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ABSTRACT: In this paper some developments concerning the possibility of generating a rectilinear motion of bodies 

partially or totally submerged subject to vibration, without the use of propellers, are presented. The motion is obtained 

by a device equipped with counter rotating masses installed in the vessel which vibrates along the longitudinal 

direction. The hull has a suitably shaped stern. The study considers an analysis for evaluating the energy that the 

propulsion system consumes in relation to its performances. A further objective was to maximize the speed of the system 

while keeping certain parameters unchanged relating to the equations of motion of the device and suitably allocating 

the counter rotating masses. This result is obtained by using elliptical gears to transmit the motion from the driving 

motor to a double pair of counter rotating masses. Such a solution allows one to reach the variability of the angular 

velocity of the counter rotating masses during each revolution in accordance with certain laws that maximize the thrust 

applied to the vessel preferentially along a direction in respect of the opposite one, all being equal. Finally, a 

formulation to compute the propulsive efficiency of the device study and the results of the numerical simulations carried 

out are illustrated. 
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1 Introduction 

 

The working principle of a propulsion system based on vibrating devices subject to various 

kinds of friction and or drag forces that simultaneously hinder and cause the motion preferentially 

along a direction with respect to the opposite one has been studied by many authors [1-12]. These 

researchers have confirmed the real possibility to obtain a displacement along a certain direction. 

Also from the experimental point of view this possibility has been substantiated [8, 9]. In relation to 

a possible practical application of the above-mentioned propulsion principle we observe that the 

state of the art in the field of marine propulsion essentially concerns the improvement and 

optimization of the hull-propeller system. With reference to this topic in-depth fluid dynamics 

simulation studies [13-21] have been developed over the years. Such studies concern the interaction 

between the shape of the stern and that of one or more rotating propellers with the general aim of 

improving the efficiency of the propulsion system. The kind of problem, even if simplifying 

assumptions, like the constant angular velocity of the propeller, are considered, it is highly complex 

and to get results that reflect, at least with a certain reliability, what could happen in reality, 

computers with very high performances must be utilised. Moreover, the cost of manufacturing and 

maintenance of the propellers of large dimensions is very high. Then, the attempt to evaluate if new 

marine propulsion systems are possible and convenient could be beneficial. From this point of view 

in [10] an analytical numerical study of a vibrating propulsion device that could be adopted to move 

bodies partially or totally submerged is illustrated. This device does not consider the utilisation of 

propellers, it uses centrifugal force that arises, for example, from the rotation of a pair of counter 

rotating masses. In particular, the resultant of the centrifugal forces acting on these masses causes 

the motion of the vessel. Such resultant acts along a fixed direction, the longitudinal direction of the 

hull, and oscillates from a minimum value to a maximum value. Since during each rotation of the 

counter rotating masses the resultant changes direction and the whole device is integral with the 

hull, the hull itself periodically receives a forward and a backward thrust. As the stern of the hull is 

suitably shaped, the hydrodynamic drag force during the backward motion is significantly higher 
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Fig. 1 Kinematic scheme of the propulsion system equipped with (a) one [10] and 

(b) two pairs of counter rotating masses. 

 
 

Fig. 2 Simplified kinematic scheme based on sliding fit of the propulsion system equipped with (a) one 

[10] and (b) two rotating masses. 
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than that which is produced during the phase of forward moving. Consequently, a forward 

displacement resultant of the whole hull-device system corresponding to each complete rotation of 

the counter rotating masses is generated. The equations of motion of the system just described have 

been obtained in [10] and it has been shown that, by integrating such equations, actually the system 

behaves as illustrated. These results will be utilized to develope the improved propulsion device 

illustrated in the following paragraphs. This improved device is based on two important 

modifications of the orginal mechanism studied in [10]: i) the simple pair of counter rotating masses 

is replaced by two pairs of phased counter rotating masses and ii) the angular velocity of these two 

pairs of masses is not constant, but changes according to a periodic law that repeats itself for each 

rotation. Finally, the energy and efficiency issues of the propulsion system, which were not studied 

in [10], will be dealt with.       

 

2 Mechanical model  
 

2.1 Another pair of counter rotating masses 

 

In relation to a possible manufacturing of a prototype of a vessel characterized by a length 

slightly greater than 1700 mm, the results derived from numerical simulations of the system with 

one pair of counter rotating masses [10] (see Fig. 1(a)) showed high values of centrifugal force. 

From an engineering point of view, these values determine significant stress on the various 

mechanical components whereby the propulsion device has to be realized. This fact implies 

certainly dimensions and weight of the device itself that are not suitable for the need to limit the 

size of the whole structure. So, already in the preliminary study phase of the propulsion system, it is 

definitely convenient to consider a distribution of these masses suitably phased so as to reduce the 

strength of each centrifugal force that stresses the device. The simplest and feasible solution is to 

consider four counter rotating masses (see Fig. 1(b)) [5], each equal to ¼ of the total value 2 m of 

the rotating mass originally divided into only two masses m (see Fig. 1(a)). In this way the 

equivalent system shown in Fig. 2(a) is replaced by that shown in Fig. 2(b). In Fig. 2(b) the masses 

Cm  and Dm  are two identical masses that replace the only mass Bm  indicated in Fig. 2(a). If the 

original pair of counter rotating masses (see Fig. 1(a)) is replaced by two pairs of counter rotating 

masses each of them equal to 1/2 of the each mass m indicated in Fig. 1(a), it is apparent that, being 

equal radii of rotation and angular velocity of all the masses considered, the resultant of all the 

centrifugal forces along the Y axis remains unchanged. So, if mm 2B =  is the mass of the 

kinematically equivalent system (Fig. 2(a)) to that one represented in Fig. 1(a), to obtain the same 

component of the centrifugal force along Y, the two masses Cm  and Dm , equal to each other, must 

have a value equal to 2/Bm , that is 2/BDC mmm == . 

 

2.2 Equations of motion of the system 
 

2.2.1 Displacement analysis 

 

The equations of motion of the system shown in Figs. 1(b) and 2(b) are obtained by using the 

same procedure described in [10,5], that is by the Lagrange's equations. Denoting by C�  and D�  

the angular coordinates of the respective masses Cm  and Dm , the abscissas Cx , Dx  and ordinates 

Cy , Dy  that identify the position of the same masses Cm  and Dm  are  

 

      CC cos   � rx =   ,     (1) 

    CC sin  �ryy +=  ,     (2) 

DD cos   � rx =   ,     (3) 

DD sin   � rhyy +−=  .     (4) 
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2.2.2 Velocity analysis and kinetic energy 

 

Deriving Eqs. (1)-(3) with respect to time, the corresponding velocity of the masses Cm  and Dm  

along the axes X and Y are obtained: 

     CCC sin   �
.
 � rx −=�  ,     (5) 

CCC cos   �
.
 � ryy += ��  ,     (6) 

DDD sin   �
.
 � rx −=�  ,     (7) 

DDD cos   �
.
 � ryy += ��  .     (8) 

 

Moreover, in Eqs. (1)-(8)  we can put 

 

�� =C                   (9) 

and 

�D += ��  ,                                   (10) 

 

being �  the phasing angle between Cm  and Dm . Denoted by Am  the non-rotating total mass, the 

kinetic energy of the system illustrated in Fig. 2(b) is provided by the following relationship 
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2.2.3 Lagrange’s equations 

 

By substituting Eqs. (5)-(10) in Eq. (11), we obtain the expression of the kinetic energy directly 

versus the two degrees of freedom (DOF) of the system  y and �  (�  is assumed to be constant, i.e. 

time-independent). Putting the expression of cE  just reported in the two Lagrange’s equations 

relative to the corresponding DOF y and �  
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the final equations of motion of the device illustrated in Fig. 2(b) are obtained. In Eq. (13) Mv(t) is 

the generalized moment applied to the crank r (see Fig. 2(b)). Proceeding as indicated and recalling 

that it was fixed mmmm === BDC 2/1  ( m is the value of each counter rotating mass in the system 

illustrated in Fig. 1(a)), Eqs. (12) and (13) can be written as 

 

   id

....

F  �
.
 �  �

.
 �  � �  � � r m  y m m −=∆+−−∆++++ )]sin(sin)cos(cos[)2(

22

A
��  ,                       (14) 

                  )(]2))  cos(  (cos [ v tM� r��ym r 
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=+∆++��  .                            (15) 
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Therefore, by integrating Eq. (14) it will be possible to compare the results directly with those 

obtained relatively to the device studied in [10], being equal, the total mass of the hull and the 

counter rotating mass. 

 

3 Increment of the propulsion thrust through elliptical gears 

 

3.1 Thurst by circular gears 

 

The velocity y�  of the system illustrated in Figs. 1(a) and 2(a) essentially depends on the 

following four variables that can be physically changed: i) the mass Am of the vessel (which does 

not include the counter rotating masses), ii) the total mass mm 2B =  of all the rotating parts, iii) the 

crank radius r, and iv) the function )(t�  (and then )(tθ� , )(tθ�� ). The parameters Am  and Bm  are 

closely connected because the ratio BA / mmk =  is a fundamental quantity to be able to obtain 

significant displacements y  and velocities y�  of the system (for example see Fig. 12 in [10]). The 

mass Am  is given by the sum of the masses relative to the hull, the engine, and the whole bearing 

structure (excluding the counter rotating parts) of the propulsion device. We note that an increment 

of the mass Bm  allows one to obtain higher values of the thrust which generates the forward motion 

of the hull. Nevertheless, there are certainly engineering constraints concerning the practical 

possibility to manufacture a prototype of the system to perform experimental tests, surely r and Bm  

can not be increased beyond certain limits. Then, in order to increase the displacement of the vessel, 

being equal masses and geometry, the parameter that one can reasonably settle is the choice of the 

laws )(t  � , )(tθ�  e )(tθ�� . Consequently, these laws will have to be suitably chosen so as   � ,   �
.

, and 

  �
..

during each rotation of the counter rotating masses vary in such a way to maximize the forward 

thurst on the hull. In the following paragraph we describe how it is possible to obtain such a result. 

 

3.2 Thurst by elliptical gears 

 

 In order to increase the propulsion thurst we can impose that the counter rotating masses do no 

longer rotate with a constant angular velocity   �
.

during the stationary working as assumed in [10]. 

With reference to the domain represented by each complete rotation from 0 to 2π, the new function 

  �
.

will be periodic, but non-harmonic. In order to define this function, from the transmission of 

motion point of view a proposal assessable is represented by the use of elliptical gears instead of 

circular gears. As it will be shown successively, this choice allows one to obtain higher 

performance in terms of velocity of the vessel, being equal the angular velocity of the driving motor 

of the counter rotating masses. Moreover, a higher reliability compared with the case where an 

electronic control of the rotation speed of the masses is used can be attained. In order to obtain the 

phasing angle �  and the rotation of Cm  and Dm , the utilisation of two cylindrical gears meshed with 

an idle wheel is considered. In Fig. 3(a) these three wheels are drawn by the simple representation 

of the pitch circles �C, �D and �o. The circles �C and �D are those relating to the gear wheels 

which are keyed to the shafts that rotate the respective masses Cm  and Dm . The circumference �o is 

associated with the idle gear which imposes the same angular velocity )(tθ�  to Cm  and Dm . In Fig. 

3(b) the pitch ellipses �m and �v of two elliptic gears meshed with each other and rotating around 

the respective foci D and D' are illustrated. The upper wheel is firmly keyed to the cylindrical gear 

shown by the pitch circle �D and the axis of rotation of this wheel passes right through the lower 

focus of the above-mentioned ellipse. The gear associated with the pitch ellipse �m is the driving 

wheel of the system and to this wheel, by the shaft keyed in D' (lower focus of �m), a certain 
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angular velocity is imposed. In the simplest case, this velocity will define a transient startup, a 

stationary working (constant angular velocity), and then a stop transient. 

 

3.3 Qualitative prediction on the motion of the vessel by elliptical gears 

 

 Both mechanisms illustrated in Fig. 2, if the force idF  is equal to zero, simply oscillate along the 

direction of the axis Y. As a matter of fact, in this case there is no reaction force that opposes the 

component of the centrifugal force towards the axis Y. Conversely, if a certain “constraint degree” 

of the cursor along the Y axis exists, a reaction that is always opposed to the displacement along the 

Y axis of the system cursor-rotating masses will be generated. This partial constraint is given by the 

water that surrounds the boat and the corresponding reaction is represented by the hydrodynamic 

drag force idF  that always opposes the displacement of the system. Considering the functioning 

principle of the device, studied in detail in [10], we observe that the higher the component of the 

centrifugal force along the positive direction of the Y axis, the greater the tendency to move in that 

direction. This behaviour occurs because when the vessel moves forward, the modulus of idF  is 

lower than that of the backward motion. It follows that if the modulus of the centrifugal force 

applied to the rotating masses shown in Fig. 2 assumes a maximum and a minimum value when 

πθ ≤≤0  and πθπ 2≤≤ , respectively, it can be expected that the system will move forward with a 

greater average speed along the positive direction of the Y axis with respect to the case where the 

modulus of the centrifugal force is constant during the whole rotation, the average angular velocity 

of the rotating masses being equal. From an engineering point of view this periodic change of the 

centrifugal force modulus can be obtained by using elliptical gears. It is observed that with this 

 

 
 

 
Fig. 3 (a) Train of circular gears with idle wheel to rotate and time the rotating masses Cm  and Dm  and (b) operation 

of the same train of gears by unilobe elliptical spur gears. 
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solution the speed y�  of the boat will be characterized by oscillations whose peak values are 

definitely higher than those calculated in the case of the uniform circular motion of the rotating 

masses.  

 

4 Kinematic of elliptical gears 

 

4.1 Polar equations of the pitch ellipses 

  

When the law of motion )(m t  �  of the driving elliptical wheel is known, to determine the law of 

motion )(v t  � of the driven elliptical gear we consider the pitch ellipses �m and �v of the two 

corresponding gears. During the rotation these two ellipses are always tangent and roll over each 

other without sliding, as is the case of the pitch circles of two common circular gears. Fig. 4(a) 

shows a pair of pitch ellipses �m and �v and the meshing of two teeth of the corresponding 

cogwheels. These wheels are identical and are hinged at the points D and D’ that coincide with the 

bottom foci of the  ellipses. a and b denote the greater and lower semiaxis respectively of the same 

ellipses. The tangent point of the pitch curves is indicated by P. In order to study kinematic of the 

elliptical gears it is convenient to consider the polar equations of �v and �m shown in Fig. 4(a). 

They can be obtained through the following procedure. Observing Fig. 4(b), for the ellpise �v we 

consider the known relationships 

  

ar 2 GP v =+

    

                        (16) 

and 

    

222
HPGHGP +=   ,                     (17) 

 

where GP represents the distance from the upper focus G and the final point P of the radius vr that 

defines �v when the angle v � , measured from the axis Xv, changes. Eq. (16) defines the conical 

ellipse, while Eq. (17) is obtained by applying Pitagora’s Theorem to the triangle GHP. The axes Xv 

and Yv represent a local reference system whose origin is the hinge D, bottom focus of �v (see Figs. 

4(a,b)). In order to define a clear geometrical configuration to justify Eq. (17), in Fig. 4(b) the 

angle v � is greater than 270 degrees. Substituting in Eq. (17)  

  

    

VV
cosGDGH θr+=                       (18) 

and 

       

VV
sinHP θr=  ,                     (19) 

we have 

 

v
22

v
2

vv sin)cosGD(GP θθ rr ++=  .              (20) 

 

 

Therefore, by Eq. (16), Eq. (20) becomes the following 

 

v
22

v
2

vvv sin)cosGD(2 θθ rrra ++=−  .              (21) 

 

Squaring the two members of Eq. (21) and subtituting in the equation obtained  

 

ae2GD =  ,                     (22) 
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where e is the eccentricity of the ellipse, we draw the polar equation of �v : 

 

v

2

vv
cos1

)1(
)(

�e

ea
�r

+

−
=   .               (23) 

 

 

 
 

Fig. 4 Transmission of the motion by unilobe elliptical spur gears: (a) definition of the tangent pitch ellipses to each other, (b) 

scheme to obtain the polar equation of the pitch ellipse �v , (c) rolling of the pitch ellipses, and (d) velocity in the tangency 

point P of the pitch ellipses. 
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By following the same procedure we get the polar equation of �m:  

 

m

2

mm
cos1

)1(
)(

�e

ea
�r

+

−
=   .               (24) 

4.2 Kinematic analysis of elliptical gears  

 

4.2.1 Velocity analysis of the cogwheels contact points 

 

Let us consider a generic rotation of the two elliptical meshed cogwheels around D and D’. The 

corresponding pitch ellipses �v and �m roll without sliding and are always tangent at point P (see 

Fig. 4(c) and the tangent t-t passing through P). Denoting again by v �  the angle of rotation of �v 

measured, this time, from the vertical line passing through P as shown in Fig. 4(c), we note that the 

segment DP corresponds to the radius )( vv   �r  evaluated by the relationship (23). Similarly, for the 

driving gear and the corresponding ellipse �m the distance D’P is equal to the radius )( mm   �r  

provided by Eq. (24). Since the two pitch ellipses �v and �m roll without sliding and are always 

tangent at P, there is no intersection of the curves themselves. Consequently, the same thing 

happens with regard to the sides of the teeth meshed, at least for teeth properly configured. This 

condition is satisfied only when the point P thought to belong to �v has a velocity vtv  equal to that 

mtv  of the same point P thought belonging to �m along the direction of the tangent t-t (see Fig. 

4(d)). Therefore it is always 

 

     mttv vv =  .                (25) 

 

It follows that also the horizontal vv  and vertical v'v  components of vtv  are equal to the relative 

horizontal mv  and vertical m'v  components of mtv : 

 

    mv vv =  ,                (26) 

    mv 'v'v =  .                (27) 

 

4.2.2 Evaluation of the instantaneous gear ratio 

 

From Eq. (26) we carry out (see Fig. 4(c)) 
 

)()( mmmvvv

.
  �r �  �r �

.
=  ,               (28) 

 

where 
.
 �v  and m

.
 �  are the angular velocities by which the driven and driving wheels rotate, 

respectively. Substituting Eqs. (23) and (24) in Eq. (28)  we obtain the following relationship 

 

m

m

v

v
cos1

)1(

cos1

)1( .

 � e

 ea
 �

 � e

 ea
 �

22.

−

−
=

+

−
 ,               (29) 

 

from which we obtain the angular velocity of the driven gear 
.
 �v  versus the velocity m

.
 �  of the 

driving gear: 

m

v
mv

cos1

cos1.

 � e

 � e
 � �

.

−

+
=  .               (30) 



 

 

 

10

As soon as the functions )(m t �  and )(m

.
t �  are fixed, Eq. (30) represents a differential equation of the 

first order whose unknown is )(v t � . This equation can be integrated over time to achieve the 

rotation )(v t �  of the driven wheel when the driving gear wheel is rotated with )(m t � . By Eq. (30) the 

instantaneous gear ratio i of the elliptical wheels is defined: 

 

m

v

m

v

cos1

cos1
.

.

 � e

 � e

 �

 �
i

−

+
==  .               (31) 

 

We observe that )(m t �  and therefore also )(m

.
t � are known, while )(v t �  and )(v

.
t �  are unknown. )(v t �  

and )(v

.
t � , as above-mentioned, can be obtained by solving the differential equation (30). Therefore 

i can be computed only when )(v

.
t �  (or )(v t � ) are available. By observing that the distance DD’ 

between the two rotation centres D and D’ is constant and is equal to 

 

)()(DD' vvmm   �r  �r +=   ,               (32) 

 

an alternative for the calculation of i is represented by the solution of the non-linear algebraic 

system constituted by the two equations 

v

2

mm
cos1

)1(
)(DD'

 �e

ea
  �r

+

−
+=  ,               (33) 

    m

v

cos1

cos1

 � e

 � e
i

−

+
=  ,                           (34) 

 

referring to each instant t where i has to be computed. Eq. (33) was obtained from Eq. (32) by 

replacing )( vv   �r  with the corresponding expression given by Eq. (23). )( mm   �r  is evaluated by Eq. 

(24) considering a fixed value of m � . v �  and i are the two unknowns of the non-linear system. So, it 

is possible to solve the system defined by Eqs. (33) and (34). Otherwise, with reference directly to 

the domain of the angle of rotation m � , the same angle can be varied from 0 to 2π and, for each 

value of m �  and )( mm   �r , the above-mentioned system is solved. The correspondent solution 

provides numerically the value of the function )( m   �i . Anyway, this ratio is always a periodic 

function that repeats itself referring to each complete revolution of the driven and driving gears. 

 

5 Evaluation of the propulsive efficiency 

 

 In order to calculate the propulsive efficiency of the devices equipped with one and two pairs of 

counter rotating masses, to know all the parameters that define the motion over time (in particular, 

displacement, velocity and acceleration) the equations of motion of the system must be necessarily 

integrated. In relation to the complexity of these equations of motion, the integrations have to be 

numerically carried out. However, this procedure is not always without drawbacks so, during the 

numerical integration, in relation to the software used [22] (Mathematica), sometimes spurious 

values that locally alter those correct are produced. This problem affects the derivatives obtained by 

numerical integration: velocity and especially acceleration (both linear and angular) sometimes 

show anomalous peaks that can not actually happen because they represent real discontinuities that 

are introduced by the numerical techniques implemented in the integration software used. These 

mistakes could not be removed, but to calculate the efficiency it is necessary to proceed with further 

integration of these functions and the anomalous peaks (discontinuities) can prevent these further 

calculations. In order to minimize the inconvenience just described, the specific experience 
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developed in the present work has shown that is convenient to avoid certain combinations of 

products or divisions of these functions that enhance too much the same discontinuities. This way it 

was found that by directly utilising the principle of conservation of energy to evaluate the torque 

that has to be applied to the driving elliptic gear, it is possible to minimize the problem previously 

described. Concernig this, it is observed that in the Lagrange’s equation (15) the functions )(t� , 

)(tθ� , and )(
..

t �  have been fixed a priori (are equal to v � , v

.
 � , and v

..
 �  respectively, see Fig. 4). In the 

real case, the masses Cm  and Dm  can rotate with velocity )()( v

..
t �t � = only when a moment Mv(t) is 

applied to the driven elliptical gear. This gear rotates simultaneously the two cranks r on which Cm  

and Dm  are fixed. The other terms )(t �  and )(
..

t �  of Eq. (15) are carried out, for example, by 

integrating Eq. (30). When Mv(t) has been computed, the product )( )(
.

v t�tM provides the 

instantaneous power that must be supplied to the system to obtain the displacement y(t). As it will 

be shown in the next section, this power can be used to calculate the efficiency of the propulsion 

system. However, performing these kinds of calculations the drawbacks previously described are 

found (excessive spurious values affect the functions calculated) and it is very difficult to obtain 

reliable results. As a matter of fact, the function Mv(t)  obtained through the above-mentioned 

procedure shows high peaks that depend on )(ty�� . Since, in order to evaluate the efficiency of the 

propulsion system, it is necessary to integrate the power )( )(
.

v t�tM , the poor continuity of this 

function prevents a reliable numeric integration. On the contrary, utilising a formulation based 

directly on the principle of conservation of energy where the input energy to the system is evaluated 

with reference to the driving elliptical gear and not to the driven one (to which Eq. (15) relates), we 

will get good results.  

 

5.1  Analysis in-depth of the moments applied  

 

Let us consider the system illustrated in Fig. 5(a), which shows the pitch ellipses �v of the 

cogwheel rotating around D with angular velocity )()( v

..
t �t � = .  Such cogwheel rotates because its 

tooth is subject to the force applied by the other meshed tooth. This force generates the moment 

Mv(t). Therefore, the instantaneous input power furnished to the system constitued by the 

coghwheel rotating around D and all the parts joined to it, that is the masses Am , Cm , and Dm , is  

 

 
 

Fig. 5 (a) Driven and (b) driving cogwheel and relative moments Mv(t) and Mm(t) applied. 
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equal to )( )(
.

v t�tM . However, since in this simplified model we don’t consider the friction nor the 

masses of the two cogwheels together with the other various parts that define the mechanical 

transmission of the motion (shafts, bearings, other gears, etc.), the instantaneous input power 

)( )(
.

v t�tM  is equal to the instantaneous input power )()( mm ttM θ�  furnished to the cogwheel with 

pitch ellipses �m (see Fig. 5(b)) by the motor. Consequently, it results )()()()( mv ttMttM mθθ �� =  and we 

can perform a reliable integration of the function )()(m ttM mθ�  instead of )( )(
.

v t�tM . The function 

)()(m ttM mθ� is much more continuous than )( )(
.

v t�tM  because, in order to compute the system 

efficiency, we consider )(tmθ�  to be a constant, that is mm t θθ �� =)( , while )()( v

..
t �t � = changes (it 

depends on the istantaneous gear ratio of the elliptical wheels). 

 

5.2 Definitions of efficiency 

 

In general, the efficiency is defined by the ratio between the energy supplied to the system by a 

motor to generate the motion and the energy that the system really absorbs to go forward along a 

fixed direction. The efficiency can be evaluated instant by instant, for example as the ratio between 

the instantaneous powers corresponding to a time t, or with reference to the average values of power 

calculated by considering a certain interval of time. Usually, a good indication of the propulsive 

efficiency is actually given with reference to the above-mentioned interval of time. This efficiency, 

that can be defined as an average efficiency, is given by the following relation 

 

    
mav

md
mp

P

P
=η  ,           (35) 

 

where mavP  is the average power given to the engine of the system and mdP  is the average power that 

the same system absorbs to go forward along a predetermined direction in a certain time interval t∆ , 

for example, with reference to a steady state working. mavP  and mdP  can be computed by applying 

the definition of average value of a function to the corresponding instantaneous power )(tPav  and 

)(tPd : 
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∆
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∆
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 .          (37) 

 

)(tPav  and )(tPd  are given by the following equations 

 

   )()()( mm

.
t �tMtPav =  ,          (38) 

 

   )(])([)( tytyFtP idd
��=  ,           (39) 

 

where )(m tM  is the torque applied to the driving gear that rotates with angular velocity )(m

.
t �  at the 

instant t. 
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5.3 Equation of energy 

5.3.1 Evaluation of the kinetic energy change 

 

The principle of conservation of energy applied to a mechanical system is defined by the 

following equation 

 

  
)( rpm dLdLdLdE +−=  ,      (40) 

 

where dE  is the infinitesimal variation of kinetic energy of the system. Analogously, mdL , pdL , and 

rdL  are infinitesimal variations of work:  mdL  is furnished to the system, pdL  and rdL  are works 

generated by the friction and external load forces applied to the same system, respectively. Eq. (40) 

represents the energy equation of a machine and the terms dE , mdL , pdL , and rdL  referring to a 

certain reference axis. The choice of this axis is performed in such a way as to simplify as much as 

possible the expression of the above-mentioned terms. For the sake of simplicity we can neglect pdL  

that represents the work done by the friction forces between the parts in relative motion of the 

driving mechanism of the counter rotating masses (friction in the bearings, friction between the 

teeth of the gears meshed, etc.). The infinitesimal variation of kinetic energy dE  is given by the 

following relationship 

)
2

1

2

1
( m

.
22

tot  �IymddE += �   ,       (41) 

 

where totm  is the total mass of the system that translates with velocity y�  and I is the reduced mass 

moment of inertia with respect to the reference axis previously chosen. If we consider only the 

stationary working of the propulsion system, the shaft that rotates with constant angular velocity is 

the one on which is keyed the driving elliptical gear. Then, it is convenient to choose precisely the 

axis of this shaft as the reference axis. 

 

5.3.2 Evaluation of the works 

 

The infinitesimal work mdL furnished to the system is equal to  

    mmm  �dMdL =  ,                   (42) 

where mM  is the torque applied to the driving gear and m �d  is the corresponding infinitesimal 

rotation of the shaft on which the same gear is keyed. rdL  represents the infinitesimal work of the 

load forces applied to the system. In the case  study is 

 

      dyFdL id=r  ,         (43) 

 

where )(yFid
�  is the force of the hydrodynamic drag that contrasts with the motion of the vessel along 

y direction. 

 

 

5.3.3 Evaluation of the moments 

 

Substituting Eqs. (41)-(43) in Eq. (40), with 0p =dL , we obtain the equation 
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dyF �dM �Iymd id
22

tot −=+ mmm )
2

1

2

1
(

.
�  ,       (44) 

 

that divided by dt becomes the following 

 

yF
.
 �M �Iym

dt

d
id

22
tot

�� −=+ mmm )
2

1

2

1
(

.
  ,       (45) 

 

where m

.
 � , the angular velocity of the shaft that drive the system. By performing the derivative with 

respect to time of the term between the round brackets in the first member of the above equation, 

we carry out the relationship from which you can obtain the torque mM  that has to be applied to the 

driving gear of the system in such a way as to rotate the driven gear with an angular velocity )(v tθ� : 

   
m

mm

m .

...

 �

yF � �Iyym
M idtot

���� ++
=  .                    (46) 

 

The above-mentioned gear is keyed on the shaft whose axis was chosen as reference to define the 

terms of Eq. (40). If we consider the steady working of the system where m

.
 �  is constant, then m

..
 �  is 

equal to zero and Eq. (46) reduces to the following: 

 

   
m

m .
 �

yFyym
M idtot

���� +
=  .          (47) 

Since in Eq. (47) m

.
 �  is a constant, the torque mM depends on the product yy ���  and y� . From a 

numerical point of view, this fact allows one to obtain a function mM  that does not contain spurious 

values (i.e. peaks of discontinuity) such as to prevent its use for the calculation of the average 

power mavP  supplied by the motor of the system. 

 

6 Utilization of the mathematical phisical models 

 

By performing the integration of the motion equations relative to the two systems illustrated in 

Fig. 2, being equal i) the hydrodinamic drag force idF  versus the velocity of translation y�  of the 

hull, ii) the initial conditions, iii) the mass of the hull, and iv) the total counter rotating mass, it is 

possible to evaluate and compare consistently  the performances of the two propulsion systems 

study. Therefore, based on the knowledge of the velocity y�  versus time t relative to a certain time 

domain t∆ , by Eqs. (36), (37), and (35), we can calculate the average power mavP  consumed by the 

 

 

Fig. 6(a) rotation )(m t � , (b) angular velocity )(m

.
t � , and (c) angular acceleration )(m

..
t � of the 

driving shaft of the propulsion system. 
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engine of the system, the average power mdP  that the same system absorbs to move forward along a 

predetermined direction, and the corresponding propulsive efficiency mpη  relating to the above-

mentioned t∆ . In the following section the results obtained according to the procedure previously 

illustrated will be discussed in detail. All calculations have been performed by using the software 

Mathematica [22]. 

 

7 Integration of the equations of motion and results  
 

7.1 Excitation functions of the system 

 

 In order to assess whether the device equipped with two pairs of counter rotating masses has 

better performance in relation to the device constituted by a single pair of masses, the equations of 

motion of the two systems have been integrated. In particular, to assure that the comparison is 

correct, with the same values relative to some parameters both of the systems were fixed. These 

parameters are: i) the functions )(m t � , )(m

.
t � , and )(m

..
t �  that characterize the motion of the shaft 

which rotates the masses, ii) the hydrodinamic drag force )(yFid
� , iii) the rotation radius r of the 

counter rotating masses, iv) the steady angular velocity m

.
 �  of the above-mentioned shaft, v) the 

total counter rotating mass m, and vi) the total non-counter rotating mass Am of the system (that is 

the mass of the hull, of the gears support, etc.). 
 

Table 1. Numerical values for performing the integration of the motion equations relative 

 to the two systems illustrated in Fig. 1. 

Value of m

.
 �  for the steady state 

working  
r  

(m) 

m  

(Kg) 

 Am  

 (Kg) 
(rad/s) (rpm) 

0.090 2.0 20.000 235.619 2250.000 

 

Table 1 shows the numerical values of the parameters r, m

.
 � , m, and Am that have been fixed to 

compare the performances of the two propulsion system.  Fig. 6 reports the functions )(m t � , )(m

.
t � , 

and )(m

..
t �  that have been used. These functions consider a startup transient, a steady state working, 

and a stopping transient, relative to a time domain equal to 40 s. 

 

 
 

Fig. 7(a) displacement )(ty , (b) velocity )(ty� , and (c) acceleration )(ty��  versus time for the partially submerged boat-like 

body with propulsion system constituted by only one pair of counter rotating masses. 
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7.2 Integration of the motion equations 

 

With reference to the previous functions )(m t � , )(m

.
t � , and )(m

..
t � , the motion equation of the 

system equipped with only one pair of counter rotating masses has been integrated by using the data 

reported in Table 1 and putting )()( m t �t � = , )()( m

..
t �t � = , and )()( m

....
t �t � = . The responses obtained 

)(ty , )(ty� , and )(ty��  are illustrated in Fig. 7. In this case we notice that the rotation of the mass Bm  is 

simply generated by the shaft where the crank r is keyed. Therefore, it results )()()( vm t �t �t � == , 

)()()( vm

...
t �t �t � == , and )()()( vm

......
t �t �t � == , i.e. no driven gear exists, there is only a rotating mass 

Bm . By examining the curve reported in Fig. 7(a) it is noted that the vessel equipped with only one 

pair of counter rotating masses covers about 35 m in 40 s. The average velocity relative to the 

steady period from 10 to 30 s corresponds to 1.03 m/s (3.73 Km/h). Now, let us consider the case of 

the propulsion system equipped with two pairs of counter rotating masses. Assuming we utilise two 

elliptical gears meshed with each other, we fix the transverse and conjugate diameters of the pitch 

ellipses 2a = 0.144 m and 2b = 0.128 m, respectively. These values have been chosen so that the 

gear can be easily housed in a hull whose maximum dimensions are the ones  reported in [10]. By 

integrating Eq. (30) where the functions )()( m t �t � =  and )()( m

..
t �t � =  are assumed known, the 

solutions )(v t � , )(v

.
t � , and )(v

..
t �  illustrated in Fig. 8 are obtained.  

 

7.2.1 Analysis of the impulsive response 

 

It is noted that the driven elliptical gear gets high peaks of angular velocity to which correspond 

similar angular accelerations. When we consider the steady state operation characterized by 

constant angular velocity m

.
 � (= 235.6 rad/s), these functions are of periodic type. With reference to 

the interval of time from 20.0 to 20.1 s, in Figs. 9(a), (b), and (c) such trends are shown. In these 

figures the periodic and impulsive trends are well highlighted against a constant trend of )(m

.
t � . Fig. 

9(d) illustrates the instantaneous gear ratio, calculated by considering the ratio )(/)( mv

..
t �t � . As soon 

as the functions )(v t � , )(v

.
t � , and )(v

..
t � have been evaluated, the integration of the equation of 

motion (14) was carried out. In this case, it is noted that the functions )(t� , )(tθ� , and )(
..

t �  are right 

)(v t � , )(v

.
t � , and )(v

..
t � , that is  )()( v t �t � = , )()( v

..
t �t � = , and )()( v

....
t �t � = . In Eq. (14) we put 

 

 

Fig. 8(a) rotation )(v t � , (b) angular velocity )(v

.
t � , and (c) angular acceleration )(v

..
t �  versus time for the driven elliptical 

gear of the propulsion system constituted by two pairs of counter rotating masses. 
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)()( v t �t � = , because )(t �  is fixed a priori.  In Fig. 10 the results of the numerical integration of Eq. 

(14) are reported. By using i) the data indicated in Table 1, ii) the functions )(v t � , )(v

.
t � , and )(v

..
t �  

illustrated in Fig. 8, iii) the hydrodynamic drag force )(yFid
�  reported in [10], and iv) a value of the 

phasing angle ∆ between the masses Cm  and Dm  equal to –5.2 degree (-0.091 rad), we carry out  the 

 

 

 

 
 

Fig. 9(a) angular velocity )(v

.
t �  and (b) angular acceleration )(v

..
t �  for the driven elliptical gear, (c) angular 

 velocity )(m

.
t �  of the driving elliptical gear, (d) instantaneous gear ratio i of the elliptical gears 

 meshed in the time interval from 20.0 to 20.1 s (steady state). 

 

 
 

Fig. 10(a) displacement )(ty , (b) velocity )(ty� , and (c) acceleration )(ty��  versus time for the partially submerged 

 boat-like body with propulsion system constituted by two pairs of counter rotating masses and  elliptical gears. 
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responses )(ty , )(ty� , and )(ty��  represented in Figs. 10(a), (b), and (c), respectivley. 

 

 

7.3 Systems with one and two pairs of counter rotating masses: comparison of the results 

  

Comparing the aforementioned curve )(ty  with that obtained for the system equipped with one pair 

of counter rotating masses, we notice that, being  equal the  masses  m, Am , and the angular velocity 

)(m

.
t �  of the motor shaft which rotates the driving gear, the distance travelled by the vessel equipped 

with two pairs of counter rotating masses is more than 100% higher with respect to the previous 

case: in 40 s almost 100 m are covered. Therefore, by the new device and the new distribution of 

counter rotating masses, the forward average velocity of the vessel, with reference to the steady 

working from 10 to 30 s, increases from 1.03 m/s (3.73 km/h) to 3.01 m/s (10.82 km/h). In the latter 

case it is observed that the peaks of acceleration )(ty��  and velocity )(ty�  are higher than those that 

characterize the system equipped with a single pair of counter rotating masses. Also the 

displacements are significantly different: Figs. 11(a) and (b) show the functions )(ty  relative to the 

system equipped with only one pair and two pairs of counter rotating masses respectively, with 

reference to the time interval from 20.0 to 20.1 s (case of steady working). By also observing the 

corresponding graphs of the velocities )(ty�  (see Figs. 11(c) and (d)), we can justify the fact that the 

function )(ty�  on the interval studied from 0 to 40 s and relative to the propulsion system equipped 

with elliptical gears shows peaks of negative velocity and therefore a clear prevalence of backward 

impulses with respect to the forward displacements of the hull. So, at a first glance, this velocity 

)(ty�  would seem in contrast with the corresponding displacement )(ty  of the system which shows a 

constant forward displacement of the boat versus time. Nevertheless, comparing the two functions 

)(ty�  shown in Figs. 11(c) and (d), it is clearly found that the time intervals where the backward 

displacements ( 0<y� ) happen are much shorter than those that are found in the forward 

displacements ( 0>y� ). The grey color of the areas under the curves )(ty�  shown in these figures 

indicates the positive values of velocity. Then, high negative peaks of velocity are defined, but their 

time length is very short. Consequently, a very small backward displacement of the hull happens: 

the forward displacement prevails because the positive velocities, also if their moduli are lower than 

those of the negative ones, persist for a longer time. The situation is different when we consider the 

propulsion device equipped with a single pair of counter rotating masses. Fig. 11(c) shows a trend 

of )(ty�  characterized by a high prevalence of positive values with respect to the negative ones, a 

harmonic trend is almost defined. It follows that the representation of )(ty�  on the complete time 

interval from 0 to 40 s indicates a high prevalence of positive values of velocity. Nevertheless, in 

relation to the protraction of relatively high negative velocities due to the almost harmonic shape of 

the same function, the entity of the forward displacement is reduced in a way much more 

pronounced with respect to the case of the system equipped with elliptical gears and two pairs of 

counter rotating masses. In this way the better performance in terms of displacement of the above-

mentioned propulsion system is justified. Concerning the value of the phasing angle �=-5.2 degree 

(-0.091 rad) between the two masses Cm  and Dm  that allows one to obtain the performance 

aforementioned, it was carried out by executing a set of numerical simulation. At the beginning �  

was changed from 0 to 360 degree (2π rad) by a step equal to 10 degree (0.175 rad). The graph 

illustrated in Fig. 12 summarizes the results obtained and shows the total displacement t40y  that the 

vessel covers relatively to each value of �  which changes from from 0 to 40 s. By observing the 

graph we note that t40y  take the highest values more or less when �=0 and�= 2π rad. 
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7.4 Pysical interpretation of the results 

 

 From a physical point of view it is possible to explain why near �=0 and�=2π rad we obtain the 

highest value of displacement. The functioning of the propulsion device is based on the excitation 

forces represented by the components along the axis Y of the centrifugal forces. In Fig. 13(a) the 

configuration of the system when �=0 is shown: the two centrifugal forces CcF  and DcF  applied to 

the corresponding masses Cm  and Dm  are always parallel to each other, whatever the value of θ . 

Consequently, the resultant )(tRy of the relative components )(Cy tFc  and )(Dy tFc  along the axis Y 

have the same sign at each istant t and they add up. Therefore )(tRy is a periodic function on the 

domain πθ 20 ≤≤ and is defined by a certain amplitude. Conversely, when �=π rad )(Dy tFc assumes 

an opposite direction compared with the case where�=0 (see Fig. 13(b)). Since the moduli of 

)(Cy tFc  and )(Dy tFc are always equal to each other ( DcF is π rad out of phase with respect to CcF ), 

)(tRy  is always equal to zero and no resultant force is applied to the hull to cause its oscillation 

along the axis Y. As a consequence the vessel cannot move, whatever the value of the angular speed 

)(tθ� of Cm  and Dm . On the contrary, if�=0 (see Fig. 13(a)) we observe that )(tRy is equal to zero 

only when θ =0 and θ =π rad: for all the other values of θ , )(tRy  is different from zero and, as 

previously observed, on the domain πθ 20 ≤≤ , is a periodic function. Moreover we note that only 

when �=0 the amplitude of this )(tRy is maximum because, on the same t, the moduli of )(Cy tFc  and 

)(Dy tFc have always the same value and sign. Therefore, when �=0, the maximum excitation is 

applied to the hull. Consequently it oscillates along Y with the maximum amplitude and high 
 

 
 

Fig. 11 Displacement )(ty  of the partially submerged boat-like body with propulsion system constituted (a) by only one 

pair and (b) two pairs of counter rotating masses; (c),(d) corresponding velocity )(ty� , 

 parameters and conditions being equal, with 20.0 ≤ t ≤ 20.1 s. 
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impulsive forces move it along the axis Y: the maximum value of t40y is obtained. Then, motion 

equation (14) has been integrated by fixing a very short incremental step to� . In particular, 

with� changing from 354 degree (6.178 rad) to 358 degree (6.248 rad), by using a step equal to 0.1 

degree (1.745×10
-3

 rad), the results shown in Fig. 14 were obtained. The abscissa of the graph 

illustrated in this figure indicates the values of� considered, in the ordinate the corresponding 

values of t40y  are reported. It should be noted that when �= 357.8 degree (or 360–357.8 = –5.2 

degree = –0.091 rad) we carry out the maximum displacement of the system equal almost to 100 m, 

in 40 s.   

 

 

 
 

Fig. 12 Displacement t40y  of the partially submerged boat-like body with propulsion system constituted by two pairs of counter 

rotating masses and elliptical gears versus the phasing angle 0 ≤� ≤ 2π rad between the masses Cm  and Dm . 

 
 

Fig. 13 Centrifugal forces CcF  and DcF (a) phased (� =0) and (b) out of phase (�=π rad).  
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8 Evaluation of the propulsive efficiency and results  

8.1 Computation of the torque )(m tM  for obtaining the motion laws )(v t � , )(v

.
t � , and )(v

..
t �  

 

We can perform the calculation of the propulsive efficiency of the system relative to a certain 

time interval t∆  of working by considering the average efficiency mpη . Consequently, it is 

necessary to evaluate the average power mavP  consumed by the engine of the system and the average 

power mdP  that the same system absorbs to move forward along a predetermined direction. In order 

to evaluate mavP  we have to compute the torque )(m tM  that the driving motor applies to the cranks r 

where the counter rotating masses are fixed. With reference to the steady state working that starts 

and finishes at t =10 s and t =30 s respectively, this torque can be computed by Eq. (47) only when 

it is quite sure that a steady state is established, for example, from t = 20.0 s to t = 20.1 s ( t∆  = 0.1 

s). Figs. 15 and 16 show the functions )(m tM on the above-mentioned range, referring i) to a steady 

state and ii) to the systems equipped with one and two pairs of counter rotating masses, 

respectively. The graph of torque )(m tM  illustrated in Fig. 15 enables one to obtain the angular 

motion laws )()()( vm t �t �t � == ,  )()()( vm

...
t �t �t � == , and )()()( vm

......
t �t �t � == . Similarly, Fig. 16 

illustrates the torque )(m tM  that has to be applied to the driving elliptic gear to get the graphs of 

 

 
 

Fig. 14 Displacement t40y  of the partially submerged boat-like body with propulsion system constituted by two pairs of 

counter rotating masses and elliptical gears versus the phasing angle 6.178 ≤� ≤ 6.248 rad 

(354 ≤ � ≤ 358 degree) between the masses Cm  and Dm . 

 

 

 
Fig. 15 Torque )(m tM  versus 20.0 ≤ t ≤ 20.1 s applied to the system equipped with one pair of counter rotating masses. 
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)()( v t �t � = , )()( v

..
t �t � = , and )()( v

....
t �t � =  carried out by i) integrating Eq. (30) and ii) using the 

functions )(m t � , )(m

.
t � , and )(m

..
t � . The torque )(v tM  applied to the driven elliptic gear can be 

computed by the following relationship 

 

mmvv

..
)()()(  �tMt �tM =     ,                     (48) 

   

from which 

)(

)()(

v

m

mv .

.

t �

 �
tMtM =  .       (49) 

By assuming a constant value of m

.
 �  equal to 235.619 rad/s (see Table 1) and the function )(v

.
t �  

illustrated in Fig. 9(a), the graph of )(v tM  shown in Fig. 17 is obtained. The knowledge of these 

torques applied to the rotating parts is also useful to be able to compute the mechanical stress in the 

teeth of the gears meshed that have to transmit the motion.  
  

8.2 Computation of the hydrodynamics drag force )(tFid  

 

The force )(tFid  depends on the velocity y�  of the same hull, and y� , in its turn, depends on the 

instant t considered. In relation to the time range  from t =20.0 s to t =20.1 s, basing on the function 

)(yFid
�  reported in [10], we evaluate the functions )(tFid  associated with the two devices studied. 

 

 

Fig. 16 Torque )(m tM versus 20.0 ≤ t ≤ 20.1 s applied to the driving elliptical gear of the 

system equipped with two pairs of counter rotating masses. 

 

 

 

 
 

Fig. 17 Torque )(v tM  versus 20.0 ≤ t ≤ 20.1 s applied to the driven elliptical gear.  
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Figs. 18 and 19 illustrate these functions )(tFid  versus time. We observe that in relation to the 

propulsion system equipped with elliptic gears, impulsive forces idF  are defined. The values of 

these forces are very high, have minus sign, and are higher by more than ten times in respect of the 

lowest negative values that we notice referring to the case of propulsion obtained by a single pair of 

counter rotating masses.  

 

8.3 Physical explanation of the peaks of the torques and hydrodynamic drag force 

   

The peaks of the torques )(m tM  and )(v tM  are temporally coincident with those of the 

hydrodynamic drag force )(tFid  (see Fig. 19). From a physical point of view, a justification of this 

fact can be as follows. When the torque applied to the driving gear )(m tM  assumes maximum 

positive values it means that the energy supplied to the system at that instant t is maximum ( m

.
 � is 

constant). Furthermore, observing the graph of )(v

.
t �  drawn according to kinematic considerations it 

is noted that the maximum values of )(v tM  occur at the same instants where )(m tM  is maximum. At 

the instant of the generic peak of )(m tM  and )(v tM  the energy supplied to the system causes a small 

amplitude backward displacement of the vessel. Nevertheless this displacement is very fast. The 

stern of the vessel is configured in a suitable manner and the displacement takes place with much 

higher speed than in the case of the device equipped with a single pair of counter rotating masses. 

Consequently, the undertow of the compressed water out of the stern cavity due to the backward 

 
 

Fig. 18 Hydrodynamic drag force )(tFid  versus 20.0 ≤ t ≤ 20.1 s applied to the system equipped with one 

pair of counter rotating masses. 

 

  

 
 

Fig. 19 Hydrodynamic drag force )(tFid  versus 20.0 ≤ t ≤ 20.1 s applied to the system equipped with 

two pairs of counter rotating masses and elliptical gears. 
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motion cannot occur efficiently. Thus, the ''ejection" of the water surrounded by the stern does not 

occur with the same rapidity with which it takes place in the case of the lower backward 

displacement caused by only a single pair of counter rotating masses. In practice, by using the 

elliptical wheels and two pairs of counter rotating masses, the speed of the vessel backward 

displacement is so high that the water in the cavity of the stern has a very short time to be pushed 

out from the "spoon shape" considered in [10]. In this situation, in correspondence to the stern a real 

constraint is almost defined (the water is practically incompressible). The constraint generates a 

particularly intense impulsive reaction force. This reaction is idF  and its sign is negative (see the 

graph in Fig. 19), i.e. idF   pushes the vessel forward. As a matter of fact, it is noted that the second 

member of the corresponding motion equation of the system (14), is - idF : then, if idF is negative 

(see the peaks in the graph shown in Fig. 19) it means that, at the instant of the peak, - idF  has the 

maximum value and pushes the vessel forward. 

 

8.4 Computation of the propulsive efficiency 

 

The propulsive efficiency mpη  of the device equipped with counter rotating masses can be 

conveniently evaluated by Eq. (35). mpη  has been computed with reference to the time range from t 

=20.0 s to t =20.1 s ( t∆ = 0.1 s). Therefore the average power mavP  consumed by the engine of the 

system and the average power mdP  that the same system absorbs to move forward along a 

predetermined direction on the time interval t∆  were calculated. This numerical computation was 

performed referring to a steady state working. The results obtained relative to the two propulsion 

systems comparated, i.e. those equipped with a single and two pairs of counter rotating masses (the 

second one is also driven by ellipical gears), are shown in Table 2. We observe that in both cases 

the propulsive efficiency mpη  is rather high: 0.56 and 0.43 in the first and in second case, 

respectively. We can justify the fact that the second efficiency is lower than the first one because 

the hull equipped with elliptic gears is characterized by higher mean forward velocity: the higher 

the velocity of the vessel is, greater is the dissipation of energy due to hydrodynamic drag force 

which does not linearly increase versus y� . 

Table 2. Propulsive efficiency mpη , numerical values of the powers mavP , mdP , and performances 

of the two propulsion systems studied. 

 

 Propulsion by a single pair of 

counter rotating masses 

 (see Figs. 1(a) and 2(a)) 

Propulsion by two pair of 

counter rotating masses driven by elliptical gears 

(see Figs. 1(b), 2(b), and 4) 

mavP  

(W) 

mdP  

(W) 
mpη  

displacement 

in 40 s 

(m) 

 

Mean 

velocity 

during the 

steady state 

from 

 t =10 s 

 to 

 t =30 s 

 

(m/s)     (Km/h) 

mavP  

(W) 

mdP  

(W) 
mpη  

displacement 

in 40 s 

(m) 

 

Mean 

velocity 

during the 

steady state 

from 

t =10 s 

to 

t =30 s 

 

(m/s)    (Km/h) 

786.19 440.22 0.56 33.94 1.03 3.73 3743.83 1604.76 0.43 98.25 3.01 10.82 
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 9 Conclusions 

In this paper equations to study the vibratory behavior in hulls devoid of propeller with the aim 

of obtaining an efficient forward motion are obtained. The propulsion system provides the 

installation on board of vessels of a device able to generate centrifugal forces. The motion is 

achieved by virtue of a suitable configuration of the stern of the hull. The system, during the 

instants in which it is coming back, must be subject to a hydrodynamic drag force higher than that 

rises during the forward motion. The centrifugal force generated by the counter rotating masses 

assembled on board makes the entire system oscillate back and forward. The difference in the 

hydrodynamic drag force generated by the motion along the two opposite directions of translation 

determines the prevalence of the forward motion with respect to the backward one. In relation to 

possible practical applications of the propulsion system, definitely an important parameter to 

consider is the propulsive efficiency of the system. The study illustrates how this efficiency can be 

calculated. Successively, the results of numerical simulations based on the analysis developed are 

presented. The results obtained can be considered rather good because, in relation to the size of the 

system studied, the propulsive efficiencies obtained are definitely higher than those obtainable by 

conventional propellers of small dimensions. Moreover, the numerical simulations have shown that 

it is possible to considerably increase the forward speed of the vessel if i) the rotation of the counter 

rotating masses does not occur with constant angular velocity during each turn and ii) the single pair 

of masses is replaced by two pairs of masses. In particular the case of a device with two pairs of 

counter rotating masses driven by elliptical gears has been studied. The utilisation of elliptical gears 

causes impulses of angular velocity of the counter rotating masses during the single revolution 

made by the same ones. An important parameter that has been identified to maximize the distance 

that the vessel covers is represented by the phasing angle � . This angle characterizes the relative 

angular position of the two pairs of counter rotating masses. The numerical results obtained relative 

to the device equipped with two pairs of counter rotating masses driven by elliptical gears and �= 

357.8 degree (6.245 rad), suggest that a particular condition of excitation could determine a kind of 

tuning in the nonlinear steady working of the water-hull system. In this situation a predominance of 

the amplitudes of oscillation of the "hull-part" of the system water-hull along the forward direction 

compared to the backward one happens. From an engineering application point of view we observe 

that before we manufacture a real prototype of the system, it is wise to evaluate the propulsion 

efficiency in relation to vessels whose size is greater than that considered in this case study. We are 

developing a simulation with reference to a hull 14 m long, already manufactured and equipped 

with a conventional propeller propulsion system. With reference to this hull a virtual model with a 

suitably modified stern was made. New curves of the hydrodynamic drag force idF  versus the 

velocity y�  similar to those reported in [10] have already been obtained and a study of a device with 

multiple counter rotating masses suited to meet the needs of engineering is in progress. Other 

aspects that should be considered from an engineering point of view are those relating to the 

vibrations of the whole structure of the hull. Since the excitation frequencies are relatively high 

compared to the natural vibration frequencies of a real hull, one can reasonably expect that the 

vibration problems related to the structural safety and comfort will be overcome. 
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