective evaluation of the images performed by the expert
radiologists and the pathologist. This subjective evaluation is fundamental to better understand
if the benefits in terms of contrast resolution with the simultaneous reduction of edges qual-
ity induced by the phase retrieval are tolerated during the radiological evaluation process. The
analysis of Table 4 with respect to Fig. 6 suggests that, at first, the observers focus the attention
on the contrast resolution of the images. If an insufficient contrast is detected, a radiologist
judges an image as meaningless for the diagnosis process. Beyond a level of contrast consid-
ered acceptable, the radiologists prefer the images having the highest edges quality (i.e. the
lowest value of FWHM). Therefore, once this acceptable contrast level is identified, it seems
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Fig. 6. Full Width Half Maximum with Contrast to Noise Ratio measured on polycarbonate
phantom. CNR’ measure is CNR normalized over the selected area.

that spatial resolution has to be privileged. This is because the diagnosis process for this specific
application is based mainly on the morphology of the lesions in the tissue rather than contrast.
According with this, phr FBP-ITER Susan5 and phr FBP-ITER E panl7 reconstructions work-
flow should have been judged as full diagnostic power images. Nevertheless additional remarks
have to be made about the texture of these reconstructed images. One of the involved radiol-
ogists commented about this and the subjective evaluation for these reconstruction workflows
resulted strongly penalized by unrealistic image texture. Figure 7 reports the images recon-
structed with phr TV-MIN (affected as well by the same problem) and phr EST, respectively. A
different texture, and a consequently lower visibility of spicules, is observed after the applica-
tion of the considered implementation of a TV minimization algorithm. Interestingly, none of
the considered quantitative metrics seemed able to reveal this aspect. Further optimization of
this work should include also a quantitative evaluation of textural features in the reconstructed
images. Moreover, it seems that the radiologists are not concerned by a strong amount of noise

(a) phr TV-MIN

Fig. 7. Close-up of tissue sample slices pre-processed with phase retrieval and reconstructed
with TV-Minimization (a) and EST (b) algorithm. In this small image portion the different
textures are better noticeable.

in the reconstructed image. This could help the optimization of the reconstruction workflow
since, in order not to sacrifice the spatial resolution, usually more noise can be tolerated.

With the ultimate aim of an unsupervised evaluation of breast CT images, an additional
correlation between the subjective score proposed by the medical personnel and some of the
proposed indexes is reported in Fig. 8. There is a general agreement between most of the eval-
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Table 4. Qualitative assessment of the considered images performed by expert supervisors.

Radiol. 1 Radiol. 2 Radiol. 3 Pathologist | Mean Score

FBP 1 1 1 1 1

FBP-ITER 1 1 1 0.5 0.87
SIRT 1.5 1 1.5 1.75 1.43
SART 1.5 1.25 1.5 1.75 1.5
CGLS 1 1.25 1.5 1.5 1.31
EST 1 1.25 1.5 1.5 1.31
phr FBP-ITER 3 3 2.5 2 2.62
phr FBP-ITER Epanl7 | 2.5 3.25 25 25 2.68
phr FBP-ITER Susan5 | 2.5 3.25 3 2.5 2.81
phr TV-MIN 1.5 2.75 2.75 275 243
phr FBP 2.5 2.5 275 35 2.81
phr SIRT 3.25 3.25 35 3 3.25
phr SART 3.25 3.25 3 3 3.12
phr CGLS 2.5 3.25 3 3 2.93
phr EST 35 3.25 35 35 3.43

uated image quality scores and the radiological assessments, at least as far as the general trends
are concerned. Overall, among all the evaluated objective image quality measures, the SSIM
score (multiplied by the factor of 6) tracked the radiological assessments the closest.
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Fig. 8. Correlation between the radiological score and various image quality indexes.

It is worthy to underline that the considered mastectomy sample includes an opacity compat-
ible with a malignant lesion of about 3 cm where irregular edges, blurred margins and spicules
are strongly visible. Moreover the lesion is part of a convoluted breast where thin connectival
trabeculae are clearly noticeable. When considering this specific diagnostic context, the radiol-
ogists confirm that a diagnosis is easy to perform. With the support of the anatomo-pathology
unit, further activities will be focused in the search of a more challenging mastectomy sample
where e.g. the excised tissue presents small satellite lesions and therefore a diagnosis could be
less easy to perform. Together with the evaluation of additional reconstruction methods (e.g
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dictionary learning [41,42]), this will help a future refinement of the reconstruction workflows
identified in this article as those producing images with full diagnostic power. This should be
done in order to better identify the reconstruction workflow most suitable for an in vivo appli-
cation of low-dose phase contrast breast CT.

Finally, in the framework of a clinical trial, further work will be dedicated to the application
of the proposed methodology to other experimental setups, such as e.g. different sample-to-
detector distances and X-ray energies. An optimization of the detector to be used is also neces-
sary. The one adopted in the experiment presented in this article was chosen for its high spatial
(an effective pixel size of 54 um) and contrast resolution, nevertheless for CT in-vivo studies
on patients, an optimized version with a faster readout will be required.

4. Conclusions

With the help from expert radiologists, it has been shown in the present paper that phase re-
trieval techniques and refined CT reconstruction methods significantly improve the image qual-
ity, thus allowing low dose phase-contrast CT to be effectively applied to mammography. It was
also demonstrated that, at a dose comparable to conventional 2D planar radiography (1.5 mGy),
it was possible to produce CT images with a high diagnostic value. This can become a crucial
point in view of the introduction of breast tomography into large-scale screening programs.
Further, the adoption of the phase retrieval increases the diagnostic power of the phase-contrast
images, even if there is an intrinsic blurring effect affecting the spatial resolution. This paves the
way to a new diagnostic tool for the clinical practice that takes advantage of 3D tomographic
images of the breast.
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