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Highlights Gerdol and Venier FSIM SI 2014 

Mussels are not as distresses by pathogens as other bivalves are 

We analyzed all the available Mytilus galloprovincialis sequence data 

We propose an updated molecular view of mussel immune responses 

We report a number of novelties concerning the various mussel PRRs 

We outlined traceable elements of the mussel immune signaling 
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Abstract 11 

Non-self recognition with the consequent tolerance or immune reaction is a crucial process to succeed as 12 

living organisms. At the same time the interactions between host species and their microbiome, including 13 

potential pathogens and parasites, significantly contribute to animal life diversity. Marine filter-feeding 14 

bivalves, mussels in particular, can survive also in heavily anthropized coastal waters despite being 15 

constantly surrounded by microorganisms. Based on the first outline of the Mytilus galloprovincialis 16 

immunome dated 2011, the continuously growing transcript data and the recent release of a draft mussel 17 

genome, we explored the available sequence data and scientific literature to reinforce our knowledge on 18 

the main gene-encoded elements of the mussel immune responses, from the pathogen recognition to its 19 

clearance. We carefully investigated molecules specialized in the sensing and targeting of potential 20 

aggressors, expected to show greater molecular diversification, and outlined, whenever relevant, the 21 

interconnected cascades of the intracellular signal transduction. 22 

Aiming to explore the diversity of extracellular, membrane-bound and intracellular pattern recognition 23 

receptors in mussel, we updated a highly complex immune system, comprising molecules which are 24 

described here in detail for the first time (e.g. NOD-like receptors) or which had only been partially 25 

characterized in bivalves (e.g. RIG-like receptors). Overall, our comparative sequence analysis supported 26 

the identification of over 70 novel full-length immunity-related transcripts in M. galloprovincialis. 27 

Nevertheless, the multiplicity of gene functions relevant to immunity, the involvement of part of them in 28 

other vital processes, and also the lack of a refined mussel genome make this work still not-exhaustive and 29 

support the development of more specific studies. 30 

*Manuscript
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List of abbreviations 35 

AMP: antimicrobial peptide 36 

BD: big defensin 37 

BIR: baculovirus inhibitor of apoptosis protein repeat 38 

BPI: bactericidal/permeability increasing protein 39 

C1qDC: C1q domain-containing  40 

CARD: caspase recruitment domain 41 

CpG-DNA: CpG oligodeoxynucleotides 42 

CLECT: C-type lectin domain 43 

CRD: carbohydrate recognition domain  44 

CS-: cystine-stabilized alpha-beta motif  45 

CTL: C-type lectin 46 

Gram+: Gram positive [staining] 47 

Gram-: Gram negative [staining] 48 

GNBP: Gram-negative binding protein  49 

iE-DAP: -D-Glu-meso-diaminopimelic acid  50 

IFN: interferon 51 

IPS-1: IFN-beta promoter stimulator 52 

IRF: interferon regulatory factors 53 

JNK: c-JUN N-terminal kinase 54 
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LGBP: lipopolysaccharide and ß-1, 3-glucan binding proteins 55 

LRR: leucine-rich repeats 56 

MAP3K: mitogen-activated protein kinase kinase kinase 57 

MAMP: microbe associated molecular pattern 58 

MAPK: mitogen-activated protein kinase 59 

MAPKK: mitogen-activated protein kinase kinase 60 

MKK: mitogen-activated protein kinase kinase 61 

MDP: muramyl dipeptide  62 

NGS: next generation sequencing  63 

NLR: NOD-like receptor 64 

PAMP: pathogen associated molecular pattern 65 

PGN: peptidoglycan 66 

PGRP: peptidoglycan recognition protein 67 

PO: prophenoloxidase 68 

PRR: pattern recognition receptors  69 

RLR: RIG-like receptor 70 

SRCR: scavenger receptor cysteine-rich 71 

STING: stimulator of interferon genes 72 

TIMP: tissue inhibitor of metalloproteinases 73 

TIR: Toll-interleukin-1-receptor 74 

TNF: tumor necrosis factor 75 

TLR: Toll-like receptor  76 
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1. Introduction 77 

The study of animal species often reveals taxon-specific patterns of evolutionary diversification, according 78 

to the organism life style and related environmental niches. In particular, the evolution of innate defense 79 

systems exposes the never-ending race between the animal host and more quickly evolving 80 

microorganisms, with the development of specialized host-pathogen (or host-parasite) interactions, 81 

independent events of gene loss or gene expansion and fast diversification of molecules essential for 82 

pathogen sensing and targeting [1]. As a matter of fact, the study of species unable to mount long-term 83 

adaptive responses has highlighted fascinating aspects of animal diversity and physiology in a changing 84 

environment [2,3]. 85 

Molecules and pathways of the innate immune response have been more extensively studied in 86 

invertebrates such as the fruit fly [4], the sea urchin [2] and cnidarians [5,6]. In comparison, the repertoire 87 

of gene-encoded elements composing the lophotrochozoan immunity has still to be revealed, particularly 88 

in molluscs, which represent the second most species-rich metazoan group with about 100,000 estimated 89 

extant species [7,8]. The first molluscan genome to be sequenced, pertaining to the gastropod Lottia 90 

gigantea, was released only in 2007, 7 and 9 years later than the genomes of Drosophila melanogaster and 91 

Caenorhabditis elegans, respectively. As regards bivalve molluscs, a class comprising species of great 92 

ecological and commercial importance, only in recent years the increasing accessibility of next generation 93 

sequencing (NGS) technologies permitted significant advances [9]. So far, just two bivalve draft genomes 94 

(Crassostrea gigas and Pinctada fucata) have been released but RNA-seq datasets for more than 40 95 

different species have been already produced (NCBI SRA, accessed in November 2014). 96 

The sequence data currently available for the the common mussel (Mytilus spp.) are summarized in Table 97 

1. The first glimpse on the complex mussel immune system was provided by Sanger EST sequencing [10], an 98 

approach which was followed by 454 Life Sciences sequencing [11–15] and by high throughput Illumina 99 

sequencing, a technology allowing a better full-length reconstruction of transcripts [16]. In 2014, a non-100 

annotated set of genomic sequences of Mytilus galloprovincialis was released, a real landmark for the 101 

progression of genomic studies in this bivalve [17]. 102 

Mussels are rather tolerant to environmental changes and they are therefore used as pollution sentinels in 103 

coastal waters but, more intriguingly, they appear less affected or not harmed by syndromes and infectious 104 

agents distressing other bivalves [18,19]. How mussels govern microorganisms associations with their 105 

seasonally varying amounts of microbe-associated molecular patterns (MAMPs) and virulence factors 106 

remains to be established. For these reasons, we have undertaken a revision of sequence and literature 107 

data to update our knowledge on the gene-encoded molecules shaping the strength and peculiarities of the 108 

innate responses of mussels in the context of their fluctuating holobiome. Starting from the first 109 

“immunome” description [20] and expanding the analysis to NGS datasets related to the blue mussel 110 

[13,21] and other bivalve species [22–24] we propose a step forward in the understanding of pathogen 111 
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recognition and clearance in M. galloprovincialis. Since the de novo assembly of RNA-seq data can provide 112 

only a partial view of the genes  involved in mussel immune responses, we have often used the Pacific 113 

oyster C. gigas genome for comparison. Considering possible drawbacks inherent to the de novo assembly 114 

(transcript fragmentation, misassembly, etc.) we have deposited in GenBank only selected sequences of 115 

novel full length transcripts, highly supported either in terms of read coverage or confirmed by genomic 116 

sequences.  117 

The functional validation of the novel mussel transcripts goes beyond the purpose of this work. As well, the 118 

comprehensive characterization of single genes or gene families (especially the analysis of regulatory gene 119 

elements and splicing patterns) is not affordable in a single paper nor it is feasible in the absence of a 120 

finished genome. While updating the available knowledge on the various molecules participating in the 121 

mussel immunity, we have paid more attention to receptors and effectors which likely undergo faster 122 

evolution rate and diversification, and described in detail only the key elements of the intricate, and 123 

evolutionarily more conserved, intracellular immune signaling. In fact, significant work is still needed to 124 

disentangle the interconnected pathways of intracellular signal transduction, which often depend on post-125 

translational protein modifications, and to adequately investigate the presence of a regulatory cytokine-like 126 

network in mussels. Hence, only the signalling pathways clearly connected to the activation of specific 127 

pattern recognition receptors (PRRs) are reported in this paper.   128 
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Species Sample 
Sequencing 
technology 

Sequencing 
strategy 

Sequencing 
effort (Gbp) 

Year of 
release 

Reference** 

M. galloprovincialis 
mixed 
tissues 

Sanger EST-seq <0.1 2009 [10] 

M. galloprovincialis 
mixed 
tissues 

454 RNA-seq <0.1 2010 [14] 

M. edulis 
mixed 
tissues 

454 RNA-seq 1.1 2012 [13] 

M. galloprovincialis 
digestive 

gland 
454 RNA-seq 1.5 2013 [11] 

M. edulis mantle 454 RNA-seq 0.3 2014 [12] 

M. galloprovincialis foot 454 
Targeted 
genome 

sequencing 
0.6 2014 [15] 

M. galloprovincialis 
digestive 

gland 
Illumina RNA-seq 8.1 2014 [16] 

M. galloprovincialis 
whole 
body 

Illumina RNA-seq 12.4 2014 PRJNA249058 

M. edulis 
whole 
body 

Illumina RNA-seq 10.9 2014 PRJNA249058 

M. trossulus 
whole 
body 

Illumina RNA-seq 5.8 2014 PRJNA249058 

M. californianus 
whole 
body 

Illumina RNA-seq 3.9 2014 PRJNA249058 

M. edulis larvae Illumina RNA-seq 32.8 2014 [21] 

M. galloprovincialis mantle Illumina 
Whole genome 

sequencing 
1.6* 2014 [17] 

 129 

Table 1. Overview of the sequence resources available for Mytilus spp. in Nov 2014. Species, samples and 130 

sequencing details, including the total sequencing effort, are reported for each study. *This number is 131 

referred to the assembled genome size. **For unpublished data, the Bioproject accession ID is reported.  132 
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2. Materials and Methods 133 

2.1. Identification of mussel immunity-related transcripts 134 

The Illumina RNA-seq data available for M. galloprovincialis (Table 1) were downloaded from the NCBI 135 

Sequence Read Archive and de novo assembled using Trinity (release 2014.04.13) with default parameters 136 

[25], setting the minimum allowed contig length to 200 nucleotides. 137 

Based on literature data, we systematically identified protein sequences related to innate immunity in 138 

human, D. melanogaster and bivalve species and downloaded them from the NCBI protein database. These 139 

sequences were imported in the CLC Genomics Workbench 7.5 environment (CLC Bio, Aarhus, Denmark) 140 

and used as queries for tBLASTn searches to identify similar mussel sequences [26]. Positive matches, 141 

initially detected with a BLAST e-value threshold of 1x10-5, were checked for the presence of a complete 142 

open reading frame (from the initial ATG to the STOP codon). Whenever possible, partial sequences were 143 

elongated to their full length by comparison and reassembly with overlapping Trinity contigs or with those 144 

obtained in an alternative transcriptome assembly (de novo assembly with automatic detection of the word 145 

size and bubble size parameters using the CLC Genomics Workbench). If alternatively spliced variants were 146 

detected, only the contig encoding a full-length protein compared to the BLAST query was retained. 147 

We carefully assessed the quality of the assembled mussel trascripts by mapping all the available paired-148 

end Illumina reads on them, using the map reads to contigs tool and setting length/similarity fraction 149 

parameters to 0.75/0.95 and insertion/deletion/mismatch penalties to 3/3/3. Only the sequences 150 

consolidated by uniform Illumina read coverage were considered as trustwhorty and kept for further 151 

analysis. The correct assembly of mussel transcripts was further assessed by alignment with the 152 

corresponding genomic contigs, but this was only possible for a limited subset of sequences due to the high 153 

fragmentation of the released mussel genome assembly [17]. 154 

Virtual protein translations were checked for the presence of conserved domains with InterProScan v. 5.4-155 

47.0 [27], whereas signal peptides and transmembrane domains were detected with Signalp v. 4.1 [28] and 156 

TMHMM v.2.0 [29], respectively. Specific cases where a signal peptide could not be detected in proteins 157 

expected to be targeted to the secretory pathway were further analyzed with SecretomeP 2.0 [30]. In the 158 

present paper, we only report sequences diplaying significant BLAST matches and sequence features 159 

consistent with data previously reported in other organisms and fully confirmed by a uniform read 160 

coverage. Peculiarities of the mussel gene transcripts compared to the domain organization expected in 161 

other organisms are reported, case by case, in the text. 162 

 163 

2.2. Comparative genomics analyses 164 
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The completely annotated genome of the Pacific oyster C. gigas [31] was downloaded from 165 

EnsemblMetazoa (release oyster_v9, GCA_000297895.1). Genomic sequences related to immunity were 166 

identified using a strategy similar to the one described above for M. galloprovincialis, combining the BLAST 167 

searches with InterPro domain analyses. In the case of incongruent results between the mussel and oyster 168 

genome datasets, the possible presence of misannotated genes was further investigated at the transcript 169 

level, by searching the sequences of interest in an oyster transcript collection obtained by de novo 170 

assembly of RNA-seq data from multiple tissues (SRA accession IDs: SRR334212-20). This assembly was 171 

generated with the CLC Genomics Workbench de novo assembly tool, using the same strategy detailed 172 

above for the mussel transcriptome. 173 

The size of specific gene families in oyster and in other organisms was estimated by the number of typical 174 

InterPro [32] or SUPERFAMILY [33] domain detected in each genome. Whenever useful, the combination of 175 

domains and their relative position were also taken into account for the correct classification of proteins 176 

within specific families.  177 
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3. Results and discussion 178 

The complete list of the novel sequences reported in the present paper and their respective accession IDs 179 

are summarized in Table 2. The fragmentation of the released mussel genome (over 2 million contigs with a 180 

N50 value of ~1000) [17] prevented systematic searches and, therefore, the description of genomic 181 

landscapes and regulatory gene features (e.g. promoter elements and alternative splicing events) is not 182 

included in this work. 183 

Sequence name Putative function GenBank accession ID 

allograft inflammatory factor 1 (AIF1) proinflammatory cytokine KP125895 

arthropod defensin-like 1 antimicrobial peptide KP125907 

arthropod defensin-like 1 antimicrobial peptide KP125908 

ATP-dependent RNA helicase DDX41 double-stranded DNA sensing in the cytoplasm KP125906 

bactericidal/permeability increasing protein 2 antimicrobial effector (BPI family) KP125896 

bactericidal/permeability increasing protein 3 antimicrobial effector KP125945 

complement component C3-like complement component KP125947 

c-Jun N-terminal kinase Intracellular signaling (MAPK pathway) KP713438 

C-type lectin 1 extracellular PRR (C-type lectin family) KP125897 

C-type lectin 2 extracellular PRR (C-type lectin family) KP125898 

C-type lectin 3 extracellular PRR (C-type lectin family) KP125899 

C-type lectin 4 extracellular PRR (C-type lectin family) KP125900 

C-type lectin 5 extracellular PRR (C-type lectin family) KP125901 

C-type lectin 6 extracellular PRR (C-type lectin family) KP125902 

C-type lectin 7 extracellular PRR (C-type lectin family) KP125903 

C-type lectin 8 extracellular PRR (C-type lectin family) KP125904 

C-type lectin 9 extracellular PRR (C-type lectin family) KP125944 

C-type lysozyme 2 antimicrobial effector (C-type lysozyme family) KP125905 

C-type lysozyme 3 antimicrobial effector (C-type lysozyme family) KP125943 

fibrinogen-related protein 10 extracellular PRR (FREP family) KP125911 

fibrinogen-related protein 11 extracellular PRR (FREP family) KP125912 

fibrinogen-related protein 12 extracellular PRR (FREP family) KP125913 

fibrinogen-related protein 8 extracellular PRR (FREP family) KP125909 

fibrinogen-related protein 9 transmembrane PRR (FREP family) KP125910 

galectin 1 extracellular PRR (galectin family) KP125894 

galectin 2 extracellular PRR (galectin family) KP125914 

galectin 3 extracellular PRR (galectin family) KP125915 

galectin 4 extracellular PRR (galectin family) KP125916 

interferon regulatory factor 1/2-like 1 transcription facor regulating IFN response KP125917 

interferon regulatory factor 1/2-like 2 transcription facor regulating IFN response KP125918 

interferon regulatory factor 5/8-like 1 transcription facor regulating IFN response KP125919 

I-type_lysozyme antimicrobial effector (I-type lysozyme family) KP125920 

MACPF domain-containing protein 1 Perforin KP125921 

MACPF domain-containing protein 2 Perforin KP125922 

MACPF domain-containing protein 3 Perforin KP125923 

MACPF domain-containing protein 4 Perforin KP125924 

MACPF domain-containing protein 5 Perforin KP125925 

MACPF domain-containing protein 6 Perforin KP125926 

MACPF domain-containing protein 7 Perforin KP125927 

MACPF domain-containing protein 8 Perforin KP125928 

MAP kinase kinase 3/6-like Intracellular signaling (MAPK pathway) KP713434 

MAP kinase kinase 4-like Intracellular signaling (MAPK pathway) KP713435 

MAP kinase kinase 7-like Intracellular signaling (MAPK pathway) KP713437 

MAP kinase kinase kinase 1-like Intracellular signaling (MAPK pathway) KP713433 

MAP kinase p38-like Intracellular signaling (MAPK pathway) KP713439 

membrane-bound C-type lectin membrane-bound PRR (C-type lectin family) KP125930 

MytiLec 2 extracellular PRR (R-type lectin family) KP125931 

MytiLec 3 extracellular PRR (R-type lectin family) KP125932 

mytilin K antimicrobial peptide (mytilin family) KP125933 

mytilin N antimicrobial peptide (mytilin family) KP125934 

NOD-like receptor 1 intracellular bacterial and viral sensing KP125929 
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peptidoglycan recognition protein 1 membrane-bound PRR (PGRP family) KP125935 

peptidoglycan recognition protein 2 membrane-bound PRR (PGRP family) KP125936 

peptidoglycan recognition protein 3 extracellular PRR (PGRP family) KP125946 

pseudomytilin 1 antimicrobial peptide (mytilin family) KP125937 

putative serine protease A inhibitor of pathogen protease KP141764 

putative serine protease B inhibitor of pathogen protease KP141761 

putative serine protease C inhibitor of pathogen protease KP141766 

putative serine protease D inhibitor of pathogen protease KP141763 

putative serine protease E inhibitor of pathogen protease KP141762 

putative serine protease F inhibitor of pathogen protease KP141765 

RIG-like receptor 1 intracellular viral sensing KP125938 

stimulator of interferon genes 1 intracellular viral and bacterial sensing KP125939 

stimulator of interferon genes 2 intracellular viral and bacterial sensing KP125948 

TNF ligand-like 1 cytokine KP125940 

TNF ligand-like 2 cytokine KP125941 

TNF ligand-like 3 cytokine KP125942 

Transcription factor fos-like 1 Transcription factor (MAPK pathway) KP713441 

Transcription factor fos-like 2 Transcription factor (MAPK pathway) KP713442 

Transcription factor jun-like Transcription factor (MAPK pathway) KP713440 

Table 2: List of novel GenBank records reporting sequences expressed in M. galloprovincialis and discussed 184 

in this paper. 185 

3.1. Pattern Recognition Receptors (PRRs) 186 

The recognition of molecular motifs exposed by host-associated microbiomes (collectively called microbe 187 

associated molecular patterns, i.e. MAMPs) and by abnormal self elements is the first essential step in the 188 

activation of a coordinated and effective immune response, especially in organisms lacking adaptive 189 

immunity. As a result, specific protein-protein interactions and post-translational modifications convert the 190 

sensing phase in reaction: a finely tuned expression of genes which provides a variety of effector molecules 191 

(i.e. antimicrobial peptides, receptors and adhesion molecules, protease and protease inhibitors, cytokines 192 

and chemokines) and shapes cell behaviour in time (e.g. migration, phagocytosis, autophagy, apoptosis). 193 

The success of this ancient defense strategy depends on pathogen pressure (amount and virulence), 194 

availability and functional plasticity of PRRs, molecular pathways based on enzymatic cascades, and 195 

regulatory circuits inside and outside the immunocytes. Rapidity and intensity of the innate defense 196 

reactions are also influenced by the functional condition of the host. 197 

The hemocytes, freely circulating in hemolymph and tissues, are the cells actively recruited in the mussel 198 

immune responses, even though other cell types may be involved [34]. In this work, we cannot attribute 199 

specific PRRs exclusively to mussel hemocytes and different experimental approaches, such as in situ 200 

hybridization and proteomic analyses hold the potential to clarify their cellular context in the future. 201 

PRRs are evolutionarily conserved families of extracellular, membrane-bound or cytosolic molecules whose 202 

function has been referred to a limited number of protein domains [35]. In this section, we explore and 203 

present the numerous PRRs identified in mussel, and discuss the growing body of evidence pointing out to 204 

the expansion of diverse immune receptors in marine bivalves. 205 

 206 
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3.1.1. Extracellular PRRs 207 

Secreted PRRs constitute a large fraction of the transcriptome in the most known bivalve species. Overall, 208 

they are characterized by a dozen of different carbohydrate recognition domains (CRDs) and possibly exist 209 

in hundreds of protein variants. Domain organization and variety of the extracellular mussel PRRs are 210 

represented in Figure 1. 211 

 212 

Figure 1: Domain organization and variety of extracellular mussel PRRs. A red segment at the N-terminus 213 

of the reported molecules indicates the signal peptide. Star symbols indicate the weight of functional 214 

evidence for each group. 215 

 216 

3.1.1.1. C1q domain-containing (C1qDC) proteins 217 

The C1q domain is known as a versatile PRR in many Protostomes and the widespread family of proteins 218 

displaying this domain (C1qDC proteins) probably includes one of the main, if not the largest, class of PRRs 219 

in most bivalves [36]. Even though one C1qDC protein was described in 2001 as the major component of 220 

the extrapallial fluid in Mytilus edulis [37], the first report of a strong over-expression of C1qDC sequences 221 

upon bacterial injection in M. galloprovincialis came in 2010 [38], a finding which was later confirmed also 222 

in Mytilus coruscus [39]. 223 
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The coding sequence of mussel C1qDC proteins usually comprises an N-terminal signal peptide, a central 224 

coiled-coil region which is often missing, and a single globular C-terminal C1q domain with flexible ligand 225 

binding properties. The coiled-coil region might be functionally homologous to the collagen-like region of 226 

vertebrate C1q-like proteins (lacking in bivalves), serving as an oligomerization domain. 227 

The expansion of this gene family was suggested by the abundance of C1qDC transcripts in the first mussel 228 

EST collection [20] and by the subsequent identification of 168 different C1qDC transcripts, with some of 229 

them being up-regulated in hemocytes after in vivo injection of Gram positive (Gram+) and Gram-negative 230 

(Gram-) bacteria [40]. Based on a genomic survey performed in C. gigas, we have reported bivalve C1qDCs 231 

with or without a coiled-coil domain (pertaining to the ghC1q and C1q-like type 2 subfamilies, respectively), 232 

with a collagen domain (C1q-like type 1, found in just a single oyster protein) and multiC1q proteins with 233 

several consecutive C1q domains [36]. In brief, the C1q gene family underwent massive expansion in 234 

Bivalvia, specifically in the Pteriomorpha and Heterodonta lineages. Consistent with the NGS-based 235 

transcriptome data of Table 1, we could identify as many as 1,274 putative C1qDC loci in the M. 236 

galloprovincialis draft genome. Such a remarkable diversification can explain the broad spectrum of 237 

pathogens recognized by the C1q domain in bivalves, including Gram+ and Gram- bacteria, Rickettsia-like 238 

organisms, fungi and eukaryotic parasites. 239 

The functional characterization of bivalve C1qDC proteins is still at its early stages; however, the significant 240 

expression of many C1qDC genes in diverse tissues (e.g. digestive gland, gills and mantle) may either 241 

suggest the participation of these tissues to defense reactions or the involvement of C1qDC proteins also in 242 

processes not related to the innate immunity, like in humans. 243 

 244 

3.1.1.2. C-type lectins 245 

C-type lectins (CTLs) are a large class of animal lectins functioning in various biological processes, including 246 

pathogen recognition [41]. The C-type lectin domain (CLECT) characterizes both collectins and the 247 

vertebrate mannose-binding lectins able to trigger the lectin pathway of the complement system. CTLs 248 

have been associated to agglutination and opsonization of pathogens or parasites in different bivalves [42–249 

44] and the up-regulation of their expression has been documented in the hemocytes of clams infected 250 

with Perkinsus olseni and in the gills of Bathymodiolus azoricus exposed by immersion to Vibrio 251 

parahaemolyticus [45,46]. 252 

Similarly to C1qDC proteins and FREPs (see Section 3.1.1.3), most bivalve CTLs are short secreted proteins 253 

with a single CLECT domain, optionally associated with a coiled-coil region, a potential oligomerization 254 

domain. However, the diversity of the CLECT domain combinations in invertebrate species is remarkable 255 

[47], often associated with other functional domains in large proteins, and its position is not always C-256 

terminal. Based on transcriptomic data, we can confirm such a variety also in M. galloprovincialis and C. 257 

gigas. 258 
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The repertoire of bivalve CTLs is large, comprising about 350 genes in the Pacific oyster [31]. The 259 

abundance of CTLs in mussel appears to be in the same order of magnitude since we could detect 154 260 

distinct CTL transcripts in the M. galloprovincialis digestive gland transcriptome [16]. Nevertheless, the 261 

specific involvement of CTLs in the mussel immune response has not been yet demonstrated. On the other 262 

hand, a number of mussel CTLs are known to take part in specific non-immune functions: two notable 263 

examples in mussel are the major acrosomal sperm proteins, which are able to dissolve the egg vitelline 264 

layer during fertilization [48,49], and the CTLs associated to particle capture during feeding [50]. 265 

 266 

3.1.1.3. Fibrinogen-related proteins (FREPs) 267 

Hemolymph lectins bearing a C-terminal fibrinogen-like domain and similar to vertebrate ficolins 268 

(collectively named fibrinogen-related proteins or FREPs) were discovered in gastropod molluscs in 1997 269 

[51] and possess properties other than coagulation (i.e. agglutination and antibacterial effects, 270 

developmental processes, allorecognition) [52]. As regards bivalves, an agglutinin strongly up-regulated in 271 

response to Listonella anguillarum challenges, AiFREP1, was recently identified as a PRR in Argopecten 272 

irradians [53]. A couple of years later, FREPs were identified in M. galloprovincialis ESTs, with sequence sets 273 

differing among and within individual mussels, clearly up-regulated in response to infection and showing 274 

opsonic properties [54,55]. These data altogether confirm the involvement of FREPs in bivalve immunity. 275 

Mussel FREPs are simply defined by a signal peptide and a fibrinogen-like domain. Their N-terminal region 276 

sometimes contains a coiled-coil domain which could serve as an oligomerization domain, like in C1qDC 277 

proteins and similarly to collagen in ficolins. Membrane-bound FREPs are also present in mussel. Moreover, 278 

mussel FREPs differ from gastropod FREPs which show a fibrinogen-like domain associated with one or two 279 

N-terminal immunoglobulin-like domains [52,56]. Considering both full-length and partial sequences, we 280 

have detected more than 150 expressed FREPs in the transcriptome of M. galloprovincialis, a number 281 

consistent with previous preliminary data [16,55]. Overall, mussel FREPs represent the third most abundant 282 

class of secreted lectin-like molecules, after the C1qDC proteins and C-type lectins. Comparatively, 199 283 

FREP genes can be identified in the C. gigas genome [31]. 284 

 285 

3.1.1.4. Galectins 286 

Galectins are a widespread class of soluble animal lectins, released via the leaderless secretion pathway 287 

instead of the classical secretion pathway. They specifically bind -galactoside sugars and, in molluscs, they 288 

are characterized by two or four tandem repeats of a galectin CRD domain. In many bivalve species, 289 

galectins have been indicated as PRRs for bacteria [57–60] and for the protozoan parasite Perkinsus 290 

marinus [61,62]. In M. galloprovincialis, galectins have already been evidenced as expressed sequences 291 

[10], even though no functional characterization has ever been carried out. In detail, we report three full-292 
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length sequences of expressed mussel galectins with two CRDs and at least one galectin with four CRDs, an 293 

evidence which is consistent with the presence of 14 galectin genes in the draft genome of C. gigas [31]. 294 

Galectins primarily act as PRRs but may also represent damage-associated molecular patterns (DAMPs), 295 

able to signal the pathogen-associated tissue damage [63]. Such a hypothesis remains to be tested in 296 

molluscs. 297 

 298 

3.1.1.5. R-type lectins 299 

The protein family of R-type lectins is present in bacteria, plant and animals and features a CRD similar to 300 

the one found in ricin [64]. The role of these lectins in bivalve immunity has been poorly investigated so far. 301 

Overall, about 20 different genes encoding proteins with a ricin domain are present in the C. gigas genome: 302 

most of them pertain to the well-known class of α-N-acetylgalactosaminyltransferases, enzymes which are 303 

involved in the biosynthesis of Mucin-type O-glycans. A novel lectin named MytiLec, with globotriose-304 

dependent cytotoxicity, has been recently identified in M. galloprovincialis, [65] and later a very similar 305 

lectin with antibacterial activity was identified in Crenomytilus grayanus [66]. These lectins share a 306 

structural motif with three very similar tandem repeats of about 50 amino acids, recognizable as a ricin-307 

type beta trefoil domain. In M. galloprovincialis, we could recognize at least two other R-type lectins (we 308 

named them MytiLec 2 and 3) with an additional C-terminal pore-forming aerolysin-like domain. The 309 

combination of pathogen sensing and antimicrobial activities in the same molecule further supports the 310 

involvement of R-type lectins in pathogen clearance. The lack of a signal peptide in these mussel molecules 311 

denotes a leaderless secretory pathway, as suggested by significant SecretomeP scores. 312 

 313 

3.1.1.6. F-type lectins 314 

F-type lectins have been widely investigated in many invertebrates but, comparatively, their role in bivalve 315 

immunity received much less attention, as only two F-type lectins of Pinctada spp. involved in PAMP 316 

recognition and up-regulated in the hemocytes of challenged oysters have been identified [67,68]. 317 

The F5/8 type C domain of F-type lectins is rather common in mussel, being found in about 50 predicted 318 

proteins. Nevertheless, most of these proteins closely resemble coagulation factors or other cell adhesion-319 

related proteins; for example the M. edulis bindins, important in species-specific egg/sperm recognition, 320 

pertain to this family [69]. In order to classify a bivalve protein as an immune F-type lectin, the presence of 321 

Interpro signature IPR000421 has to be coupled with functional data and therefore, for the moment, we 322 

cannot report any bona fide mussel F-type lectin. 323 

 324 

3.1.1.7. Gram-negative binding proteins 325 
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Gram-negative binding proteins (GNBPs), also known as beta-glucan binding proteins, recognize -1,3-326 

glucans in fungi and bacteria. While GNBPs have been extensively studied in insects and crustaceans, 327 

relatively little is known about these molecules in bivalve molluscs. Arthropod GNBPs are involved in the 328 

activation of the prophenoloxidase (ProPO) system whereas some some bivalve GNBPs are reported to 329 

enhance the PO-like activity in hemocytes [70]. Bivalve GNBPs with a dual ability to bind both -1,3-glucans 330 

and LPS have been characterized, such as in the case of P. fucata [71]. Proteins with such properties are 331 

usually named Lipopolysaccharide and β-1, 3-glucan binding proteins (LGBPs) and are typical of 332 

crustaceans, where, even in the absence of canonical PGRPs, they activate the ProPO system following 333 

peptidoglycan (PGN) recognition [72]. Interestingly, polymorphisms of a LGBP have been linked to 334 

increased susceptibility to Listonella anguillarum infections in scallops [73]. 335 

Together with the secretory peptidoglycan recognition proteins PGRP-SA, GNBP1 activates the Toll pathway 336 

and triggers melanization in response to Gram+ bacterial infections of Drosophila. Specifically, GNBP1 337 

hydrolyzes the PGN of the bacterial cell wall, permitting the binding of its fragments by PGRP-SA and 338 

initiating the extracellular proteolytic cascade which results in the activation of PO, Spätzle and the Toll 339 

signaling [74,75]. 340 

Three possible GNBPs have been reported in the M. edulis transcriptome [13]; however, the presence of 341 

one Glycosyl hydrolases family 16 domain is not sufficient by itself to characterize a protein as a GNBP, as 342 

molluscan sequences with high similarity with GNBPs have been demonstrated to be endo-1,3-beta-D-343 

glucanases [76,77]. Conversely, genuine GNBPs lack such an activity and act as serine proteases in the PO 344 

proteolytic cascade. Therefore, the presence of bona fide GNBPs and of downstream proteolytic machinery 345 

involved in a melanization cascade and in Toll signaling via a Spätzle-like molecule remains hypothetical in 346 

mussels. 347 

 348 

3.1.1.8. Apextrin-related proteins 349 

The apextrin C-terminal domain (ApeC) takes its name from a sea urchin protein involved in larval 350 

development. This domain has been recently recognized as a novel PRR in amphioxus, since two ApeC 351 

domain containing proteins were demonstrated to act as intra- and extra-cellular sensors of PGN and its 352 

component muramyl dipeptide (MDP) [78]. Apextrin-like proteins have been involved in pathogen 353 

recognition and inactivation also in echinoderms [79] and the over-expression of two apextrin-related 354 

transcripts in response to bacterial challenges has been reported in M. galloprovincialis [80]. We could 355 

predict the presence of the ApeC domain in at least 23 proteins from the Mediterranean mussel 356 

transcriptome and in 13 oyster genes. Even though ApeC is often the only domain present in proteins 357 

targeted to the secretory pathway, in 5 cases we observed an interesting association with a MACPF 358 

domain, N-terminal to ApeC (see Section 3.1.2.2). The discovery of the PRR properties of ApeC is recent and 359 
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additional functional data are needed to definitely associate apextrin-related proteins to the bivalve 360 

immune response. 361 

 362 

3.1.2. Evidence of an ancient bivalve complement-like system 363 

In spite of a remarkable number of reports, the literature concerning the events downstream of the 364 

activation of extracellular PRRs in bivalves is scarce. Apart from GNBPs, which are expected to trigger the 365 

Toll-like receptors signaling pathway, all the other major PRR families described in this work could 366 

potentially converge into an innate immune pathway well known in vertebrates, which fully emerged only 367 

after the divergence of Protostomes and Deuterostomes. The vertebrate complement system is based on 368 

more than 30 plasma and cell surface proteins that, through cascades of reactions, lead to pathogen 369 

neutralization and pro-inflammatory responses. Some core components of the complement system are 370 

present in Protostomes and even in cnidarians, hence, established more than 1,000 MYA [81]. Proteins 371 

showing sequence homology to some components of the complement system have been also reported in 372 

molluscs [22,23,82]. 373 

In vertebrates, the complement system can be activated through three different routes: by the activation 374 

of the C1q complex upon antigen-complexed IgMs or IgGs (classical pathway), by the spontaneous 375 

hydrolysis of the component C3 leading to PAMP recognition by the C3b fragment (alternative pathway) or 376 

by direct PAMP recognition by mannose-binding lectins or ficolins (lectin pathway). In Section 3.1.1.1 we 377 

have already presented the abundance and variability of C1qDC proteins which can directly bind pathogens 378 

and, thus, bypass the Ig-antigen recognition step of the vertebrate adaptive immune system. Furthermore, 379 

both mannose-binding lectins and ficolins potentially find their homologs in C-type lectins and FREPs, 380 

respectively (see Sections 3.1.1.2and 3.1.1.3). Thus, bivalve molluscs appear to have developed an 381 

extremely abundant and diversified repertoire of lectins, which may therefore mount the immune response 382 

through a signaling cascade similar to the vertebrate lectin pathway. 383 

Nevertheless, bivalves lack specific serine proteases, such as C1r and C1s of the C1q complex and the MBL/ 384 

ficolin-related MASP-1 and MASP-2, which are fundamental in the downstream proteolytic reactions, thus 385 

leaving a huge question mark on the molecular partners of these extracellular lectin-like PRRs. 386 

Despite the absence of homologs for these components, convincing C3-like and C2/factor B-like sequences 387 

have been recently identified in R. philippinarum [83]. These findings support the existence of at least some 388 

core components of a proto-complement pathway in bivalves. Likewise, the existence of a primitive 389 

complement system resembling the alternative pathway of the mammalian complement system has been 390 

recently demonstrated in other protostomes, namely in some arthropods [84]. 391 

In the next sections we describe in detail thioester- and MACPF-domain containing proteins, possible 392 

functional homologs to the C3/C4/C5 and to the C6/C7/C8/C9 complement components, respectively. A 393 
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schematic representation of the possible bivalve homologs related to the vertebrate complement pathway 394 

is reported in Figure 2. 395 

 396 

Figure 2: Comparative overview of the vertebrate complement system with mussel putative homologs. 397 

Molecules which might play a role in an ancient mussel complement system (named in red) are illustrated 398 

comparatively to those of vertebrate animals (named in black). The lack of a classical pathway mediated by 399 

immunoglobulins in vertebrates (pink background) may be compensated by the wide and effective 400 

repertoire of PRRs (e.g. C1qDC proteins). The existence of a lectin pathway is suggested by CTLs 401 

(functionally homologous to MBLs) and FREPs (functionally homologous to ficolins) (yellow background). So 402 

far, no genuine serine protease homologs of MASP proteins (evolutionarily emerging in the 403 

Cephalochordata lineage) have been traced in Bivalvia. Elements of the alternative complement pathway 404 

are present also in bivalves and other invertebrates (e.g. mussel C3 and factor B homolog) (light blue 405 

background). Following PRR activation, proteolitic cascades mediated for instance by TEPs prepare 406 

pathogen opsonization or killing (arrows conveying to the green background). Even though proteins with a 407 

MACPF domain (which characterizes the C6/7/8/9 components have been identified in mussel, their 408 

involvement the terminal pathway of the complement remain to be assessed (the reader is referred to the 409 

web version of the article for a more direct visualization of the colors used in this figure). 410 

 411 

3.1.2.1. Thioester-containing proteins 412 

Thioester-containing proteins (TEPs) comprise the vertebrate complement components C3, C4 and C5, as 413 

well as a number of invertebrate homologs, such as insect proteins functioning as opsonins and promoting 414 

phagocytosis of bacteria and melanization [85,86]. 415 

Only two studies have so far been conducted on bivalve TEPs, precisely in the scallop Azumapecten farreri, 416 

where the complete gene encoding the protein CfTEP was characterized, and in R. philippinarum, where 417 
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the C3-like protein mentioned in the section above has been identified [83,87]. The complex alternative 418 

splicing pattern of the CfTEP mRNA as well as the differential expression of isoforms in response to diverse 419 

pathogen challenges evidenced a complex regulation of its expression in the innate immune response [87]. 420 

TEPs have been identified in oyster and clam transcriptomes [22,23] and they are present also in mussels; 421 

due to the structural similarity between TEPs and serum protease inhibitors alpha-2 macroglobulins, 422 

functional analyses are necessary to evaluate the extension of this protein family in bivalves and its role in 423 

bivalve immunity. Furthermore, the presence of highly similar paralogous gene products and low-424 

complexity regions hampered the reconstruction of full-length TEP transcripts from the mussel 425 

transcriptome. Nevertheless, we can report the full length sequence of a complement C3 component-like 426 

transcript, which is the first TEP to be ever reported in mussel (Table 2). 427 

 428 

3.1.2.2. MACPF pore-forming molecules 429 

The terminal components of the complement system can form a protein complex (the membrane attack 430 

complex, or MAC) on the surface of Gram- bacteria, triggering their lysis. The MACPF superfamily (named 431 

after a domain common to proteins of the mammalian membrane attack complex and to perforins) is the 432 

largest family of pore-forming molecules in animals [88]. In vertebrates, perforins are produced by natural 433 

killer cells and by cytotoxic T lymphocytes to trigger the killing of virus-infected cells [89]. Nevertheless, a 434 

large number of other MACPF domain-containing proteins whose function is not linked to immunity have 435 

been reported in mammals, including very large inducible GTPases, BRINPS and astrotactins [90]. 436 

Following multiple reports of perforin-like proteins in sea urchin and abalones [2,91–93], the MACPF 437 

domain-containing protein Macp was identified in M. galloprovincialis, and it remains the only one 438 

available at the present time in public databases for a bivalve mollusc [80]. Macp is a secreted protein 439 

which does not present any other domain except from MACPF. The expression of its transcript was found 440 

to be developmentally regulated and increased upon pathogen and PAMPs stimulation, evidence 441 

suggesting its involvement in the innate immunity. Nevertheless, both domain organization and primary 442 

sequence of Macp differ from those of perforins and vertebrate complement proteins; hence, Macp could 443 

not be placed in any of major group of vertebrate MACPF domain-containing proteins in a phylogenetic 444 

analysis. Despite the up-regulation of Macp following bacterial challenges, experimental assessment of its 445 

lytic activity is still required to confirm it as a pore-forming molecule. 446 

Genes for several MACPF-domain containing proteins appear to be present in bivalve genomes: indeed, a 447 

total of 17 genes have been predicted in the C. gigas genome and we could detect 8 full length and several 448 

partial MACPF transcripts in the transcriptome of M. gallopovincialis. Both secreted and membrane-bound 449 

forms of the predicted proteins are present in mussel and oyster, but in no case they show convincing 450 

sequence homology to vertebrate perforins and to the proteins C6/C7/C8/C9 of the terminal complement 451 

pathway. 452 
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The association of ApeC with MACPF, detected in 5 predicted mussel proteins, strongly indicates the 453 

combination of pathogen recognition and killing properties in the same protein sequence, as ApeC has 454 

been recently functionally linked to pathogen recognition in amphioxus [78] (see Section 3.1.1.8). 455 

 456 

3.1.3. Membrane-bound PRRs and downstream signaling 457 

Compared to secreted PRRs, membrane-bound immune receptors appear to be less abundant in M. 458 

galloprovincialis, despite their diversification and central role in the host defense against invading 459 

pathogens. Unlike extracellular PRRs expected to trigger pathogen killing via the lectin-like complement 460 

pathway, membrane-bound PRRs generally possess an intracellular domain which mediates the signal 461 

transduction through key transcription factors and, finally, the expression of antimicrobial effectors and 462 

proinflammatory cytokines (the latter perpetrate the adaptive immune response in vertebrate animals). 463 

In this section, we update the knowledge on bivalve membrane-bound receptors and on the downstream 464 

events triggered by PAMP recognition. An overview of these processes is provided in Figure 3. 465 
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 466 

Figure 3: Membrane-bound PRRs. Once activated by PAMPs, Toll-like receptors (right) and peptidoglican 467 

recognition proteins (left) transmit the danger signal to cytosolic proteins ultimately bringing transcription 468 

factors into the cell nucleus and inducing the expression of genes essential to clear bacterial and fungal 469 
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cells. The existence of extracellular pathways leading to the activation of TLRs through extracellular PGRPs 470 

and GNBPs, well-studied in Drosophila, is still doubtful in bivalves, in particular due to the absence of a 471 

Spätzle-like cytokine and of protease homologs involved in the upstream cascade (see the text for details). 472 

These passages are therefore indicated by dashed arrows. 473 

 474 

3.1.3.1. Toll-like receptors and the NF-B signaling 475 

Toll-like receptors (TLRs) are among the most successful PRRs of the immune response in metazoans [94]. 476 

TLRs take their name from the Droshophila receptor Toll, originally identified as essential in the embryo 477 

morphogenesis, but later they recognized to mediate the immune response to the fungus Aspergillus 478 

fumigatus [95]. Since then, several TLRs sharing a similar domain organization have been detected and 479 

extensively studied both in vertebrates and in invertebrates. Usually, they share an evolutionarily 480 

conserved intracellular Toll-interleukin-1-receptor (TIR) domain, a transmembrane region and a variable 481 

extracellular region consisting of leucine-rich repeats (LRRs) with interesting binding properties. TLRs are 482 

capable of binding a very broad range of PAMPs, including LPS, components of the bacterial cell wall, 483 

flagellin, single- and double-stranded RNA, thus potentially acting as sensors of bacteria, fungi and viruses. 484 

In response to ligand binding, TLR dimerization is expected to sequentially recruit intermediary elements 485 

such as the Myd88 adaptor, IRAK and IKK kinases among the others, thus activating transcription factors 486 

such as NF-B and interferon-regulatory factors (IRFs) and ultimately mounting the expression of pro- 487 

inflammatory cytokines, chemokines, and anti-viral molecules [96]. 488 

Following the identification of the first bivalve TLR in A. farreri [97], the full repertoire of these receptors 489 

has been explored in detail in M. galloprovincialis and 23 TLRs, grouped in 4 different clusters according to 490 

the organization of extracellular LRRs, were identified [98]. Tissue-specific patterns of constitutive 491 

expression were reported, but only one out of the four tested mussel TLRs (MgTLR-I) was found up-492 

regulated in response to bacterial injection, especially with Gram- bacteria. Three Myd88 adapters are 493 

expressed in mussel, with specific constitutive and inducible levels. The observed expression patterns 494 

suggested the co-regulated expression of MgTLR-I and MgMyd88-c in response to the filamentous fungus 495 

Fusarium oxysporum and evidenced for the first time the existence of a Toll signaling pathway in 496 

Lophotrochozoa. On the other hand, the absence of TRIF-like molecules suggests that bivalves lack a 497 

MyD88-independent pathway, homologous to the one activated downstream to human TLR3. 498 

The subsequent identification of 15 downstream elements provided further evidence about the existence 499 

of a complete signaling pathway similar to the Drosophila Toll and to the mammalian TLR pathways [99]. 500 

Besides MyD88, one or more transcript variants denoting TOLLIP, IRAKs, TRAFs, TAK1, IKK, IKKγ/NEMO, IkB, 501 

Relish/p65 and NF-B were comparatively identified in M. galloprovincialis, M.edulis and C. gigas (see 502 

Figure 3). 503 
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Many questions are still open on the bivalve TLRs: in particular, which PAMPs are specifically recognized by 504 

such receptors and how TLRs are distributed in hemocytes and other mussel cells. It is known that the 505 

human TLR7/8/9 are localized to the endosomal membrane, where they can recognize elements of 506 

bacterial and viral infections such as CpG oligodeoxynucleotides (CpG-DNA) (TLR9), single or double 507 

stranded viral RNA (TLR7/8 and TLR3, respectively), and trigger the production of interferon (IFN) and 508 

proinflammatory cytokines [100]. In other words, also mussel TLRs might recognize pathogens both in the 509 

extracellular and intracellular space. 510 

Besides TLRs, other TIR domain-containing proteins are involved in immune signaling, since this domain is 511 

often used for homophilic interactions [101]. Interestingly, the TIR domain appears to be widespread in 512 

bivalves, with over 100 TIR domain-containg proteins predicted in the oyster genome. Despite not being as 513 

abundant as in echinoderms, such a repertoire is still wide in comparison with other invertebrates since, for 514 

instance, just about 10 TIR-domain containing proteins are present in arthropods. Further studies are 515 

necessary to reveal more details on these receptor proteins and their role in the innate immune responses 516 

of bivalves. 517 

 518 

3.1.3.2. Peptidoglycan recognition proteins: evidence for an IMD-like signaling? 519 

Peptidoglycan recognition receptors (PGRPs) are important PRRs present in all metazoans and able to 520 

recognize bacteria by specifically binding PGN, a major component of cell bacterial walls [102]. PGRPs have 521 

been characterized in many bivalve species, including scallops, oysters, razor clams [103–105] and the 522 

deep-sea hydrothermal vent mussel Bathymodiolus azoricus, where a PGRP was found to be highly 523 

abundant in the gills, which typically host edosymbiotic bacteria [46,106]. So far, all these proteins have 524 

been regarded as short-type PGRPs for extracellular bacteria recognition. Nine PGRPs are represented in 525 

the oyster genome but, looking at the transcriptome data and considering both membrane-linked and 526 

secreted PGRPs, we could only report three full-length mussel transcripts (two membrane-bound and one 527 

secreted proteins, see Table 2). The expression pattern of the secreted protein PGRP3 has been 528 

comparatively investigated in M. galloprovincialis and B. azoricus, evidencing an up-regulation 12 and 24 529 

hours after bacterial challenges in the Mediterranean mussel [107], but data concerning the regulation of 530 

membrane-bound PGRPs are still completely missing. 531 

In insects, secreted PGRPs have a dual role in: a) recognizing Gram+ bacteria and modulating the Toll 532 

pathway (together with GNBPs) and melanization, through the proteolytic PO cascade and the cleavage of 533 

the pro-cytokine Spätzle; b) activating the IMD pathway in response to Gram- bacteria via the amidase 534 

activity of PGRP-SC, which cleaves PGN into inactive amino sugars and peptides later recognized by the 535 

transmembrane PGRP-LC [102]. 536 

As reported previously, the presence of an extracellular proteolytic cascade similar to the PO system and 537 

leading to the activation of TLRs through a Spätzle-like molecule is doubtful in bivalves (see Section 3.1.1.7). 538 
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On the contrary, the existence of an IMD pathway involved in the response to Gram- bacteria seems to be 539 

better supported by molecular data. Indeed, together with the Toll signaling pathway, Toubiana and 540 

colleagues also detected a number of sequences homologous to elements of the Drosophila IMD pathway 541 

in M. galloprovincialis (namely, TAK1, NEMO, IKK- and Relish). Nevertheless, no plausible evidence could 542 

be found for the first key adaptor protein downstream to PGRP-LC, the IMD/RIP protein. Given that the Toll 543 

pathway was observed to be responsive to both Gram+ and Gram- bacteria, the existence of an IMD 544 

pathway was reported as uncertain in mussel [99]. 545 

However, our identification of mussel transcripts denoting transmembrane PGRPs, together with the 546 

presence in public sequence databases of dFADD and DREDD/Caspase-8, would reinforce the idea of an 547 

IMD-like pathway involved in the recognition of Gram- bacteria in bivalves (see Figure 3). In Drosophila, 548 

transmembrane PGRPs initiate the IMD signal transduction through their intracellular RIP Homotypic 549 

Interaction Motif (RHIM) domain whereas mussel PGRPs lack such domain (their intracellular region does 550 

not contain any known functional domain), so further investigations are necessary to identify the putative 551 

intracellular adaptor ptotein initiating signal transduction downstream to membrane-bound PGRPs. 552 

 553 

3.1.3.3. MAPKs and signaling cross-talk along the TLR and IMD pathways 554 

An alternative route which can be activated downstream of TLRs in vertebrates, and downstream of IMD in 555 

insects, is the mitogen-activated protein kinases (MAPK) pathway. The MAPK kinase cascade has been 556 

involved in the regulation of growth, differentiation and survival, and it could act both in the TLR- and in the 557 

PGRP-mediated intracellular signaling pathways in bivalves. 558 

Various stimuli are known to activate the MAPK cascade, which is a pathway not restricted to the immune 559 

responses, and considering its complexity, in this section we just briefly outline the main signaling 560 

components possibly involved in signal transduction downstream of TAK1, a MAP kinase kinase kinase 561 

(MAP3K) acting in the intersection between these signaling cascades. 562 

Two main routes involving the sequential phosphorylation of MAP kinase kinases (MKKs) and MAPKs are 563 

possibly activated by TAK1: a) c-JUN N-terminal kinases (JNK) via MKK4 or MKK7; b) p38 mitogen-activated 564 

protein kinases via MKK3 or MKK6. The MAPK signaling ultimately leads to the activation of the AP-1 565 

transcription factor complex, thereby regulating the expression of various immunity- and stress-related 566 

genes. 567 

It is important to note that the previously reported effectiveness of commercial anti-pospho-antibodies 568 

directed against MAPK, JNK and p38 in M. galloprovincialis and B. azoricus, denoted both the remarkable 569 

evolutionary sequence conservation of these molecules and the critical role of p38 and JNK kinases in the 570 

immune response of mussel hemocytes [108,109]. 571 

We could identify bivalve sequences with high similarity (in the range of 60-70% protein sequence identity) 572 

to the human MKK3/6, MKK4/7, JNKs and p38 kinases. In particular, we report the presence of MKK4, 573 
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MKK7, a single MKK3/6 and a single JNK homolog in both mussel and in oyster; moreover, compared to 574 

three p38 kinase-like genes identified in the oyster genome, only a single one was found expressed in 575 

mussel. 576 

An alternative branch of the TLR pathway can activate MKK4/7 upstream to TAK1, through the 577 

evolutionarily conserved adaptor protein ECSIT [110], previously described  also in mussel [99] and  578 

representing a bridge between TRAF6 and the MAP kinase kinase kinase MEKK-1 (Figure 3). MEKK-1 in turn 579 

phosphorylates and activates MKK4 and 7 [111]. We can report the presence of a highly conserved MEKK-1 580 

in mussel which, together with ECSIT, might be involved in another point of contact between the TLR and 581 

MAPK pathways. 582 

The signal transduction mediated by JNK and p38 determines the activation of AP-1 transcription factors, 583 

heterodimers of proteins encoded by JUN and FOS gene families, which both comprise multiple members in 584 

vertebrates. A JUN protein responsive to bacterial infections has previously been described in Crassostrea 585 

hongkongensis [112] and was identified in the B. azoricus gill transcriptome [106,107]. Based on 586 

comparative sequence analyses, we can report that a single JUN transcription factor is encoded in the 587 

Pacific oyster genome and is expressed in mussel. On the contrary, the FOS family comprises at least two 588 

different members in both species, whose relation with vertebrate FOS family proteins is unclear. Further 589 

study is required to assess the interaction between bivalve JUN and FOS members and the presence of AP-1 590 

binding elements in the promoter of bivalve genes involved in immune and stress responses. 591 

 592 

3.1.3.4. Scavenger receptor cysteine-rich superfamily (SRCR-SF) receptors 593 

The scavenger receptor cysteine-rich domain defines a large and ancient superfamily of scavenger 594 

receptors collectively known as SRCR-SF receptors. They present a conserved domain, 100-110 amino acids 595 

long and stabilized by disulfide bridges, which can be found associated with a number of additional 596 

domains and co-receptors. Altogether, these features confer to the members of SRCR-SF a broad range of 597 

functions, from lipoprotein binding, to cell transport, to pathogen clearance [113]. The massive expansion 598 

the SRCR-SF in the sea urchin genome (comprising 218 genes), their marked up-regulation in response to 599 

immune challenges and their localized expression in sea urchin coelomocytes, clearly indicate the immune-600 

related diversification of this family of receptors [2]. 601 

In the available bivalve transcriptomes the number of SRCR-SF domains appears relatively high [114], but 602 

these receptors still await a detailed characterization. The only well-characterized bivalve SRCR-SF domain-603 

containing protein is CfSR, identified in the scallop Azumapecten farreri and able to bind various ligands 604 

such as LPS, PGN, mannan and zymosan [115]. 605 

Overall, at least 62 genes of the SRCR superfamily have been annotated in the oyster genome, with various 606 

domain organizations, and even a higher number of these receptors is evident in mussel transcriptomes. 607 
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Although not as abundant as in sea urchin, a relevant gene family expansion may have occurred in mussel 608 

compared to other model invertebrates (only 7 and 8 SRCRs are present in D. melanogaster and C. elegans, 609 

respectively). 610 

 611 

3.1.4. Cytosolic PRRs 612 

In addition to the greatly expanded families of secreted PRRs and membrane-bound TLRs, intracellular 613 

sensors of microbes and viruses have been more recently identified in bivalves. In this section, we provide 614 

an overview on the cytosolic PRRs present in mussel, with some indications on the downstream signaling 615 

network based on homologies to better studied organisms (Figure 4). 616 

 617 

 618 
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Figure 4: Cytosolic mussel PRRs. In a general view (A), structural elements of pathogens penetrated into 619 

the cell environment are exemplified by MDP/iE-DAP, cyclic dinucleotides and nucleic acids whereas NLRs, 620 

STING, DDX41, RLRs and endosomal TLRs exemplify PRRs. Only some events possibly occurring downstream 621 

are illustrated, given the lack of a robust frame of knowledge in mussel and bivalves. The domain 622 

organization of different cytosolic PRRs identified in M. galloprovincialis is also reported (B). 623 

 624 

3.1.4.1. NOD-like receptors (NLRs) 625 

The cytosolic NOD-like receptors (NLRs) reinforce the sensing of bacterial components which have been 626 

able to enter the cell, in particular the PGN-derived molecules γ-D-Glu-meso-diaminopimelic acid (iE-DAP) 627 

and MDP. About 20 NLRs have been reported in vertebrates but lineage-specific expansion to few hundred 628 

members in plants and some animal groups emphasizes their involvement in the innate immunity 629 

[116,117]. The self-assembly of NLRs in heteromeric complexes contributes to the specific recognition of 630 

PAMPs via C-terminal LRRs whereas the recruitment of downstream molecules is mediated by homophilic 631 

interactions of their variable N-terminal effector domain: usually a DEATH, a pyrin, a caspase recruitment 632 

(CARD) or a baculovirus inhibitor of apoptosis protein repeat (BIR) domain classify NLRs within the NOD, 633 

NALP or NAIP subfamilies. NLRs typically contain a central NACHT nucleoside triphosphatase domain. 634 

Despite all early diverging metazoans do already possess a rather large number of highly diversified NACHT 635 

domain-containing proteins [118], no NLR sequence has ever been reported in bivalves so far, even though 636 

the existence of NLRs was hypothesized in the blue mussel [13]. 637 

We now report the presence of at least one NLR-like sequence with a canonical tripartite domain 638 

organization in M. galloprovincialis (MgNLR1). This putative NLR contains a single N-terminal CARD effector 639 

domain, followed by a central NACHT domain and a C-terminal region dominated by LRRs (see Figure 4B). 640 

We could also identify other partial transcripts encoding NACHT-domain containing proteins, in some cases 641 

in association with C-terminal tetratricopeptide repeats, which are a common evidence in other 642 

invertebrate NLRs [119]. Since we did not find any BIR and pyrin domains associated with NACHT, the 643 

subfamilies NALPs and NAIPs appear to be absent in M. galloprovincialis. 644 

Mammalian NLRs, NALPs in particular, are involved in the organization of the inflammasome complex. 645 

There are no previous reports of inflammasomes in invertebrates [120] and the absence of pyrin domains 646 

(characterizing both NALPs and the key adaptor protein PYCARD) in invertebrates, as well the absence of a 647 

caspase-1 homologous sequence in mussel implies that a similar system for the activation of the 648 

inflammatory response, if existing, is highly divergent in molluscs. Furthermore, NLRs seem to have a 649 

fundamental role in the activation of the autophagic machinery (specifically via the ATG16L1 protein) at the 650 

site of bacterial entry, thus promoting the elimination of bacterial pathogens through xenophagy [121]. 651 
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In conclusion, a limited number of NLR-like sequences are present in mussel; comparatively, no NLRs genes 652 

have been annotated in the oyster genome, and one possible NLR sequence emerges from the mussel 653 

transcriptome data. Further investigations could provide more information on the involvement of mussel 654 

NLRs in the cytosolic PAMP recognition and the related downstream signaling pathway. 655 

 656 

3.1.4.2. Retinoic acid inducible gene-I like RNA helicases (RLRs) and downstream signaling 657 

Retinoic acid inducible gene-I like RNA helicases are more simply known as RIG-like receptors (RLRs); they 658 

are intracellular sensors of viral 5'-triphosphate (5’ppp)-single- and double-stranded RNA and they are 659 

therefore of the utmost importance in antiviral responses. In general, RLRs have been linked to the indirect 660 

detection of DNA viruses, mediated by DNA-dependent RNA polymerase III which synthetizes 5'-ppp-ssRNA 661 

from a double-stranded viral DNA template [122]. 662 

RLRs are capable of initiating an intracellular signaling cascade which ultimately leads to the production of 663 

interferon and pro-inflammatory cytokines through the activation of NF-B and interferon regulatory 664 

factors (IRFs) [123–125]. Vertebrate RLRs are organized with one or two N-terminal CARD domains, two 665 

central DExD/H box helicase domains and a C-terminal RIG repressor domain. 666 

The presence of RLRs in invertebrates has been a long-debated issue: indeed, Drosophila lacks RLRs and 667 

relies on Dicer-2 for an homologous function in antiviral response [126,127]. Nevertheless, the presence of 668 

RIG-like genes in echinoderms and cnidarians suggests an ancient origin for RLRs [128] and the antiviral 669 

response of C. elegans is apparently mediated by a RIG-like protein devoid of a CARD domain [129]. About 670 

bivalves, the analysis of the oyster genome reveals at least eight different RIG-domain containing proteins, 671 

four of them with a domain architecture identical to vertebrate RLRs, except for the presence of a single N-672 

terminal CARD domain (instead of two) [130]. 673 

Philipp and colleagues reported the partial sequences of two putative RLRs in the blue mussel M. edulis [13] 674 

and, despite the presence of highly similar paralogous genes complicates the reconstruction of full length 675 

RLR sequences in M. galloprovincialis, we can report the full-length transcript of a RIG-like receptor, very 676 

similar to those of oyster (Figure 4B). 677 

The finding of a mussel RLR with a canonical domain organization, consistent with vertebrate proteins, 678 

suggests competence for double-stranded viral RNA sensing in bivalve mollusks and implies the existence of 679 

a similar downstream signaling. In vertebrates, the first step in the helicase-mediated viral RNA recognition 680 

is the interaction of the CARD domain with a downstream adaptor protein, the IFN-beta promoter 681 

stimulator (IPS-1), also known as CARD adaptor inducing IFN-beta (CARDIF). IPS-1 then interacts with TRAF3 682 

to activates TBK-1 and IKK, thus inducing the interferon response, or with FADD, which activates the 683 

production of inflammatory cytokines via NF-B upon its interaction with DREDD/Caspase-8 [124]. 684 

Most of the proteins involved in RLR signaling are common to the TLR and IMD pathways (see sections 685 

3.1.3.1 and 3.1.3.2), and an almost complete RLR pathway could be identified in M. edulis [13]. 686 
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Nevertheless, in the same study it was not possible to identify the key component IPS-1, and this is not 687 

surprising given the high sequence divergence of this protein in basal deuterostomes [2]. In essence, the 688 

evidence of vertebrate-like cytoplasmic RIG-like receptors supports the existence of the RLR signaling in 689 

bivalve molluscs, although some key signaling elements are expected to be highly divergent and have still 690 

to be identified. 691 

 692 

3.1.4.3. Intracellular foreign DNA and bacteria sensing via the STING pathway 693 

Besides RLRs, various cytosolic sensors of exogenous DNA exist in vertebrates, but homologous molecules 694 

seem absent in mussel or difficult to identify in invertebrates, likely due to high sequence divergence. For 695 

example, the pyrin domain characterizing the vertebrate sensors AIM2 and IFI16 could not be identified in 696 

any analyzed genome or transcriptome of bivalves, mussel included. 697 

Nevertheless, the signals transduced by different sensors such as DAI, DDX41, and IFI16 converge in a single 698 

downstream crucial molecule named “Stimulator of interferon genes” (STING), which is known to stimulate 699 

the production of IFN, via IRF3, and proinflammatory cytokines, via NF-B, once they are phosphorylated by 700 

the TBK1 kinase [131,132]. Though DAI and IFI16 are absent in mussel, we could identify a sequence 701 

homologous to DDX41, a member of the DEXDc helicases family which has been recently demonstrated to 702 

act as an intracellular viral DNA sensor [133]. The high sequence conservation between the mouse and 703 

mussel proteins (71% sequence identity) strongly suggests functional conservation also in bivalves, but the 704 

hypothesis requires experimental testing. 705 

STING is a transmembrane protein which can indirectly detect the presence of bacteria by sensing 706 

conserved signaling molecules produced by bacteria (the cyclic dinucleotides c-di-GMP and c-di-AMP), thus 707 

playing an important role against bacteria and exogenous viral DNA (in collaboration with DDX41). The 708 

STING protein is evolutionarily conserved, as its origins can be traced back to Choanoflagellates, even 709 

though it was lost during metazoan evolution in nematodes and flatworms [134]. While no sequence 710 

records are available for this protein in molluscs, we ascertained the presence of at least two full-length 711 

STING-like proteins in M. galloprovincialis and estimated the presence of 5 genes in the C. gigas genome. 712 

Quite surprisingly, the STING homologs found in mussel have a peculiar domain organization which is not 713 

found in other invertebrate genomes [134]. Like in insects, the deduced mussel STING proteins lack the N-714 

terminal transmembrane domains anchoring vertebrate STING globular domain to the endoplasmic 715 

reticulum membrane, suggesting a different subcellular localization compared to vertebrates. The 716 

duplication of the STING globular domain and the association with two TIR domains, N-terminal to STING 717 

(Figure 4B), are the most striking features of mussel STING proteins. Human STING is known to be active as 718 

a dimer [135], and the presence of two STING domains within the same protein in bivalves could possibly 719 

provide a functional analogy without need of dimerization. On the other hand, the presence of TIR domains 720 
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is likely relevant to signal transduction, which is guaranteed by an alternative C-terminal extension present 721 

in vertebrates but absent in mussel. 722 

In addition to the coordination of IFN and proinflammatory cytokines production, STING has a crucial role in 723 

the induction of an autophagic-like response following bacterial infections, leading to the ubiquitination of 724 

bacterial cells and their selective elimination by xenophagy [136] and a similar behavior has been also 725 

observed in response to -herpesviruses [137]. A well-developed autophagic machinery is also present in 726 

mussel [13], but a detailed characterization of this pathway, which is not uniquely related to immune 727 

functions, goes beyond the scope of this paper. 728 

As discussed in section 3.1.4.1, the STING signaling is not the only immune pathway expected to stimulate 729 

xenophagy in response to pathogen invasion, as NLRs hold a similar potential. The role of xenophagy in the 730 

innate immune response is gaining an increasing recognition [138] and the presence of multiple STING 731 

homologs, NLRs and a fully functional autophagic system in mussel suggest an interesting interplay of 732 

molecular networks in support to pathogen clearance. 733 

 734 

3.2. Effectors molecules 735 

Upon pathogen recognition, cross-talking signaling pathways allow the activation of specific transcription 736 

factors which, in turn, are expected to reinforce the innate immune response, via proinflammatory 737 

cytokines and interferons, and to stimulate the production of diverse humoral effectors directly involved in 738 

pathogen killing, such as, for instance, antimicrobial peptides (AMPs)  739 

 740 

3.2.1. Antimicrobial peptides (AMPs) 741 

Antimicrobial peptides (AMPs) are a widespread group of heterogeneous gene-encoded molecules with 742 

antibiotic functions, which are classified in different subgroups, based on their structure, amino acid 743 

composition and properties. Seven different AMP families have been identified so far in Mytilus spp., all 744 

pertaining to the cysteine-rich AMP subgroup (Table 3). 745 

AMP class Domain organization Cysteine residues Cysteine array 

defensins (arthropod-like) SP-CR 6 C-C-C---C-C-C 

defensins SP-CR-C-terminal extension* 8 C-C-C-C-C-C-C-C 

mytilins SP-CR-C-terminal extension 8 C-C-C-C-C-C-C-C 

myticins SP-CR-C-terminal extension 8 C-C-C-C-C-C-C-C 

mytimacins (type-1) SP-CR 8 C-C-C----C---C-C-C 

mytimacins (type-2) SP-CR 10 C-C-C----C-C-C-C-C-C 

mytimacins (type-3) SP-CR 12 C-C-C-C-CC-C-C-C-C-C-C 

big defensins SP-propeptide-CR 6 C-C-C-C-CC 

mytimycins (type-1) SP-CR-EF hand 12 CC-C-C--C-C--C-C-C-C-C-C 
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mytimycins (type-2) SP-CR-EF hand 12 CC-C-C-CC-C-CC-C-C-C 

mytimycins (type-3) SP-CR-EF hand 14 CC-C-C-CC-C-CC-C-C-C-C-C 

myticusins SP-propeptide-CR 10 C-C-C-C-C-C-C-CCC 

mytiCRP-I SP-propeptide-CR 6 C-C-CC-C-C 

mytiCRP-II SP-CR 8 C-C-C-CC-C-C-C 

mytiCRP-III SP-CR 6 C-C-C-CC-C 

mytiCRP-IV SP-CR 10 C-C-C-CC-C-C-C-C-C 

Table 3: List of cysteine-rich AMP families identified in Mytilus spp. Domain organization and cysteine 746 

arrays are indicated. MytiCRP-I, -II, -III and –IV represent families whose antimicrobial properties have not 747 

been demosrated yet (see section 3.2.1.7 for details). SP: signal peptide; CR: cysteine-rich domain; *: the C-748 

terminal extension may be missing in defensins. 749 

 750 

3.2.1.1. Defensins 751 

Defensins are structurally characterized by a cysteine-stabilized alpha-beta motif (CS-) and are almost 752 

ubiquitous in Eukaryotes. Among the invertebrate animals, defensins have been mostly studied in 753 

arthropods, where they invariably have 6 conserved cysteine residues arranged in three disulfide bridges. In 754 

1996, the first bivalve defensin molecules were isolated from mussel hemocytes, in both M. edulis and in 755 

M. galloprovincialis [139,140]. The structure of mussel defensins is similar to that of arthropod defensins 756 

despite the presence of an additional pair of cysteines arranged in a fourth disulfide bridge [141]. 757 

Furthermore, the loop connecting the two antiparallel beta-strands of the CS- motif identified as 758 

fundamental to the antibacterial and antifungal activities [142,143]. 759 

Transcriptome analyses helped to define the complete sequence of 8-cysteine defensin precursors, and 760 

three additional defensins, namely MGD3, MGD4 and MGD5, have been reported [20]. The presence of a C-761 

terminal extension after the 8th cysteine residue in most defensins (with the exceptions of MGD3 and 762 

MGD5) is a recurring scheme in other mussel AMPs families (mytilins and myticins) which could have 763 

evolved from defensins through exon shuffling [144]. For comparison, the C. gigas defensins display a 764 

remarkable sequence diversity, which seems to be in turn originated from a limited number of defensin 765 

genes (three have been identified so far) [145]. 766 

We report the sequences of two novel defensin-like sequences with only six cysteines, consistent with 767 

previous reports of “arthropod-like” defensins in other molluscs [146–148]. However, functional studies are 768 

necessary to confirm the involvement of such molecules in the mussel innate immune response. 769 

 770 

3.2.1.2. Mytilins 771 

Mytilins are a class of AMPs strongly expressed in mussel hemocytes. Initially isolated by HPLC techniques 772 

in M. edulis [139], the mytilin family was later discovered to comprise different isotypes [149]. The 773 
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organization of mytilin genes and protein precursors is similar to that of most defensins and myticins, as the 774 

signal peptide and the mature Cys-rich regions are encoded by two separate exons whereas the C-terminal 775 

extension, cleaved off in the mature peptide, is encoded by a third exon [150]. The presence of the CS- 776 

motif in the tridimensional structure of mytilins is also strongly reminiscent of defensins [151]. 777 

Five different mytilin sequences, named mytilin B, C, D, F and G1 have been so far identified in M. 778 

galloprovincialis [20]. Compared to the other most studied mussel AMP families (defensins and myticins), 779 

mytilin precursors show a minimal inter-individual sequence variability [152]. 780 

Until recent times, the purification of highly expressed peptides from active fractions of the hemolymph 781 

and EST sequencing have been the main strategies applied to the identification of AMPs in non-model 782 

species, including mussel. However, thanks to the recent high-throughput sequencing approaches, we can 783 

report some additional mussel mytilin-like sequences with peculiar variations. Most notably, the position of 784 

the 5th cysteine residue in not canonical in the novel M. galloprovincialis sequences of mytilin K and mytilin 785 

N, and this variation is associated with an insertion of four amino acids in the alpha helix of the CS- 786 

between the first and the second cysteine residues (Figure 5). 787 

On the other hand, another mytilin-like sequence named pseudomytilin 1 shows a canonical disulfide 788 

organization but displays a completely different C-terminal extension. The functional meaning of these 789 

variations and the expression pattern of these novel mytilin-like sequences remain to be fully explored. 790 

 791 

 792 

Figure 5: sequence alignment of M. galloprovincialis mytlin proteins. The experimentally determined 793 

disulfide bridges organization of mytilin B is indicated by solid lines, whereas the hypothetical disulfide 794 

bridge connecting cysteine 1 to cysteine 5 in mytilin K and N is shown as a dased line. * indicates novel 795 

sequences. 796 

 797 

3.2.1.3. Myticins 798 

The identification of myticins A and B in M. galloprovincialis dates 1999 [153]. These AMPs, displaying 8 799 

cysteines and a C-terminal extension like defensins and mytilins, were found to be highly active against 800 

Gram+ bacteria. The expression of myticin B was demonstrated in a hemocyte subpopulation of small 801 

granulocytes and its expression kinetics was thoroughly investigated (for a comprehensive review see 802 

[154]). A third sequence, named myticin C, was later identified through EST sequencing [155] and, in spite 803 
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of a limited variability at a genomic level, an extreme variability was observed both among individuals and 804 

within a same individual at the transcript level [156,157]. Though at a lower level than myticin C, also 805 

mytilin A and mytilin B show an inter-individual sequence variability, mainly generated by single nucleotide 806 

changes [152]. Such a high sequence diversity could be partially justified by gene duplication, as the 807 

presence of at least two myticin C gene copies has been recently indicated [158]. 808 

Myticin C has been shown to act not only as an AMP, but also as an immuno-modulating molecule, due to 809 

its chemotactic properties [159]. Based on transcriptomic evidence, we can confirm that no additional 810 

myticin-like sequences are expressed in mussel. 811 

 812 

3.2.1.4. Mytimycins 813 

Owing to their strict antifungal activity, mytimycins clearly differ from mussel defensins, mytilins and 814 

myticins. The mytimycin peptide, first purified from hemocytes of M. edulis alongside defensins and 815 

mytilins, displayed growth-inhibiting activity towards Neurospora crassa and Fusarium culmorum [139]. 816 

Compared to defensins and mytilins, the study of mytimicin was neglected until the description of its full 817 

gene sequence in 2012 [160]. The mytimicin precursor is composed by a signal peptide, followed by a 818 

central Cys-rich domain and a C-terminal EF-hand domain (the latter is cleaved from the mature peptide). 819 

Subsequently, the expression pattern of mytimicin and the timing of its up-regulation in response to 820 

filamentous fungi challenges were investigated also in individual mussels [161,162]. The increase of 821 

transcript data now allows to explore in more detail the variability of mussel mytimicin-sequences 822 

previously only represented by a few ESTs [20]. They now appear as a group of expressed sequences with a 823 

highly variable cysteine array which can comprise either 12 or 14 cysteines (allegedly organized into 6 or 7 824 

disulfide bridges), with the novel cysteine array of type-3 mytimycins (mytimycin F, G and I) being described 825 

for the first time in the present paper (Table 3 and Figure 6). 826 

 827 

Figure 6: sequence alignment of M. galloprovincialis mytimycin predicted proteins. Only the cysteine-rich 828 

region corresponding to the mature peptide is shown. * indicates novel sequences. 829 

 830 

3.2.1.5. Mytimacins 831 
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Macins represent an emerging family of secreted, positively charged AMPs, relatively poorly studied but 832 

widespread in protostomes and combining antimicrobial and nerve-repair activities [163]. Five mussel 833 

macins (mytimacins) have been described so far in M. galloprovincialis [164], with the number of cysteines 834 

and disulfide bridges ranging from 8 (4 bridges) to 12 (6 bridges) (Table 3). While 8- and 10-Cys macins have 835 

been reported in other taxa and their disulfide connectivity has been experimentally determined [165], the 836 

only 12-Cys macin described so far is the mussel mytimacin 5. Contrary to most mussel AMPs, mytimacins 837 

are not expressed in hemocytes, being instead detected in the digestive gland, gills and mantle. Macins of 838 

land invertebrates seem to exert their activity in the mucus produced by tissues in contact with the 839 

external surface [166–168]; bivalves also secrete mucus which covers their pallial tissues, with a function 840 

thought to be mainly related to filter-feeding and particle selection [169,170]. To date, no study has been 841 

carried out to investigate the antimicrobial potential of bivalve mucus and it is therefore impossible to 842 

ascertain whether macins are used in a similar fashion to other land invertebrates as mucus defense 843 

molecules. This remains, however, an interesting lead for future studies. 844 

 845 

3.2.1.6. Big Defensins 846 

Unlike arthropod-like defensins, big defensins (BDs) are composed by two separate domains. The N-847 

terminal region is mainly alpha-helical and hydrophobic, while the C-terminal region is cysteine-rich and 848 

structurally similar to vertebrate beta-defensins. BDs are indeed thought to be the ancestral form of beta-849 

defensins in invertebrates, which gave origin to vertebrate beta-defensins through exon shuffling and 850 

intronization of exonic sequence [171]. First described in Tachipleus tridentatus [172], BDs are apparently 851 

restricted to a few taxonomic classes, including Merostomata, Mollusca and basal cephalochordates [164]. 852 

In bivalves, a relevant number of BDs have been characterized, starting from the first report in Argopecten 853 

irradians [173]. A total of eight different BDs sequences have been reported in M. galloprovincialis and we 854 

can here report the presence of an additional sequence pertaining to this class. Differently from the BDs of 855 

other bivalves [173–175], none of mussel BDs is highly expressed in hemocytes, being instead localized in a 856 

broad range of tissues, like the mytimacins. 857 

 858 

3.2.1.7. Other cysteine-rich antimicrobial peptides 859 

Sequence analyses performed on the M. galloprovincialis transcriptome indicated the presence of a large 860 

number of short secreted cysteine-rich peptides. The lack of similarity to known sequences and the 861 

difficulty at obtaining purified peptides prevent functional tests but, most often, a positive net charge and 862 

the hypervariability of the Cys-rich domain are strongly suggestive of possible antimicrobial properties. As 863 

an example, a novel Cys-rich putative AMP (myticusin) has been recently identified in the hemocytes of 864 
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Mytilus coruscus. This AMP, bearing 10 cysteine residues arranged in an unusual disulfide pattern, was 865 

demonstrated to be active against Gram+bacteria [176]. 866 

These novel Cys-rich peptide families of mussel will likely be better characterized in the near future and,  867 

according to an upcoming report (manuscript in preparation), we propose a provisional naming scheme as 868 

follows: each novel mussel Cys-rich peptide family should be named Mytilus Cystein-Rich (MytiCRP)-n, 869 

where n is a progressive number. As an example, we have most recently characterized the large MytiCRP-I 870 

family, which comprises over 50 members of peptides whose precursors include both a conserved signal 871 

peptide and a propeptide region. Nevertheless, the mature region, bearing 8 cysteines arranged in a 872 

conotoxin-like C-C-CC-C-C array is extremely variable and subject to positive selection. Although the 873 

function of these peptides is currently unknown, we hypothesize that they may play a role in defense 874 

towards eukaryotic pathogens. The cysteine arrays of other, still uncharacterized, MytiCRP families are 875 

shown in Table 3. 876 

 877 

3.2.1.8. Other classes of AMPs 878 

Linear amphipathic and alpha-helical AMPs have been documented in vertebrates as well as in insects, 879 

where they are secreted by the fat body and released in the hemolymph [177], but so far no helical AMPs 880 

has ever been described in bivalves. Another important class of AMPs consists of peptides rich in specific 881 

amino acidic residues. The only example of this kind in bivalves is represented by an oyster Proline-rich 882 

peptide (Cg-Prp), which is expressed in hemocytes in response to bacterial challenges and displays synergic 883 

effect with defensins, even though devoid by itself of antimicrobial activity [178]. BLAST searches excluded 884 

the presence of similar peptides in Mytilus spp. and thus cysteine-rich peptides remain the only known 885 

class of AMPs to date. 886 

Overall, given the high primary sequence variability, methods based on sequence similarity have a poor 887 

predictive power and other strategies could be more effective in the de novo prediction of additional AMPs 888 

in mussel (e.g. analyses based on the calculation of positive net charge or on the identification of 889 

amphipathic alpha helices). 890 

 891 

3.2.2. Antimicrobial effectors with chitin-binding domains 892 

Recently, a 6 KDa peptide with 6 cysteines, named mytichitin-A, has been reported in Mytilus coruscus 893 

[179]. Mainly expressed in the gonad, this AMP was strongly up-regulated in response to bacterial 894 

challenges and the C-terminal region of a rather large chitoriosidase/chitinase-like precursor was 895 

determined to be responsible of the antimicrobial activity, mainly against Gram+ bacteria. 896 

Chitin-binding domains characterize different AMP families in invertebrates, including penaeidins and 897 

tachycitins [180,181], but this is the first report of a AMP of this class in molluscs. Given the relatively high 898 
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occurrence of chitin-binding domains in bivalves (estimated to be present in 76 oyster proteins as deduced 899 

from genome analysis), further study will be required to elucidate the antimicrobial potential of this class of 900 

mussel proteins. 901 

 902 

3.2.3. Lysozymes 903 

Lysozymes are antimicrobial proteins among the most well-known and studied in metazoans. Able to 904 

hydrolyze 1,4-beta-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine in PGN, 905 

lysozymes are particularly active against Gram+ bacteria and have a role in both digestion and antibacterial 906 

defense. Animal lysozymes show limited primary sequence homology but a close resemblance of 907 

tridimensional structure; nevertheless, they can be classified in three groups, namely chicken-type (C-type), 908 

goose-type (G-type) and invertebrate-type (I-type) [182]. Molecular and phylogenetic studies indicated that 909 

C-type and I-type sequences have likely originated from ancestral gene duplications [183], with both types 910 

simultaneously present in both molluscs and arthropods. 911 

The class of I-type lysozymes was the first one to be characterized in bivalves; their study in M. 912 

galloprovincialis revealed up-regulation in response to bacterial challenges [184,185]. In addition to their 913 

function in innate immunity, this class of lysozymes has also been linked to digestion processes in other 914 

bivalves [186]. In agreement with previous reports, we could identify the two known I-type lysozymes in M. 915 

galloprovincialis and a novel transcript sequence. 916 

Compared to the I-type class, C-type lysozymes have been far less studied in bivalves. Following our first 917 

report of a C-type lysozyme sequence in M. galloprovincialis [20], a study demonstrated its up-regulation in 918 

experimental challenges with both Gram+ and Gram- bacteria [187]. We can now report at least other two 919 

C-type lysozyme sequences expressed in M. galloprovincialis. 920 

G-type lysozymes were originally thought to be exclusive of vertebrates, due their absence in nematode 921 

and arthropod genomes. Since their detection in scallops, several other G-type lysozymes have been 922 

identified in bivalves [188]. Due to the achievement of an optimal activity at different pH, the two G-type 923 

lysozymes known in M. galloprovincialis seem to have different specialized roles in digestion and immune 924 

defense [189]. Our analyses confirmed the two G-type lysozyme transcript sequences already deposited in 925 

public databases for the Meditarranean mussel. 926 

Recently, a phage-type lysozyme has been identified in the clam R. philippinarum, thus possibly expanding 927 

the lysozyme repertoire of bivalves to four different families [190], but we could not detect any 928 

orthologous sequence in the mussel transcriptome nor in the oyster genome. 929 

 930 

3.2.4. Bactericidal/permeability increasing proteins (BPIs) 931 
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Bactericidal/permeability increasing proteins (BPIs) are evolutionarily conserved proteins present in 932 

molluscs as well in vertebrates, which can bind  LPS and cause bacterial killing by increased permeability of 933 

the bacterial cytoplasmic membrane [191,192]. One BPI sequence from M. galloprovincialis has been 934 

deposited in 2012 in GenBank and the presence of secreted as well as membrane-bound forms of BPIs has 935 

been predicted from the transcriptome of M. edulis [13]. Due to the high sequence similarity with 936 

vertebrate and invertebrate BPIs, it is plausible that mussel BPIs retain an identical function. We could 937 

detect two additional full length BPI transcripts in M. galloprovincialis, but we could not confirm the 938 

existence of the membrane-bound isoforms reported elsewhere [13]. 939 

 940 

3.2.5. Protease inhibitors 941 

Many pathogens produce proteases able to modulate host immunity at different levels, from recognition 942 

receptors to immune effectors [193]. The inactivation of these exogenous proteases is an important 943 

determinant of the host defense and a broad range of protease inhibitors can be expressed also in bivalves 944 

to counteract the variants of proteases produced by invading microbes. 945 

In 2001, the first molluscan protease inhibitor, a tissue inhibitor of metalloproteinases (TIMP) was 946 

characterized in C. gigas and connected to an innate immune function [194,195]. Then, other accounts of 947 

different protease inhibitors of several different bivalves were published, including TIMPs, Kazal-type [196–948 

198] and Kunitz-type [199] protease inhibitors. However, sequence homology by itself does not functionally 949 

link these protein families to the immune defense, as they are potentially involved in a wide range of 950 

processes, including embryonic development, morphogenesis and nacre formation, among others [200–951 

202]. Consistent with data gathered from genomic analysis of all invertebrates, a rather high number of 952 

protease inhibitors has been previously reported in bivalve transcriptomes [16,22,23]. We can now report 953 

gene models for 36 TIMPs, 49 Kazal-type and 27 Kunitz-type protease inhibitors in the oyster genome and a 954 

similar abundance of these classes in the mussel transcriptome. Not being restricted to the immune 955 

responses, an adequate description of mussel protease inhibitors requires further study. 956 

Moreover, completely novel proteins not fitting the current classification of protease inhibitors have been 957 

related to the bivalve immune responses. In particular, a novel serine protease inhibitor (cvSPI-1) with no 958 

homology to any other known sequence was shown to inhibit the major extracellular protease produced by 959 

the pathogen Perkinsus marinus in Crassostrea virginica, and to limit the proliferation of this protozoan 960 

[203,204]. This fact is of great interest, as six proteins pertaining to the same family are expressed at 961 

exceptionally high levels in the mussel digestive gland [16]. The sequence alignment between mussel and 962 

oyster serine protease inhibitors is shown in Figure 7. 963 
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 964 

Figure 7: sequence alignment of immune-related serine protease inhibitors identified in Mytilus 965 

galloprovincialis (Mg) and Crassostrea virginica (Cv). Conserved residues are shadowed in black, a red arrow 966 

indicates the signal peptide cleavage site. 967 

 968 

3.3. Modulators of the immune response 969 

Cytokines are a large and heterogeneous group of regulatory molecules which comprise interleukins, 970 

interferons, tumor necrosis factor (TNF) and chemokines. These crucial mediators of immune response and 971 

inflammation are often produced in different defense phases in response to specific transcription factors 972 

(mostly those pertaining to the NF-B and IRF families). Their pleiotropic effects attract immune cells and 973 

enhance pathogen clearance, thereby perpetuating the host reaction also through adaptive mechanisms in 974 

vertebrate animals. 975 

Due to the general skepticism of the scientific community, investigations on invertebrate cytokines were 976 

not even imagined for a very long time, until very recent years [205,206]. Conversely, the signal 977 

transduction pathways leading to their activation are relatively well conserved (e.g. the TLR signaling). 978 

Given the presence of a complete TLR/NF-B pathway (see Section 3.1.3.1) and of a complex system of 979 

cytosolic PRRs whose donstream signaling converges either on NF-B or on IRFs (see Section 3.1.4), it 980 

would be reasonable to expect the production of proinflammatory cytokines also in bivalves. 981 

Even though there are uncertainties and gaps on the pathogen-dependend activation of interferon 982 

regulatory factors in mussel (e.g. absence of the TRIF adaptor and doubtful presence of a Myd88-983 

independent TLR signal transduction), the identification of IRF-like expressed sequences in P. fucata and 984 

Hyriopsis cumingii, indicated the presence of interferon-sensitive response elements (ISRE) in bivalve 985 

genomes [207,208]. In addition to the three IRF-like genes present in the C. gigas genome, we can now 986 

report at least four different IRF-like transcripts in mussel, whose similarity to vertebrate IRFs is strictly 987 

limited to the DNA-binding domain. Three of them vaguely resemble human IRF1/2 whereas the fourth one 988 
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is more similar to IRF5 nd IRF8. Whether and how these transcription factors act in PRR recognition-989 

triggered pathways remains to to be fully elucidated. 990 

For clearness, mussels do not possess interferon-like sequence and, in general, the taxonomic distribution 991 

of the four-helical cytokine-like domain which characterizes the large majority of vertebrate interleukins is 992 

limited to chordates. In most cases, the invertebrate molecules reminiscent of a cytokine-like function do 993 

no share any sequence similarity to the vertebrate functional homologs and have probably undergone 994 

independent evolution, thus making their recognition by sequence homology impossible [209]. In 1990, the 995 

responsiveness of oyster cells to human IL-1 and TNF was evocative of the existence of bivalve cytokine-like 996 

proteins [210]. In 2008, an interleukin-17-like transcript was unexpectedly reported and found highly and 997 

rapidly induced in response to bacterial exposure in C. gigas hemocytes [211]. More recently, five novel IL-998 

17 homologs were identified in the C. gigas genome, costitutively expressed in some oyster tissues and 999 

significantly up-regulated in hemocytes after different immunostimulation trials [212]. The overall evidence 1000 

pointed to the diversification of IL-17 from a common ancestor and to the idea of an IL-17-sustained AMP 1001 

production in oyster. A preliminary survey performed in the mussel transcriptome has evidenced multiple 1002 

IL-17-like sequences which need to be confirmed and validated with additional study also in comparison 1003 

with the oyster IL-17 homologs. 1004 

Two other inflammatory cytokines have been identified by similarity searches in bivalves: the macrophage 1005 

migration inhibitory factor (MIF), which is present with at least three distinct gene products in M. 1006 

galloprovincialis [213], and the allograft inflammatory factor (AIF), able to stimulate the phagocytic activity 1007 

of granulocytes, which has been identified in different bivalve species [214–216] and is now confirmed also 1008 

in M. galloprovincialis. 1009 

In 2009, a TNFa-like sequence was reported for the first time in a mollusc (the abalone Haliotis discus) [217] 1010 

and, in agreement to earlier reports on the existence of TNF receptors in scallops [218,219], more recent 1011 

research led to the identification of this multifunctional cytokine also in Ostrea edulis [214]. We now report 1012 

at least three mussel transcripts pertaining to the TNF ligand superfamily with the canonical presence of an 1013 

N-terminal transmembrane region. Functional data are necessary to confirm that these molluscan TNF-like 1014 

proteins function similarly to vertebrate TNFs. Some intracellular components of a hypothetical TNFR 1015 

pathway in mussel are common to the IMD pathway (see FADD and Caspase-8 in Figure 3) but genuine 1016 

homologs to RIP, TRADD and TRAF2 still have to be identified. 1017 

In essence, most bivalve cytokines remains elusive due to a lack of similarity with vertebrates and a similar 1018 

role could be shared by completely different molecules such as myticin C: for long time considered to 1019 

strictly act as an AMP, experimental data suggested its cytokine function, since extracts of cells expressing 1020 

myticin C were able to attract hemocytes [159]. In brief, the available evidence for bivalve cytokines is 1021 

fragmentary and their dentification is still mostly limited to a few evolutionarily conserved molecules. 1022 

 1023 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
4. Conclusion 1024 

The immune systems of invertebrates are still largely unknown but the peculiar expansion of genes for 1025 

recognition and effector molecules in certain invertebrate lineages suggests the co-evolution of innate 1026 

defense mechanisms in response to the selective pressure imposed by fast-evolving microbial communities 1027 

and single infectious agents or parasites. This work confirms both the variety and multiplicity of the gene-1028 

encoded molecules participating in the M. galloprovincialis innate immunity. We expect that the overall 1029 

sequencing resources, gene expression analyses extended to regulatory non coding RNAs and experimental 1030 

studies in normal and stress conditions will provide a robust comparative basis for the identification of 1031 

heritable traits involved in the resistance to bivalve diseases and multifactorial bivalve mortality, with the 1032 

simultaneous identification of genome-spread or gene-related molecular markers supporting the selection 1033 

of vigorous broodstocks. 1034 
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