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Abstract

We review the original argument elaborated by N. Gisin [1], which

shows that the non-superluminal-signaling condition implies that the dy-

namics of the density matrix must be linear. This places very strong

constraints on the permissible modifications of the Schrödinger equation.

1 Introduction

Quantum Mechanics is a very successful physical theory. It has been revolu-

tionary in many diverse areas, from particle physics to condensed matter and

statistical physics, explaining many features of nature in a unified framework.

Quantum Mechanics has introduced many new concepts to physics. Histor-

ically it came into play when Max Planck first assumed that the energy of the

standing waves in a cavity can only take discrete values. Then he could explain

the frequency distribution of the black-body-radiation. As in this example, one
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of the very first applications of the theory was to make quantities, especially

energy discrete1.

Many other concepts have been introduced by Quantum Theory. As a second

example consider the idea of identical particles and indistinguishability; this is

crucial in many ways to particle statistics in Statistical Physics. For instance,

one cannot track down one electron, among many, and talk about its definite

state, an idea which was almost impossible in non-Quantum way of thinking.

Just to name some other examples from the large list of new concepts due to

Quantum Theory, consider basic and at the same time important notions like

spin, tunneling and the peculiar non-locality2.

Besides new concepts, Quantum Mechanics has great power in predicting

quantitative results; think of the Anomalous Magnetic Moment of the electron.

It can be derived using the formalism of the next revolution, Quantum Field

Theory, which was invented because of the need for a Relativistic Quantum

Theory3. The agreement between the theory and experiment is astonishing:

more than ten decimal places.

Nevertheless, over the years several people repeatedly suggested to modify

the Schrödinger equation, which is the fundamental dynamical law for quantum

systems. One can identify three main reasons to do so.

The first and most widespread reason is the so-called measurement process.

Quantum mechanics predicts that there are physical states corresponding to the

superposition of two other states. Such superpositions are evident experimen-

tally in the microscopic world, but are absent in our everyday experience of the

macro-world. One does not see anything in a superposition of eigenstates of po-

sition like: [|I am in Tehran〉+ |I am in Trieste〉]/
√
2. This is especially impor-

tant when dealing with macroscopic systems interacting with microscopic ones,

i.e. in measurements: in such cases the dynamics as given by the Schrödinger

equation immediately predicts the formation of macroscopic superpositions cor-

responding to two or more possible outcomes of the measurement.

To avoid superposition in macroscopic physics, one has to assume that a

collapse of the state vectors takes place [2–4]. As a result we have a theory which

deals with the physical world in two different ways. At the very fundamental

microscopic world everything evolves according to the Schrödinger equation, but

at the stage of macroscopic interactions with the micro-world, the wave function

collapses. Even the border between these two kinds of evolutions is ambiguously

defined. Moreover, the interaction between the measurement apparatus and

1From which the theory gets its name
2Which turns out to be a property of nature.
3Although it has many other applications now.
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the system can be tracked down to the fundamental interactions between the

particles of the apparatus and the system, which are described by the linear

Schrödinger equation. But it is not possible to derive the collapse from such a

scheme. [5, 6]

There are several ways one can get out of this trouble. One example is

Bohmian Mechanics [7–14], which essentially does not contain collapse. Despite

having a wave function, particles have definite locations in this theory. A mea-

surement is simply an interaction between the measurement apparatus and the

system, without any mystery. Another way out, which is a very natural thing to

do, is to modify Schrödinger equation in order to have one dynamical evolution

both for the micro- and the macro-world. The new equation should, approx-

imately, correspond to the old Schrödinger evolution for microscopic systems,

and should yield the collapse of the wave function in the macroscopic domain.

Collapse Models are examples of these kinds of modifications [5, 15–20]. The

dynamics is modified by adding non-linear and stochastic terms to the usual

Schrödinger equation.

A second motivation for modifying the standard quantum dynamics comes

from Quantum Field Theory. This is a linear theory (again, the superposition

principle) and it is quite natural to think that this is only the first order ap-

proximation of a deeper level non-linear theory. The paradigmatic example is

Newtonian gravity, which now we understand as the weak field limit of General

Relativity. S. Weinberg first suggested such a possibility [21].

As a third motivation, there is the longstanding problem of the unification of

quantum and gravitational phenomena. While waiting for a fully consistent and

successful unified theory, one can write phenomenological equations. One such

equations is the so-called Schrödinger-Newton equation, which is non-linear [22–

24]. Different parts of the wave function of a system interact among themselves

through the Newtonian potential.

All these efforts raise an important question: ‘Are there limits in modifying

the Schrödinger equation?’ The answer is yes. As Gisin convincingly showed [1],

whichever way one modifies the Schrödinger equation for the wave function, the

time evolution for the density matrix has to be linear if one wants to keep no-

faster-than-light-signaling. Here we review this argument.

2 Evolution of the ensembles

We work in a standard quantum framework. The states of any given physical

system are described by the elements |ψ〉 of a Hilbert space H . We want also
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Figure 1: (a) A statistical ensemble, consisting of the states |z+〉 and |x+〉 =
1√
2
(|z+〉+ |z−〉), with probabilities 2/3 and 1/3 respectively. Note that the population of the

states in the ensemble is proportional to the probabilities. (b) The same ensemble re-ordered.

The ensemble now consists of two pure sub-ensembles.The second sub-ensemble is populated

twice as the first sub-ensemble, and so, the probability of the state |z+〉 is twice as |x+〉.

to give a statistical description of the system, for which it is convenient to use

an ensemble (or mixture) of states. One can identify any such ensemble with a

set of state vectors and the corresponding probabilities, i.e. {di; |ψi〉}. The idea

is that the system is in any of such states |ψi〉, but we do not know which one

(classical ignorance). We only know the probabilities di for the system to be in

the states |ψi〉. (figure 1)

The density matrix formalism is the appropriate tool for dealing with statis-

tical mixtures. For a given mixture {di; |ψi〉}, the density matrix is defined as

ρ ≡
∑

i di|ψi〉〈ψi|. A density matrix is pure if there is only one element in the

ensemble (with probability 1), and is mixed otherwise.

We name the set of all density matrices as B+, and the set of pure ones as

B
p.

Definition. Two mixtures {di; |ψi〉} and {pi; |φi〉} are equivalent if their cor-

responding density matrices are the same:

∑

i

di|ψi〉〈ψi| =
∑

i

pi|φi〉〈φi|. (1)

One can easily see that the equivalence of the mixtures is an equivalence relation.

Let us consider a given dynamical evolution for the state vectors of a given

system, which in principle has nothing to do with the Schrödinger equation; in
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particular, it might be non-linear4:

|ψt〉 = T(t,t0)(|ψt0〉). (2)

This dynamical law automatically (and trivially) defines a dynamics also for

pure density matrices:

ρt0 = |ψt0〉〈ψt0 | → ρt = |ψt〉〈ψt|, (3)

where |ψt〉 is given by equation (2). So we have the following map defined on

the space B
p of pure density matrices from time t0 to time t:

E(t,t0) : B
p → B

p (4)

ρt = E(t,t0)(ρt0).

.

.

.

.

.

.

|ψ1,t0〉

|ψ2,t0〉

|ψ3,t0〉

|ψi,t0〉

.

.

.

.

.

.

|ψ1,t〉

|ψ2,t〉

|ψ3,t〉

|ψi,t〉

Figure 2: The evolution of an ensemble; each single state vector evolves independently

from the others. Therefore, each pure sub-ensemble evolves according to (4). Note that the

statistical weights, being proportional to the number of the copies of each state vector, remain

constant.

With the dynamics of pure ensembles known, there remains the question of

how mixed ensembles evolve. One expects each of the states in the mixed en-

semble to evolve according to evolution (2), and independent of the other states.

(look at figure 2) In other words, different pure sub-ensembles of an ensemble

do not interact, i.e. each one evolves independently according to equation (4).

Therefore a generic density matrix evolves in the following way:

∑

i

di|ψi,t0〉〈ψi,t0 | →
∑

i

di|ψi,t〉〈ψi,t| (5)

=
∑

i

di
[

E(t,t0)(|ψi,t0〉〈ψi,t0 |)
]

,

4A generic non-linear operator acting on |ψ〉 will be shown as O(|ψ〉), while for a linear

operator we will use the notation O|ψ〉. Note that this will not be done for operators acting on

density matrices, these operators in this paper are either linear or just acting on pure states.
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Figure 3: (a) An ensemble of states |z+〉 and |z−〉, with 1/2 probabilities. The density

matrix for this ensemble is ρa
t0

= 1

2
|z+〉 〈z+|+ 1

2
|z−〉 〈z−| = 1

2
I. Each state evolves according

to evolution (2). We assume that the fate of |z+〉 is |x+〉, and that the fate of |z−〉 is

|x−〉 = 1√
2
(|z+〉+ |z−〉). Hence, the final mixture consists of |x+〉 and |x−〉 with probability

1/2 for each. The final density matrix is ρa
t
= 1

2
|x+〉 〈x+|+ 1

2
|x−〉 〈x−| = 1

2
I.

(b) An equivalent mixture, consisting of |x+〉 and |x−〉 with equal probabilities (1/2). The

initial density matrix is ρb
t0

= 1

2
|x+〉 〈x+|+ 1

2
|x−〉 〈x−| = 1

2
I. Let us assume that the states

evolve as: |x+〉 → |z+〉 and |x−〉 → |x−〉. The latter happens due to a non-linearity in the

presumed evolution. The final density matrix will be ρb
t
= 1

2
|z+〉 〈z+| + 1

2
|x−〉 〈x−| 6= 1

2
I,

which is clearly different from ρa
t
. This is an example of two initially equivalent ensembles,

becoming inequivalent, due to the non-linear evolution of their state vectors.

This suggests the possibility of extending the map E(t,t0) from the space of

pure density matrices to the space of all density matrices:

E(t,t0) : B
+ → B

+ (6)

ρt = E(t,t0)(ρt0).

However, in general this is not possible, because two different decompositions of

the same initial density matrix ρt0 may correspond to different density matrices

after evolution. (figure 3) In other words one density matrix can have different

destinies according to the ensemble it is representing. This means that the map

in (6) is not well defined in general.

However, Gisin’s theorem states that if one wants to rule out the possibility

for superluminal communication, different mixtures which are equivalent have

to remain equivalent even after the evolution. So that the map E(t,t0) in (4) can

be really extended to the whole set of density matrices as in (6). The theorem

will be proved in the next section.

One can also think of stochastic evolutions of the state vectors 5 , and see

what constraints can be put on the type of the evolution. Gisin’s theorem

5which is the case in Collapse Models.
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immediately generalizes also to such evolutions. (see Appendix A for details.)

3 The theorem

We will be working with finite-dimensional Hilbert spaces. That is reasonable,

because in case of infinite-dimensional spaces one can always work with a finite-

dimensional subspace. The finite-dimensional Hilbert space describing the state

vectors of the system we will be working with, is H .

We will use un-normalized vectors, which will make our work easier and our

results simpler to read. So we will change notation. The square norm of a vector

from now on will show its probability in the ensemble, so that instead of the

mixture {di; |ψi〉} we will be using {|ψi〉}, and:

〈ψi|ψi〉 = di.

We will be dealing with the time evolution of two arbitrary but equivalent

mixtures {|ψi〉} and {|φj〉} throughout, where i = 1, . . . , nψ ; j = 1, . . . , nφ.

Because the two ensembles are equivalent we know that one density matrix

ρ describes both, i.e. ρ =
∑

i |ψi〉〈ψi| =
∑

i |φi〉〈φi|. Now we have all the

ingredients to formulate Gisin’s argument.

As in a usual Bell-type experiment, there are Alice and Bob, far apart from

each other, who make measurements on entangled particles6. We use the Hilbert

space H to describe the states of the particles traveling towards Alice’s place

and use the Hilbert space K for the ones traveling towards Bob’s region. Sup-

pose K is large enough for the argument to apply. It can be shown7 that the

following state |V 〉 can be shared between the two parties:

|V 〉 =
∑

i

|ψi〉 ⊗ |αi〉 =
∑

i

|φi〉 ⊗ |βi〉, (7)

where {|ψi〉} and {|φj〉} are the two equivalent mixtures in H that, we started

with, upon which Alice will make measurements, and {|αi〉} and {|βi〉} are two

different orthonormal bases of K (Bob’s system).

Suppose an ensemble of states |V 〉 is shared between Alice and Bob. Bob

has two different choices (among the many); either to measure the observable

Oα which has the |αi〉’s as eigenvectors, or to measure the observable Oβ which

has the |βi〉’s as eigenvectors. The first type of measurement will prepare the

6For simplicity we will speak of particles, but the two types of systems on which Alice and

Bob make measurements can be generic.
7The proof can be found in Appendix B.
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x̂

ẑ

x̂

ẑ

BOB

ALICE

Entangled particles

Figure 4: An ensemble of entangled states |V 〉 is shared between Alice and Bob. Take the

state |V 〉 = 1√
2
(|x+〉 ⊗ |z+〉+ |x−〉 ⊗ |z−〉) as an example. Only the spin components of the

entangled particles have been shown in the state. Suppose Bob decides to measure Sz on his

particles. Measuring the z-component spin of each particle by Bob, makes the state of its

entangled particle in Alice’s system definite, due to a collapse: either |x+〉 if Bob gets +1 or

|x−〉 if Bob gets −1 in his measurement. So a mixture of states |x+〉 and |x−〉 with equal

probabilities is prepared for Alice.

What if Bob decides to measure Sx? One can easily see that the state |V 〉 can be represented

as |V 〉 = 1√
2
(|z+〉 ⊗ |x+〉+ |z−〉 ⊗ |x−〉) also. Therefore, this time a mixture of |z+〉 and

|z−〉 with equal probabilities will be prepared. Note that these two kinds of mixtures are

equivalent.

ensemble of states {|ψi〉} and the second will prepare the ensemble {|φi〉} for

Alice, as a result of the collapse of the state vector. They correspond to different

mixtures, but the density matrix and so all of the expectation values Alice can

measure are the same. The two ensembles are equivalent. (figure 4) Notice that

Bob can prepare any equivalent ensemble for Alice, by measuring a properly

chosen observable. Therefore, this first part of the argument shows that different

but equivalent mixtures can be prepared at a distance, by using suitable entangled

states and measurements.

Now the crucial point comes. Suppose these two mixtures {|ψi〉} and {|φj〉},
after some time, become inequivalent, because of the dynamics given by Eq. (5).

Then Alice can find out the difference between them by making appropriate

measurements and computing averages. Therefore she is in the position to

understand which observable Bob decided to measure, even if Bob is arbitrarily

far apart. There is the possibility for superluminal communication, no matter

how long it takes for the two mixtures to become appreciably different from each

other. Therefore, if we hold on the assumption that there cannot be faster-than-
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light signaling, different but equivalent mixtures have to stay equivalent while

time passes.

The above argument implies that the evolution map E(t,t0) defined in (4)

can be extended to the whole space of density matrices as in (6), using the

rule in (5). Linearity of the map is a consequence of using statistical nature of

ensembles, i.e. pure sub-ensembles evolve independently. Suppose ρ is a convex

sum of ρ1 and ρ2:

ρ = λρ1 + (1 − λ)ρ2.

If a possible ensemble for ρ1 is {|ai〉} and one for ρ2 is {|bi〉},8 then one possible

ensemble for ρ will be {
√
λ|ai〉,

√
1− λ|bi〉}. The time evolution for ρ is given

by (assuming the extended map (6)):

E(t,t0)ρ = E(t,t0)

(

∑

i

λ|ai〉〈ai|+
∑

i

(1− λ)|bi〉〈bi|
)

(8)

=
∑

i

λE(t,t0)

(

|ai〉〈ai|
)

+
∑

i

(1− λ)E(t,t0)

(

|bi〉〈bi|
)

(9)

= λE(t,t0)

(

∑

i

|ai〉〈ai|
)

+ (1− λ)E(t,t0)

(

∑

i

|bi〉〈bi|
)

(10)

= λE(t,t0)ρ1 + (1 − λ)E(t,t0)ρ2. (11)

In the fist line, we simply re-wrote ρ in terms of the statistical mixture; in going

from the first to the second line, we used (5) applied to ρ; in going from the

second to the third line, we used again (5), this time applied to the two mixtures
∑

i |ai〉〈ai| and
∑

i |bi〉〈bi|; in going from the third to the forth line, we use the

definition of ρ1 and ρ2 in terms of the mixtures defining them.

Conclusion

As stated in the introduction there are attempts for modifying the time evolution

in Quantum Mechanics in order to solve the measurement problem. Gisin’s

argument restricts the possibilities of modifying the evolution equations up to

the border of linearity: The evolution for the density matrix has to be linear, no

matter how the state vector’s evolution is, e.g. deterministic, stochastic, etc.

According to the work of G. Lindblad [25] and of V. Gorini, A. Kossakowsky

and E.C.G. Sudarshan [26], a linear evolution for the density matrix can be only

of the Lindblad type, if one adds the two further requirements of a quantum-

dynamical-semigroup type of equation, and complete positivity:

dρt
dt

= −i[H, ρt] +
n
∑

k=1

(

LkρtL
†
k −

1

2
L†
kLkρt −

1

2
ρtL

†
kLk

)

. (12)

8Remember that the norm of the vectors shows their weight in the ensemble.
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The first assumption amounts to requiring a Markovian evolution, which is rea-

sonable starting point for writing down a dynamical equation (all fundamental

equations in physics, thus far, are Markovian; non-Markovian processes become

relevant at the statistical level, when phenomenological equations are the only

reasonable way for analyzing a complex system). The second assumption be-

comes necessary when entangled systems are taken into account.

Then, according to [27] the only possible way to modify the Schrödinger

equation for the wave function, which leads to a Lindblad type of equation for

the density matrix, is the way collapse models do it. Therefore, given the above

premises, one can conclude that the one given by collapse models is the only

possible way to modify the Schrödinger equation, if one requires no superluminal

communication.
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A

In this appendix, the possibly stochastic evolutions of the state vectors are

discussed.

In the case of stochastic evolution of a state vector, initial pure states evolve

into mixed mixtures. Think of two identical state vectors present in the ensem-

ble, they will in general evolve into different states. One cannot tell what the

future of each state is, but can talk about the statistics of the future of identical

copies; something which can be determined based on the type of the stochastic

evolution involved. (look at figure 5) One expects a pure density matrix ρt0 to

evolve as:

ρt0 = |ψt0〉〈ψt0 | → ρt = E [|ψt〉〈ψt|] ,

where E[·] denotes the stochastic average and |ψt〉 has a degree of randomness,

despite the fact that |ψt0〉 is known. Accordingly, the map in Eq. (4) changes

10



into:

E(t,t0) : B
p → B

+ (13)

ρt = E(t,t0)(ρt0).

Now each pure sub-ensemble in a mixture evolves as (13). Gisin’s argument

follows.

|ψ〉

.

.

.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

|ψ1〉

.

.

.

|ψ2〉

|ψ1〉

|ψ3〉

|ψ3〉

Figure 5: A pure ensemble getting mixed due to the stochastic evolution. The relative

population, again shows the statistical weight in the final ensemble.

B

In this appendix it is shown that a state like the one in (7) can be shared between

the two parties:

|V 〉 =
∑

i

|ψi〉 ⊗ |αi〉 =
∑

i

|φi〉 ⊗ |βi〉,

where {|ψi〉} and {|φj〉} are two given equivalent mixtures [28] (i = 1, . . . , nψ ;

j = 1, . . . , nφ.), and there is no further restriction on them. Let us start at a

basic level and prove this via some lemmas.

We will work in a finite-dimensional space. Any density matrix has a spectral

decomposition, i.e. :

ρ =
∑

i

|χi〉〈χi|, (14)

with |χi〉’s being orthogonal:

〈χi|χj〉 = λiδij , 0 < λi ≤ 1.

Lemma 1. Suppose ρ is the density matrix associated to the ensemble {|ψi〉},
then any single vector |ψi〉 can be written as a linear combination of the vectors

in the spectral decomposition (14) of ρ.

11



Proof. Take {|χ1〉, . . . , |χn〉} as the spectral decomposition of ρ. If they are

a basis, the theorem is trivial. Suppose they are not. Expand the set of

{|χ1〉, . . . , |χn〉} to an orthogonal basis of the whole Hilbert space by adding

{|χn+1〉, . . . , |χn′〉};n < n′ to it. Note that this can always be done.

Any vector |ψi〉 can be written as a linear combination of these basis-vectors:

|ψi〉 =
n′

∑

j=1

mij |χj〉, (15)

where mij ’s are complex numbers. Take j such that n < j ≤ n′. By the

orthogonality of |χi〉’s:

〈χj |ρ|χj〉 =
n
∑

i=1

〈χj |χi〉〈χi|χj〉 = 0, (16)

but also:

〈χj |ρ|χj〉 = 0 =

nψ
∑

i=1

〈χj |ψi〉〈ψi|χj〉 (17)

=

nψ
∑

i=1

mijm
∗
ij

=

nψ
∑

i=1

|mij |2.

A sum of non-negative numbers is equal to zero, i.e. they are all zero. So for

every i:

mij = 0; n < j ≤ n′. (18)

Hence, one can rewrite equation (15) as:

|ψi〉 =
n
∑

j=1

mij |χj〉. (19)

Lemma 2. Suppose that the density matrix ρ has the spectral decomposition

{|χ1〉, . . . , |χn〉}. A set of vectors {|ψi〉} has the same density matrix if and

only if

|ψi〉 =
n
∑

j=1

mij |χj〉, (20)

12



with mij satisfying:
nψ
∑

i=1

mijm
∗
ik = δjk. (21)

Proof. First assume that density matrix of the mixture is ρ, so:

nψ
∑

i=1

|ψi〉〈ψi| =
n
∑

l=1

|χl〉〈χl|. (22)

Equation (19) takes the form:

|ψi〉 =
n
∑

j=1

mij |χj〉,

multiplying by 〈χk| we have:

〈χk|ψi〉 = mikλk. (23)

Then multiplying equation (22) by 〈χj | from left and by |χk〉 from right we

have:

∑

i

〈χj |ψi〉〈ψi|χk〉 =
∑

l

λjδjlλkδkl (24)

= λ2kδjk.

And by using (23) one immediately gets:

∑

i

mijm
∗
ik = δjk.

Conversely suppose (20) and (21) hold, so we have:

∑

i

|ψi〉〈ψi| =
∑

i,j,k

mijm
∗
ik|χk〉〈χj |

=
∑

j

|χj〉〈χj |

= ρ.

Consider the columns ofm (the matrix havingmij as components, i showing

the row and j the column). They are n vectors in Cnψ . According to (21) they

are orthonormal and so linearly independent. So n ≤ nψ and also the number

of columns of m is less than or equal to the number of its rows.

We will need a square matrix instead of the possibly rectangular one above.

For that, one can add nψ − n null vectors to the set of {|χ1〉, . . . , |χn〉} to
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make them {|χ1〉, . . . , |χn〉, |0〉, . . . , |0〉} and add columns to m to make them

an orthonormal basis of Cnψ (the columns were already n orthonormal vectors,

look at (21)). So the expanded m will be an nψ×nψ square matrix and we will

name it M . It is easy to see that M is unitary (21). In the matrix notation we

will have:















|ψ1〉
|ψ2〉
...

|ψnψ〉















= M



























|χ1〉
...

|χn〉
|0〉
...

|0〉



























. (25)

Note that M acts only on the arrays and is not a Hilbert space operator.

M can be expanded even more. In fact, one can make a square matrix of

any size satisfying (21) in this way by adding enough zeros to |ψi〉’s and |χi〉’s
and adding components to M without changing the old ones, and making sure

it remains unitary.

Lemma 3. Consider two sets of vecotrs {|ψi〉} and {|φi〉} all belonging to the

Hilbert space H and assume that they correspond to the same density matrix,

i.e. ρ =
∑

i |ψi〉〈ψi| =
∑

i |φi〉〈φi|. There will be a Hilbert space K which has

the following property: There is a vector in the tensor product space H ⊗ K

which can be written in this way:

|V 〉 =
∑

i

|ψi〉 ⊗ |αi〉 =
∑

i

|φi〉 ⊗ |βi〉,

where |αi〉’s are orthonormal and |βi〉’s are orthonormal.

Proof. Let {|χ1〉, . . . , |χn〉} be the spectral decomposition of the density matrix

ρ. Assume nψ ≤ nφ without loss of generality. Now as stated before, one can

add zeros, if necessary, to the sets of vectors to make the number of members

of every set nφ. So from (25) we have:

|ψi〉 =
nφ
∑

j=1

Mij |χj〉,

M is unitary, so:

|χi〉 =
nφ
∑

j=1

M †
ij |ψj〉. (26)

Let K be Cnφ , and let {|ai〉} be any orthonormal basis for K . Consider
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the following vector:

|V 〉 =
∑

i

|χi〉 ⊗ |ai〉 (27)

=
∑

i,j

M †
ij |ψj〉 ⊗ |ai〉

=
∑

j

|ψj〉 ⊗ |αj〉,

where we defined |αj〉 =
∑

iM
†
ij |ai〉. Let us see if |αi〉’s are orthonormal:

〈αi|αj〉 =
∑

k

(M †
ik)

∗M †
jk =

∑

k

MkiM
∗
kj = δij .

We can do the same thing for |φi〉’s:

|V 〉 =
∑

i

|χi〉 ⊗ |ai〉 =
∑

j

|φj〉 ⊗ |βj〉, (28)

with

〈βi|βj〉 = δij .

So from (27) and (28):

|V 〉 =
∑

i

|ψi〉 ⊗ |αi〉 =
∑

i

|φi〉 ⊗ |βi〉. (29)

This concludes the mathematical background necessary to prove Gisin’s the-

orem.
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