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1Also at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
2Also at Department of Physics, Pusan National University, Busan 609-735, Republic of Korea and at

Physics Department, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
3Also at Chubu University, Kasugai, Aichi, 487-8501 Japan
4Also at KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 Japan
5Present address: Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Ger-

many
6Also at Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia
7present address: RWTH Aachen University, III. Physikalisches Institut, 52056 Aachen, Germany
8deceased

Preprint submitted to Elsevier December 30, 2014

*Manuscript
Click here to view linked References

http://ees.elsevier.com/nima/viewRCResults.aspx?pdf=1&docID=13268&rev=1&fileID=623620&msid={5F658480-5FCB-457D-9FB2-23996489C701}


D.V. Peshekhonovg, C. Piresl, S. Platchkovv, J. Pochodzallam, V.A. Polyakovu,

J. Pretzd,7, M. Quaresmal, C. Quintansl, S. Ramosl,1, C. Regalii, G. Reicherzb,

J-M. Reymondv, E. Roccoj, N.S. Rossiyskayag, J.-Y. Roussev, D.I. Ryabchikovu,

A. Rychteraf, A. Samartsevg, V.D. Samoylenkou, A. Sandaczad, S. Sarkarf,

I.A. Saving, G. Sbrizzaix,y, P. Schiavonx,y, C. Schilli, T. Schlüterp, K. Schmidti,
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F. Tessarottoy, F. Thibaudv, V. Tskhayo, S. Uhlq, I. Umanp, M. Viriust, L. Wangb,

T. Weisrockm, Q. Weitzelq, M. Wilfertm, R. Windmoldersd, H. Wollnyv, K. Zarembaaf,

M. Zavertyaevo, E. Zemlyanichkinag, M. Ziembickiaf, A. Zinkh

aUniversität Bielefeld, Fakultät für Physik, 33501 Bielefeld, Germany
bUniversität Bochum, Institut für Experimentalphysik, 44780 Bochum, Germany

cUniversität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Germany
dUniversität Bonn, Physikalisches Institut, 53115 Bonn, Germany

eInstitute of Scientific Instruments, AS CR, 61264 Brno, Czech Republic
fMatrivani Institute of Experimental Research & Education, Calcutta-700 030, India

gJoint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
hUniversität Erlangen–Nürnberg, Physikalisches Institut, 91054 Erlangen, Germany

iUniversität Freiburg, Physikalisches Institut, 79104 Freiburg, Germany
jCERN, 1211 Geneva 23, Switzerland

kTechnical University in Liberec, 46117 Liberec, Czech Republic
lLIP, 1000-149 Lisbon, Portugal

mUniversität Mainz, Institut für Kernphysik, 55099 Mainz, Germany
nUniversity of Miyazaki, Miyazaki 889-2192, Japan

oLebedev Physical Institute, 119991 Moscow, Russia
pLudwig-Maximilians-Universität München, Department für Physik, 80799 Munich, Germany

qTechnische Universität München, Physik Department, 85748 Garching, Germany
rNagoya University, 464 Nagoya, Japan

sCharles University in Prague, Faculty of Mathematics and Physics, 18000 Prague, Czech Republic
tCzech Technical University in Prague, 16636 Prague, Czech Republic

uState Scientific Center Institute for High Energy Physics of National Research Center ‘Kurchatov

Institute’, 142281 Protvino, Russia
vCEA IRFU/SPhN Saclay, 91191 Gif-sur-Yvette, France

wTel Aviv University, School of Physics and Astronomy, 69978 Tel Aviv, Israel
xUniversity of Trieste, Department of Physics, 34127 Trieste, Italy

yTrieste Section of INFN, 34127 Trieste, Italy
zAbdus Salam ICTP, 34151 Trieste, Italy

aaUniversity of Turin, Department of Physics, 10125 Turin, Italy
abUniversity of Eastern Piedmont, 15100 Alessandria, Italy

acTorino Section of INFN, 10125 Turin, Italy
adNational Centre for Nuclear Research, 00-681 Warsaw, Poland

aeUniversity of Warsaw, Faculty of Physics, 00-681 Warsaw, Poland
afWarsaw University of Technology, Institute of Radioelectronics, 00-665 Warsaw, Poland

agYamagata University, Yamagata, 992-8510 Japan

Abstract

2



The main characteristics of the COMPASS experimental setup for physics with hadron

beams are described. This setup was designed to perform exclusive measurements of

processes with several charged and/or neutral particles in the final state. Making use of

a large part of the apparatus that was previously built for spin structure studies with a

muon beam, it also features a new target system as well as new or upgraded detectors.

The hadron setup is able to operate at the high incident hadron flux available at CERN.

It is characterised by large angular and momentum coverages, large and nearly flat

acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was

successfully used with positive and negative hadron beams and with liquid hydrogen

and solid nuclear targets. This article describes the new and upgraded detectors and

auxiliary equipment, outlines the reconstruction procedures used, and summarises the

general performance of the setup.
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1. Introduction

The goal of the COMPASS experiment at CERN is a better understanding of the

structure and dynamics of hadrons. At the relevant length scales of ∼ 10−15 m the

strong coupling constant αs approaches unity, which is the domain of non-perturbative

Quantum Chromodynamics (QCD). Using a 160−200GeV/c muon beam, COMPASS

studies the nucleon spin structure by deep inelastic scattering off a polarised 6LiD or

NH3 target [1]. Experiments with hadron beams of 190GeV/c, which started in 2008,

aim at precision spectroscopy of light mesons and baryons with masses up to 3GeV/c2,

the identification and systematic study of possible exotic configurations with gluonic

degrees of freedom or multi-quark systems, as well as the study of processes governed

by chiral dynamics and tests of predictions of chiral perturbation theory.

These experiments require a state-of-the-art spectrometer with high acceptance and

high resolution for charged and neutral particles in order to perform exclusive mea-

surements of multi-particle final states over a wide kinematic range. Three different

mechanisms contribute to the production of a system X , as shown in Fig. 1: diffrac-

tive dissociation and central production, which can be described to proceed via the

exchange of one or two Reggeons R, respectively, between beam hadron and target nu-

cleus N , and photo-production in the Coulomb field of a nucleus at very low values of

momentum transfer. In all these processes the final-state particles are emitted mostly in

forward direction, which requires an excellent angular resolution of the spectrometer

very close to and even within the beam envelope. For the interpretation of the data us-

ing partial-wave analysis (PWA) tools, a large and uniform acceptance over the whole

kinematic domain under study is mandatory.

The relative contributions of the above-mentioned processes to a data sample can

be varied by applying different trigger conditions and by adjusting kinematic selec-

tion criteria in the analysis. At intermediate-to-large values of momentum transfer, the

cross section for reactions mediated by Pomerons, i.e. Reggeons with vacuum quan-

tum numbers, is large, of the order of 1− 2mb. The contribution of individual partial

waves, however, may be several orders of magnitude smaller, thus requiring the collec-

tion of large data sets. Of particular interest are states X that do not fit into the naive

constituent quark model but are allowed by QCD, like glueballs or hybrids which carry

gluonic degrees of freedom, or multi-quark systems. States with gluonic degrees of

freedom are generally believed to be enhanced in reactions in which Pomerons are

exchanged. A small but significant contribution of a spin-exotic partial wave with non-

R

N N

π X

XR

R

N N

π π

N N

π X

γ

Figure 1: Production mechanisms employed in COMPASS for (left) diffractive dissociation, (middle) central

production, (right) photo-production by quasi-real photons γ, with π denoting the beam particle (can be also

p, K), and N the target nucleon or nucleus.
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qq′ quantum numbers JPC = 1−+, consistent with the π1(1600), was confirmed by

COMPASS using data taken in 2004 [2]. However, an unambiguous understanding

of the underlying structure of this and many other light-hadron states requires exper-

iments with higher statistical accuracy, employing different production mechanisms

and observation of the same system X in different decay channels. At very small val-

ues of momentum transfer, the cross section is dominated by Primakoff reactions, i.e.

Coulomb scattering of pions or kaons off quasi-real photons emitted from a nuclear tar-

get. The dynamics of the scattering of a beam π into πγ, π−π0, 3π, etc., at low-energy,

i.e. from threshold up to a few pion masses, is predicted by chiral perturbation theory

(ChPT). COMPASS can thus scrutinise ChPT predictions of chiral dynamics [3] and

of fundamental low-energy parameters such as the polarisabilities of mesons.

Compared to previous experiments, the main advantages of the COMPASS setup

are the possibility to study reactions with different projectiles in high-intensity beams

with up to 107 part./s and to reconstruct final states containing both neutral and charged

particles. Different charges and types of beam particles, e.g. π±, K±, and (anti)protons,

can be selected by tuning the COMPASS beam line and by tagging them with differ-

ential Cherenkov counters. The possibility to switch between pion and muon beams

of the same momentum is a unique asset for the measurement of pion polarisabili-

ties at COMPASS, where the systematic error of the measurement can be significantly

reduced through regular reference measurements with incident muons, i.e. point-like

particles. As target material either liquid hydrogen or various solid-state nuclear tar-

gets are used. A recoil proton detector (RPD) is installed around the target to ensure

the exclusivity of the final state. A set of double-sided silicon microstrip detectors po-

sitioned upstream and downstream of the target is used to reconstruct the interaction

vertex and the angles of the outgoing particles. Here, the required angular resolution

is dictated by Primakoff reactions, where pions or muons scattered by angles of a few

hundred µrad have to be detected. A high momentum resolution for charged particles

is provided by a two-stage magnetic spectrometer. For the tracking in the beam region

new pixelised Gas Electron Multiplier (GEM) detectors with a minimised material bud-

get along the beam were built, in replacement of the thicker scintillating fibre detectors.

For the tracking at small angles, the existing Micromegas trackers were adapted to the

hadron beam conditions. A major upgrade of the Ring-Imaging Cherenkov (RICH)

counter was carried out, which largely improved the performance of particle identifi-

cation at high rates. Photons are detected in two electromagnetic calorimeters, which

have been optimised for stability and uniformity in order to achieve good resolution.

Several new trigger elements were built and implemented into the trigger system.

The present paper describes the modifications and upgrades of the experimental

setup required for the hadron programme of COMPASS. Some of these upgrades were

already realised for the nucleon spin programme after 2005. After a brief overview of

the layout of the spectrometer in Section 2, the beam line and associated detectors are

described in Section 3 and the target region in Section 4. The newly installed tracking

detectors are discussed in Section 5. Section 6 deals with the systems used for particle

identification, namely the RICH counter and the two electromagnetic calorimeters. The

various trigger systems are explained in Section 7 and the data acquisition in Section 8.

The algorithms for event reconstruction and the performance of individual detector

components are summarised in Section 9, while the global spectrometer performance

7



Figure 2: Three-dimensional view of the COMPASS setup for measurements with hadron beams. The beam

comes from the left side. The upstream part of the setup (beam line) is not shown here. The different colours

indicate different detector types.

and Monte Carlo simulations of the apparatus are discussed in Section 10.

Throughout this paper, the following kinematic variables will be used: the squared

four-momentum transfer from the incident beam particle to the recoiling target nucleus

t = (pbeam − pX)2; the reduced squared 4-momentum transfer t′ = |t| − |t|min to the

recoiling target nucleon beyond the kinematic minimum |t|min; the Gottfried-Jackson

angle θGJ, defined as the polar angle of the three-momentum of the isobar (i.e. di-

pion) from the decay of X , and the corresponding azimuthal Treiman-Young angle

φTY. These two angles are calculated in the centre-of-momentum frame of X with the

z-axis along the beam direction and the y-axis perpendicular to the production plane,

formed by the momentum vectors of target and recoil particles.

2. Layout of the Spectrometer

The main features of the COMPASS experimental setup and most of the detectors

as used until 2004 are described in Ref. [1]. In this section a short overview of the

apparatus is given, with particular emphasis on detectors that are either specific to the

data taking with hadron beams in 2008 and 2009, or were added to the setup after 2005

to be used in both muon and hadron programmes.

The COMPASS setup can be divided into four parts along the beam, starting with

the beam line section and the detectors that identify the incoming beam particles. It

is followed by the target region, which is specific for each of the COMPASS physics

8
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programmes. It comprises the target and the detectors located in its near vicinity. The

third part, called Large Angle Spectrometer (LAS) includes the first dipole magnet,

SM1, the tracking detectors around it, and the RICH-1 counter. The fourth part, called

Small Angle Spectrometer (SAS), occupies the downstream part of the setup. It is built

around the SM2 dipole magnet and includes several tracking detectors. Both LAS and

SAS comprise a pair of electromagnetic and hadron calorimeters, and a muon filter.

Figures 2 and 3 show the three-dimensional and top views of the COMPASS setup,

respectively.

2.1. Beam line

The COMPASS setup is located at the end of the M2 beam line of the CERN

SPS accelerator. The M2 beam line can be tuned for beams of different particles,

including secondary hadron beams and tertiary muon or electron beams. Hadron and

muon beams can be either of negative or positive charge. Switching between beams

takes typically thirty minutes.

During data taking with hadron beams only the trajectory of the incident beam

particle is measured. The Beam Momentum Station (BMS), which is used for the

determination of the incident momentum during measurements with a muon beam,

is moved out of the beam in order to minimise the material budget along the beam

path. However, the muon beam is also used during Primakoff measurements in order

to complement the data taken with pions. The BMS is then moved back into the beam

line. Downstream of the BMS location, two differential Cherenkov counters identify

the hadrons (pions, kaons, or protons) that are present in the hadron beam.
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Figure 4: Side view of the target region with the liquid hydrogen target system.

2.2. Target region

Most of the data with hadron beams were collected using a liquid hydrogen target.

The target region comprises the target itself and the detectors around it (Fig. 4). The

target is surrounded by a time-of-flight detector that is called Recoil Proton Detector

(RPD). Measuring the recoil protons from the target, this detector ensures the exclu-

sivity of the processes under investigation. The RPD covers the momentum transfer

range down to |t| = 0.07GeV2/c2. Three silicon stations operating at a temperature of

200 K are mounted upstream of the target. Together with a scintillating fibre counter,

these detectors determine the trajectory of the beam particle before it enters the target.

Two other silicon stations are located immediately downstream of the target, inside the

RPD. A scintillator/iron sampling detector, called Sandwich Veto, is installed down-

stream of the RPD. Used as part of the trigger, this detector vetoes particles detected

outside of the LAS acceptance. A dedicated Multiplicity Counter (MC) is positioned

downstream of the RPD, behind the Sandwich Veto. This counter, which measures the

number of charged particles in the final state, extends the momentum transfer range

towards values smaller than |t| = 0.07GeV2/c2.

The liquid hydrogen target can be easily removed and replaced with a specially

designed solid-target holder. Up to 16 solid targets with different atomic numbers and

different thicknesses can be mounted on the holder and used simultaneously during

data taking.

10



2.3. Large angle spectrometer

The large angle spectrometer includes the detectors located both upstream and

downstream of the SM1 magnet. The LAS tracking detectors measure scattered par-

ticles with polar angles of up to 180 mrad. In the region near the beam, a PixelGEM

detector with low material budget was installed in replacement of the thicker scin-

tillating fibre counter (SciFi) previously used with the muon beam. The design of

the Micromegas detectors that are located upstream of SM1 was modified in order

to minimise their discharge rate in the hadron beam. A new large-size drift cham-

ber, DC4, is installed downstream of the SM1 magnet, in order to improve the reso-

lution of the tracking at large angles. A major upgrade of the RICH-1 counter was

accomplished [4], which considerably improves its performance. The central region

of RICH-1 was instrumented with multi-anode photomultipliers, in replacement of the

previously used CsI photodetectors. A new analog readout with a reduced dead time

was implemented in its peripheral region. The tracking downstream of RICH-1 was

supplemented with an additional drift-tube detector, called Rich Wall (RW). A new

electromagnetic calorimeter, ECAL1, was added to the LAS setup. ECAL1 extends

the coverage of ECAL2 for detection of photons and electrons to larger angles. Its

position was chosen with the aim of achieving a continuous angular coverage for both

ECAL1 and ECAL2. Installed since 2006, DC4, ECAL1, RICH-1 and RW are part of

the apparatus that is common to both hadron and muon physics programmes.

2.4. Small angle spectrometer

The SAS detectors are essentially identical to the detectors used during the data

taking with muon beam [1]. In order to minimize the material budget along the beam

path, two new PixelGEM detectors replace two SciFi counters. In ECAL2, the inner-

most lead glass blocks were replaced with radiation-hard Shashlik-type lead/scintillator

modules of the same transverse size. In order to maximise the photon detection accep-

tance near the beam, the size of the ECAL2 central hole was reduced. The central hole

of the hadron calorimeter HCAL2, located immediately behind ECAL2, was reduced

accordingly.

2.5. Trigger

The trigger system for hadron beam was designed to select the processes listed in

Section 1. Several new trigger counters were built and combined with those already

available [1]. A beam counter (BC) was installed upstream of the target, as a part

of the beam-definition trigger. Both RPD and ECAL2 detectors were included in the

trigger. The information from the RPD is used to identify diffractive scattering events.

High energy photons, particularly important for the Primakoff reaction, are selected by

the central part of ECAL2. Triggering in the region of the lowest momentum transfer

values is provided by a new Multiplicity Counter (MC). The existing veto system was

extended to veto non-interacting beam particles by adding two beam-killer (BK1 and

BK2) scintillator counters along the beam path.

With the nominal hadron beam intensity the trigger rate reaches values of up to

30 kHz. The corresponding data flow is as high as 350MB/s. The COMPASS data

acquisition system was upgraded to meet these conditions.
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3. Beam Line

The CERN SPS M2 beam was originally built as a high-energy, high-intensity

muon beam. For the COMPASS experiment, the beam line was partly rebuilt to include

a high-intensity hadron beam option as well as the possibility to use low-intensity elec-

tron beams. For beam particle identification, two CEDARs were added just before the

COMPASS spectrometer. Modifications relevant to the muon mode of operation were

described in [1]. In this section, the hadron and electron beam modes of operation are

summarised. In addition, the detectors used for the identification of the particles in the

hadron beam are described.

3.1. Hadron beams

In order to produce a secondary hadron or tertiary muon beam, 400GeV/c protons

from the CERN SPS are slowly extracted onto a primary production target (T6). These

protons arrive during a time period of 9.6 s once every 30 s to 48 s, depending on other

users of the SPS. The primary target station allows the selection of five positions, an

empty target or one out of four Be targets, 80mm wide, 2 to 3mm high and 40, 100

or 500mm thick. Measurements with hadron beams used a nominal intensity of 5 ·
106 s−1, which e.g. for a negative beam of 190GeV/c central momentum is achieved

by using 9 · 1012 protons/cycle on T6 and the 500mm target.

The M2 beam line (Fig. 5) starts with a series of six high-gradient quadrupoles

(Q1–Q6) for maximum acceptance and a set of three dipoles (BEND 1). The highest-

acceptance optical mode works only up to 225 GeV/c due to limited quadrupole gradi-

ents.9 The beam optics is optimised to achieve highest possible momentum resolution.

A pair of massive collimators, which allows a first momentum selection of the

beam particles or is also used to dump the beam in case of access to the experiment

(TAX 1,2), is located downstream of the first dipoles (BEND 1). The particles passing

through theses collimators are transported to an about 430m long array of alternately

focusing and defocusing (FODO) quadrupoles (Q12–Q18). Before entering the FODO

array, two pairs of horizontal (H1, H3) and vertical (V2, V4) collimators define the

angular and momentum acceptances of the beam. At the end of the FODO section,

the beam is focused into a set of four vertical dipoles (BEND 4,5). The Be absorbers

(ABS), which are used in the muon beam operation, are moved out in the hadron mode.

After these dipoles, the beam is transported into a second 250m long FODO chan-

nel (Q22–Q30) that contains a second momentum-defining collimator. The beam is

then bent horizontally (BEND 6) and parallelised at the location of the two CEDARs

(for more details, see Section 3.3), while restricting the momentum spread to below

1%. Behind the CEDARs, the beam is focused (Q34–Q36) onto the entrance of the

electromagnetic calorimeter in the second spectrometer stage, which is located 33m
downstream of the target. The main beam characteristics are listed in Table 1.

Negative beams are mainly composed of pions, while for momenta larger than

150 GeV/c the positive beam have a dominant proton component. In both cases, kaons

9A different optical mode is available for higher momenta, but the angular acceptance of that mode is

about 40% lower.
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Figure 5: The CERN M2 beam line.
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Table 1: The main parameters of the M2 hadron beam.

Parameter Value

Length of beam line from primary target to COMPASS target 1131.8m
Maximum beam momentum (high-energy mode) 280GeV/c
Maximum beam momentum (normal mode) 225GeV/c
Angular acceptance: Horizontal ±1.0mrad
Angular acceptance: Vertical ±2.5mrad
Angular acceptance: Solid angle 7.8µsr
Momentum acceptance ±8%
Momentum resolution 1%
Spot size at COMPASS target (σx × σy) 7× 8mm2

Divergence at COMPASS target (σx × σy) 80µrad× 200µrad

Table 2: The relative composition of the hadron beam at the COMPASS target for some typical momenta.

It does not include the e± component, which is still present at 100 GeV/c but rapidly decreasing at higher

momenta due to synchrotron radiation. The composition values are calculated from measured values [5] and

their relative uncertainties amount to 1% for pions and proton, and 2–3% for kaons and antiprotons.

Momentum Positive beams Negative beams

(GeV/c) π+ K+ p π− K− p̄

100 0.618 0.015 0.367 0.958 0.018 0.024

160 0.360 0.017 0.623 0.966 0.023 0.011

190 0.240 0.014 0.746 0.968 0.024 0.008

200 0.205 0.012 0.783 0.969 0.024 0.007

and electrons may be present at a level of a few percent, depending on the energy cho-

sen. The particle composition of the hadron component of the beam is given in Table 2

for a few typical beam momenta.

3.2. Electron beam

A tertiary electron beam can be produced on demand. For this purpose, a 5mm
thick lead plate (also called “electron target”) equivalent to 90% of a radiation length is

moved into the beam line at the end of the first FODO section, about 680m downstream

of the primary production target (see Fig. 5). A high-intensity negative hadron beam

of 100GeV/c, which contains electrons at the level of 10%, is directed to the electron

target. The hadrons mostly traverse the lead target, as its thickness is equivalent to only

about 3% of an interaction length. In contrast, most of the electrons of the beam lose

energy by bremsstrahlung. The outgoing electrons have a momentum spectrum that

extends up to the momentum of the parent beam but with very low intensity yielding

useful electron energies of up to 50GeV. The required electron momentum is selected

with the beam line magnets located downstream of the lead target. For the nominal

energies of 15, 20 and 40GeV, which are used for the calibration of the electromagnetic

calorimeters, intensities up to a few 104 electrons per spill are routinely reached.
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3.3. Beam particle identification

Two CEDAR detectors are installed 30m before the COMPASS target region. They

were designed to provide fast beam particle identification at high rates for particle

momenta up to 300GeV/c [6].

3.3.1. The principle of operation and the mechanical design

The principle of operation of a CEDAR detector is illustrated in Fig. 6. For a

beam containing particles of different types but the same momentum, the angles of

the emitted Cherenkov photons differ due to the different masses. The Cherenkov

photons are focused onto the photon detectors using a mirror and a system of lenses

(lens, corrector, condenser). This results in rings of photons at the focal plane whereby

compensating for the chromatic aberration in the gas, which is mandatory for a proper

separation of the rings. A ring shaped diaphragm, which is located in the focal plane

perpendicular to the beam direction, selects photon rings with a fixed radius. The radius

of the photon ring is matched to the radius of the diaphragm by adjusting the pressure

of the helium gas in the vessel.

COMPASS operates two CEDAR detectors. Each consists of a 6m long vessel

containing pressurised He gas, a mirror, a lens system and a diaphragm (Fig. 7). The

nominal pressure at 190 GeV/c beam momentum is 10.5 bar. The photons are detected

with eight PMTs (Thorn-EMI-9820) equipped with passive voltage dividers.

The photon rings are smeared by several effects, e.g. temperature changes, beam

divergence and limited precision of alignment. In order to keep the density constant

along the 6m long vessels and thus the refractive index, good thermal insulation and

conduction is mandatory. The vessel is covered with copper filaments for thermal

conduction and surrounded by a 10 cm thick polyethylene foam layer for insulation. In

addition, the PMT voltage dividers are mounted outside the vessel. Particles travelling

not parallel to the optical axis will produce shifted photon rings that do not match the

diaphragm. A tilt of the beam with respect to the principal axis of the optical system

can be corrected by adjusting the detector position with the help of a motorised base.
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Figure 7: A cut through one of the CEDAR detectors.

The beam divergence could only be compensated by opening the diaphragm at the

expense of a lower purity of the particle identification.

As the parallelism of beam tracks is of great importance for an efficient operation

of the CEDARs, the beam divergence is optimised using pairs of single scintillating

fibre detectors (one horizontal, one vertical) that were installed upstream (FISC1,2)

and downstream (FISC3,4) of the CEDARs. Their position in the beam can be adjusted

to measure the track angles by a coincidence between an upstream and a downstream

fibre hit. Furthermore, two scintillating discs (TRIG 2) are installed as beam counters.

They are used to normalise the CEDAR count rates during so-called pressure scans.

While taking physics data, the discs and single-fibre detectors are moved out of the

beam in order to reduce the material budget in the beam line.

As the ratio of pressure over temperature, p/T , is proportional to the refractive

index, the working point of the CEDAR detectors is determined by performing pressure

scans. In a pressure scan, the count rate normalised to the rate in the FISC counters

is determined as a function of the pressure in the vessel and the multiplicity of PMT

signals. Using the known beam composition, this yields also an online estimate for the

particle identification efficiency. A more refined offline method will be discussed in

Section 9.6. During data taking the He pressure in the CEDARs is regularly adjusted

to compensate for He leakage and to keep p/T constant.

3.3.2. Separation of protons, pions and kaons (positive beam)

In the high-energy positive hadron beam, the proton component is dominant. For

the CEDARs, a difference of 1mm is expected between the ring radii of protons and

kaons at 190GeV/c. The plateau of the efficiency is reached with a slit width of

1.2mm. Figure 8 shows an example of a pressure scan for three different require-

ments on the minimum number of PMT hits (multiplicity). The clear separation of

pions and protons is obvious, while the small kaon component is hidden under the pion

signal and cannot be distinguished here. From the measured rates and the known beam

composition, a particle identification efficiency of almost 90% for protons is estimated

using a multiplicity of ≥ 4 with a high purity of larger than 95% for the chosen working

point of the CEDAR. During the data taking one CEDAR was set to identify protons,

the other to identify pions.
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Figure 10: Horizontal (left) and vertical (right) track angles at the CEDARs. The angles for all tracks

measured by the Silicon beam telescope and propagated back to the CEDAR positions are compared to

the angles of the tracks accepted by CEDAR1 or CEDAR2. The acceptance of the CEDARs is reduced

significantly for very divergent beam tracks.

3.3.3. Separation of kaons and pions (negative beam)

Negative hadron beams contain mainly pions with a small admixture of kaons and

antiprotons. In this case, the CEDARs are used to identify kaons. Although the dif-

ference between the mean radii of the photons rings of kaons and pions at 190GeV/c
is less than 0.5mm, the diaphragm was set to 0.5mm as a compromise between ef-

ficiency and purity. The pressure scan in Fig. 9 shows the obtained separation for

multiplicities of ≥ 6 and 8. An online efficiency of about 35% is estimated for pions

with a multiplicity of ≥ 6. Such a low efficiency is due to the high beam divergence of

the very long beam line, in combination with the narrow slit width of the diaphragm.

The loss due to the beam divergence is illustrated in Fig. 10 which shows the distribu-

tions of beam track angles as measured by the Silicon detectors upstream of the target

and propagated back to the CEDAR position. The distribution for all beam particles

are compared to those for beam particles identified online by CEDAR1 or CEDAR2.

Background in then photon detectors originates from several sources: halo parti-

cles, scintillation light produced by the beam and pile-up events during operation with

a high-intensity beam. In order to suppress the background both CEDARs are set to
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Figure 11: Count rate of coincident events recorded with CEDAR1 and CEDAR2. The pressure of CEDAR2

was scanned while CEDAR1 was set to detect kaons.

detect kaons. The amount of background can be estimated by setting one CEDAR to

detect kaons and performing a pressure scan with the other CEDAR. As illustrated in

Fig. 11, the resulting background is below 7%.

4. Target Region

The target region comprises the target systems, the Recoil proton detector, the

Sandwich veto detector and the Silicon detectors (Fig. 4). Either liquid hydrogen or

solid targets can be used during the measurements performed with hadron beams. The

hydrogen and lead targets are used for diffractive dissociation and central production

measurements. A nickel target is used for the study of the Primakoff reaction. The

Silicon detectors, which are also located in the target region, will be described along

with other tracking detectors in Section 5.

4.1. Liquid hydrogen target

For scattering on protons, a liquid hydrogen target is used. The target cell has a

cylindrical shape with a length of 400mm along the beam and a diameter of 35mm,

which corresponds to a volume of 0.4 l (Fig. 12). The thickness of hydrogen along

the beam axis is equivalent to 4.5% of a radiation length (X0) and 5.5% of a nuclear

interaction length (λI ). The diameter of the target is matched to the dimensions of

the beam spot (σ ≈ 8mm) and kept small in order to reduce the amount of material

traversed by recoil protons. The hydrogen is enclosed by a Mylar cylinder of 125µm
thickness (5 · 10−4X0, 2 · 10−4λI ). The liquid hydrogen inlet and gas outlets are

constructed from stainless steel pipes, which are connected to a stainless steel ring

surrounding the target Mylar cell. The hydrogen cell and the stainless steel pipes are

wrapped with 10 layers of heat superinsulation foils (with thickness of ≤ 1µm/foil).

The target system with target cell, cryostat, and refrigerator is shown in Fig. 12.

The target cell is surrounded by a cryostat tube made from aluminium. The cryostat

18



!"#$%&#'

(#$)"*++#"'

,-'#.&/*&'

,-'01/*&'

23"4*&'("5#+&3&'

63(..$'

+5+&*$'

7#83(*//'

+)3(*"'

23"4*&'(*//'

9"5#+&3&'

23"4*&'(*//'

:
;
<
'3
((
*
)
&3
1
(*
'

=*3$'3>0+'

;5/3"'?01@#?+'

Figure 12: Side view of the liquid hydrogen target system. A closer view of the cylindrical Mylar cell and

hydrogen piping is shown in the inset.

has a diameter of 185mm and is terminated towards the spectrometer by a 250µm thin

Mylar window. Its diameter was chosen large enough so that forward going particles

detected by the COMPASS spectrometer pass through the window and not through

the aluminium cryostat itself. In order to reduce the amount of material traversed by

the recoil particles, the thickness of the aluminium tube surrounding the target cell

is 1.8mm (see Fig. 4). The upstream 250µm Mylar window of the cryostat has a

diameter of 80mm.

During operation, the target cell is filled with about 0.4 l of liquid hydrogen. The

necessary hydrogen is taken from a large buffer volume of about 850 l, which is kept

at room temperature. In warm mode (only hydrogen gas), the pressure of the hydro-

gen buffer is set to about 1800mbar. During the filling process, the hydrogen gas is

cooled down inside a refrigerator and liquefied until the pressure in the buffer volume

reaches about 1200mbar. This corresponds to about 0.6 l of liquid hydrogen. During

operation, the pressure in the buffer volume is kept constant by a simple control unit

regulating the effective cooling power of the refrigerator (5 W). The biggest fraction of

the liquid drops into the target cell by gravity, while about 1/3 of it is kept in the 2.3 l

condenser as a reserve. The heat exchange between the target cell and the condenser is

driven by evaporation and condensation. The liquid inside the cell is just at the phase

transition point and slightly bubbling. New liquid is continuously flowing from the

condenser into the cell via the lower pipe, while the evaporated gas streams back into

the condenser via the upper pipe where it is liquefied again. The target was designed
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Table 3: Overview of target materials used during the measurements with hadron beams in 2008/2009.

Material Number Thickness x
(elements) (mm) (g/cm2) (λI) (X0)

Liquid H2 1 400 2.84 5.5% 4.5%
Pb 6 0.250 0.284 0.14% 4.45%
Pb 2 0.125 0.142 0.07% 2.23%
Pb 2 0.025 0.028 0.01% 0.45%
Pb 2 0.050 0.057 0.03% 0.89%
W 2 0.050 0.097 0.05% 1.43%
W 2 0.025 0.048 0.03% 0.71%
Ni 1 4.2 3.74 2.8% 29.5%
W 1 0.025 0.048 0.03% 0.71%
W 1 0.050 0.097 0.05% 1.43%

such that bubbling should not affect the effective density by more than 3%. Evapora-

tion of gas from the surface of the liquid occurs in the upper 2−3mm of the target cell.

The cell is tilted by 1mm to insure that the gas flows back to the outlet. The resolution

on the reconstructed vertex position is sufficient to discard events originating from the

top of the cell.

Starting from room temperature, the filling of the liquid hydrogen target takes about

7 hours. The time for the evaporation of the liquid from the system is about 3 hours

when the refrigerator is switched off. In order to allow for background measurements

that require an empty target cell, the target system provides a fast emptying mode at low

temperatures. For this purpose, the return pipe for the gas vapour is closed remotely by

a pneumatic valve. Then, the pressure builds up rapidly by evaporation and pushes the

liquid back from the cell into the condenser volume within a few minutes. The target

is refilled by opening the valve.

The leakage rate of hydrogen was measured to be around 40mg per day and allows

for an operation of the target without any refill during the six months of a typical yearly

data taking period. It has been observed that the vacuum in the cryostat degrades due

to the diffusion of gases and water vapour through the thin Mylar vacuum windows

(0.1 g water per day). No indication for freezing of residual gases inside the cryostat

was found in the offline analysis of physics data.

4.2. Nuclear targets

For measurements with nuclear targets, a light-weight target holder made of carbon

fibre rods and thin frames of fibreglass reinforced epoxy (FR4) was used. Housing up to

16 target disks, the target holder is inserted into the RPD instead of the liquid hydrogen

target. Figure 13 shows a schematic view of the target holder and the frames onto

which the foils were glued.

The specifications of all targets used are listed in Table 3. Two different sets of

nuclear targets were mounted on the target holder. The first set consisted of 16 thin

disks made of Pb and W of natural isotopic composition. The thicknesses of the disks

and the distance between them was chosen such that recoil protons from each individual
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Figure 13: Schematic view of the target holder used for measurements with nuclear targets.

disk with momenta above 200MeV/c could be detected over the full acceptance of the

RPD. The more downstream disks were made thinner in order to minimise the effect

of multiple scattering and conversion for events originating from the more upstream

targets. The 12 Pb targets were used for diffractive dissociation measurements, while

the four W targets were used for feasibility studies of a measurement of the π0 lifetime.

The second set of target disks consisted of one 4.2mm thick Ni disk and two thin

disks of W. The W disks were separated by 30 cm from the Ni disk. This target set was

used for Primakoff measurements and as an additional configuration for diffractive

studies.

4.3. Recoil proton detector

The Recoil Proton Detector (RPD) measures the velocity and energy loss of the

recoiling particles emitted at large angles. For particles produced in the middle of the

target, the region of full acceptance covers polar angles from 50◦ to 90◦ (see Fig. 4).

The energy loss of protons in the target walls and in the inner ring limits the lowest

detectable momentum to 270MeV/c in the case of the liquid hydrogen target. The

RPD is also used in the trigger system (see Section 7) for the identification of protons.

The design of the RPD closely follows the design of the detector used for the

GAMS NA12/2 experiment at CERN [7]. It is made of two concentric cylindrical

barrels of plastic scintillators that surround the target and are referred to as “rings” in

the following. The inner ring is segmented in 12 slabs of BC404 R© scintillator of di-

mensions 50× 6.6× 0.5 cm3, which are positioned at a radius of 12 cm. Light guides

for the inner ring are made of Plexiglas and have a fish-tail geometry. They are tilted

at an angle of 15◦ with respect to the longitudinal axis in order to stay outside of the

acceptance in the forward region.

The outer ring is segmented in 24 slabs of plastic scintillators with dimensions of

115× 20× 1 cm3, produced at IHEP Protvino [8]. Each slab is made of a single piece

of material that also includes a 29 cm long light guide on each side. The ends are

cut, twisted and molded to fit into a 3.9 cm diameter cylinder, to which the PMTs are

attached. The radius of the outer ring is 75 cm. Each element covers an azimuthal angle

of 15◦. In order to optimise the azimuthal angle resolution, the outer ring is positioned

such that each inner ring counter faces three outer ring slabs as viewed from the target

centre (see Fig. 54).
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Figure 15: Energy loss ∆E in the outer ring of

the RPD as a function of the velocity of the

particle in elastic pp scattering.

Each scintillator is read-out at both sides using EMI 9813B photomultiplier tubes.

The PMTs are equipped with active voltage dividers to cope with the high rate and

high light output. The PMT signals are split using 8-fold active splitters [9] and sent to

ADCs (2 dynamic ranges) and TDCs (2 threshold levels). The remaining outputs are

used for the trigger system. Two outputs are connected to leading edge discriminators

with two different thresholds. Furthermore, the signals from the inner ring downstream

PMTs have the smallest time jitter with respect to the incoming track since light in

the scintillator propagates in the same direction as the scattered particle. The signals

from these are sent to Constant Fraction Discriminators to preserve their good timing

properties. All logic signals are then fed into a FPGA-based system for triggering (see

Section 7).

The properties of each individual counter were measured during earlier tests using

muons from the beam halo with the RPD positioned transversely to the beam. The

resolutions obtained are σ(t) = 200 ps and σ(z) = 2.7 cm for the inner ring elements

and σ(t) = 400 ps and σ(z) = 5.0 cm for the outer ring elements. The attenuation

lengths of both types of counters were measured and found to be of the order of 60 cm.

The momentum resolution as a function of the proton momentum is measured using

pion-proton elastic scattering events. The proton transverse momentum is measured in

the RPD and then compared to the value calculated from the kinematics of the pion

that is detected in the spectrometer. The width of the resulting momentum distribution

is shown as a function of the proton momentum in Fig. 14. It is in agreement with an

estimation performed using the time and position resolutions of the RPD, as determined

from test beam data.

Figure 15 shows the energy loss in the outer ring as a function of the velocity

measured with the RPD for elastic pp scattering. For velocities of up to β = 0.34
the protons are stopped in the outer ring. Above this value the protons escape the

scintillator and deposit in it only part of their energy. The figure for pions would be

similar and the energy loss for stopping pions would reach a maximum value of 10MeV
for β = 0.4. Therefore, proton particle identification is ensured only for β < 0.4. In

Fig. 15 there is no indication for presence of pions, as expected in pp elastic scattering.
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Figure 16: Sketch of the Sandwich veto detector. The active area of the detector (depicted in grey) has

dimensions of 200×200 cm2.

4.4. Sandwich veto detector

The role of the Sandwich veto detector [10] lies in vetoing events in which photons

or charged particles reach the acceptance gap between RPD and LAS (see Fig. 4). This

detector is a 2m × 2m stack of five layers of steel-covered lead plates and scintillators

with a total thickness of 5.1 radiation lengths. Segmented in 12 elements (Fig. 16),

the detector has a central hole that matches the acceptance of the spectrometer. Each

lead layer consists of 5mm Pb plates, with 1mm steel plates on each side to insure the

stiffness of the assembly. Each scintillator layer is formed of a pair of 80 × 20 cm2

scintillator bars lying side-by-side. The first three layers are 1 cm thick, the last two

0.5 cm. The light is extracted from the scintillators using wavelength-shifting fibres

connected to photomultiplier tubes. The Sandwich veto efficiency was measured to be

98% for minimum ionising particles [10]. Using MC simulation, the efficiency was

also determined to be higher than 95% for pions with energies larger than 50MeV and

higher than 90% or 80% for photons with energies larger than 100MeV or 50MeV,

respectively. The effect of the Sandwich veto detector on the trigger rates is described

in Section 7.2.

5. Tracking Detectors

The tracking system of COMPASS is composed of many tracking stations, each

consisting of a set of planar tracking detectors of a given type located at approximately

the same z-coordinate along the beam. Many different detector technologies with dif-

ferent sizes, granularities and resolutions are in use. Far from the beam in the outer

region, large areas of several square meters have to be covered in order to detect low-

momentum particles scattered at large angles. Close to the beam in the inner region,

the particle rates quickly increase with decreasing distance to the beam, requiring fast

detectors with good resolution. The large-area tracking is provided by several variants
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of wire-based gas detectors such as Multiwire Proportional Chambers (MWPC), Drift

Chambers (DC), and Straw Tube Chambers. The region closer to the beam, where the

particle rates are too high for wire-based detectors, is covered by two types of Micropat-

tern Gaseous Detectors with strip readout, namely the Micromegas and Gas Electron

Multiplier (GEM) detectors. The beam region itself, where rates above 105 mm−2s−1

are observed, is equipped with Scintillating Fibre Detectors and novel GEM detectors

with pixel readout, the PixelGEMs. Tracking immediately upstream and downstream

of the target is performed by silicon microstrip detectors.

This section focuses on the upgrades of the tracking system for the hadron program

as compared to the setup used for muon beams, detailed in [1]. For some detectors,

like the straw tube chambers, the multiwire proportional chambers, and the large area

drift chambers, no mentionable changes were introduced, and therefore they are not de-

scribed here. These detectors are however discussed in detail in [1]. The wire and strip

detectors measure different projections of a particle penetration point. They are called

X and Y -planes when measuring horizontal and vertical coordinates, respectively. De-

tector planes measuring coordinates that are rotated clock or and anti-clockwise by a

given angle with respect to the x-axis, are called U and V -planes, respectively.

5.1. Silicon Microstrip Detectors

The COMPASS silicon microstrip tracking system consists of three stations up-

stream of the target, which are used as a beam telescope, and two stations downstream

of the target, which are used for vertex reconstruction. As these detectors are traversed

by the beam particles and by the forward-boosted reaction products, they are prone to

radiation damage. The damage affects the bulk material in terms of change of doping,

and the surface in terms of decrease of insulation, resulting in an increase of the deple-

tion voltage and of the leakage current, respectively. In order to minimise these effects,

the detectors are cooled with liquid nitrogen. Since the leakage current decreases with

temperature, noise caused by radiation damage is suppressed. In addition to this, the

cooling leads to a significant improvement of the spatial and time resolution compared

to room-temperature operation, as discussed below. While the system was designed

to cool the detectors down to 130K, the desired performance is already achieved at

200K, which reduces the thermal stress on the modules.

One station comprises two Silicon detectors with a stereo angle of 5◦ between

their respective strip orientations to resolve multi-track hit ambiguities. Each detectors

consist of a 300µm thick silicon sensor with an active area of 50×70mm2. The signals

are picked up on both sides, by 1280 strips on the n-side and 1024 perpendicularly-

oriented strips on the p-side. The sensors are glued onto two L-shaped FR4 printed

circuit boards (L-boards) that hold the APV25-S1 [11] based readout electronics. There

are three cryostats for the beam stations upstream of the target and one conically shaped

cryostat housing the two stations downstream of the target (see Fig. 4).

The cooling system of the Silicon detectors has to fulfil the requirement of a min-

imal amount of material within the acceptance of the spectrometer. This prevents a

solution, in which the detectors are connected to a massive cold head to dissipate the

electronic heat. The technology developed for these detectors is based on the evapo-

ration of liquid nitrogen in thin capillaries on the PCBs. The schematic layout of the

Silicon cooling system is shown in Figs. 18 and 19. In order to dissipate about 8W
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Figure 17: The conical cryostat with the upstream beam window dismounted. The height of the PCB frame

that holds the detector (sensor) is about 100mm, the length of the full cryostat about 400mm. The bent

cooling capillary is fixed to the PCB close to the sensitive area of the detector. Inside the cryostat, the readout

cables are directly soldered to the detector module and plugged to vacuum-sealed feedthrough connectors

also visible on the outer surface of the cryostat.

from each detector, purely liquid nitrogen must be provided to the capillary. For this

purpose, a dedicated phase separator that removes the gaseous nitrogen is incorporated

in each cryostat. The whole cooling infrastructure increases the material thickness of

the PCB on average by 0.1% of a radiation length.

The nitrogen arrives from a central liquid nitrogen dewar located in the vicinity of

the experimental hall. It is transferred by a 100m long vacuum-isolated transfer line

to a valve box near the Silicon stations. The valve box (Fig. 18) also acts as a buffer

for the liquid nitrogen that is kept at 1.8 bar absolute pressure. The liquid nitrogen

is brought to the Silicon stations using 2–3m long transfer lines. When the nitrogen

reaches the phase separator, the gas that evaporated in the transfer line is allowed to

escape. At the bottom of the phase separator, where there is only liquid nitrogen, two

capillaries are connected, one for each detector. The thermal contact to the L-boards

is made by soldering dots. The temperature of the detector is regulated through the

gaseous exhaust flow with a feedback time in the order of one second. All components

are operated by a Programmable Logic Controller (PLC, SIMATIC S7 300), utilising

a Proportional-Integral-Derivative algorithm for the temperature regulation. The soft-

ware used is a Java
TM

-based application called Muscade[12] which provides real-time

monitoring, remote control, data storage, and an alarm system.

In 2009, all Silicon stations were cooled to 200K. The temperature of the sys-

tem was stabilised to within ±1K for all detectors of the upstream stations. Slightly

larger variations were observed for the detectors in the conical cryostat, where a partly

blocked capillary prevented good cooling for one of the detectors, limiting the tem-

25



Valve Box

XY

UV

SI01

Phase
separator

SI02
SI03
CC

Central
nitrogen
supply

Exhaust

E
x
h
a
u
st

Heater
Levelmeter
Forepump
TM pump
Flowmeter
Valve
Flow-
regulator

Figure 18: Block diagram of the valve box and the

first upstream cryostat labelled SI01. The other two

upstream cryostats SI02 and SI03 are equipped anal-

ogously. The downstream conical cryostat (CC) is

shown in Fig. 19. The phase separators are inte-

grated in the cryostats near the detectors, but outside

the acceptance.
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Figure 19: Block diagram of the conical cryostat

(CC), symbols as in Fig. 18. The phase separator

is mounted in an extra housing outside the spec-

trometer acceptance with a vacuum connection to

the cryostat.

perature to ∼ 220K only. This detector also exhibited slow drifts following the daily

temperature variations.

The spatial resolution of the cold Silicon detectors is in the range 4 − 6µm for

clusters when two strips are hit and amplitude weighting can be employed to determine

the track position [13]. When only one strip is hit, the resolution is in the range 7 −
11µm. This spatial resolution is illustrated in Fig. 20 for one of the detectors. It

represents an improvement of 15-20% compared to room-temperature operation [1].

The reduction of the leakage current and the increase of the signal each contribute of

about 10% to this improvement. The time resolution, displayed in Fig. 21, is improved

for the same reason and is in the range 1.4− 1.8 ns.
The efficiency was studied in detail with a high-intensity muon beam. Tracks re-

constructed without taking into account hits of the detector under study are used to

measure the efficiency by providing the expected hit position on the detector. The pres-

ence of a hit is then checked within a ±3σ window around the expected position. The

measured efficiency is above 99% as shown in Fig. 22 for one of the planes. Similar

results were also obtained for operation with hadron beams.

5.2. PixelGEM Detectors

In order to minimise the material from detectors directly exposed to the hadron

beam, some of the scintillating fibre detectors that were used with the muon beam

were replaced by thinner detectors based on Gas Electron Multiplier (GEM) foils [14].

Starting with the first hadron run in 2008, five GEM detectors with a novel kind of

readout and a thickness in the beam region of 0.26% of a radiation length (X0) and

0.1% of a nuclear interaction length each (λI ) were installed, thereby reducing the
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Figure 23: Schematic view of the pixel and strip re-

gion of the readout circuit. Note that the pixel region

consists of 32×32 pixels of 1mm2 size each, while

only 4×4 are shown for clarity. Figure not to scale.

Figure 24: The PixelGEM read-out foil. The inner

10 × 10 cm2 darkest part is the active area. The

symmetric wires connecting the pads and the strips

to the read-out electronics surround this part.

material budget of the whole system by a factor of 5–10 compared to the scintillating

fibre detectors.

GEM detectors with a two-dimensional strip readout have been used in COMPASS

since its start-up [15]. These gaseous detectors have proved to be able to cope with

the high particle fluxes in the beam centre, but the strip readout makes it impossible

to separate individual hits close to the beam due to a too high occupancy. In order to

overcome this limitation, a novel read-out structure has been realised on a polyimide

basis using the GEM patterning and wet-etching printed-circuit board (PCB) technolo-

gies [16]. The central are of 32× 32mm2 with 1024 pixels of 1× 1mm2 size each are

patterned on one side of 50µm thick polyimide foil. The signal traces from the pixels

to the readout electronics are routed on the other side of the foil, with an extremely

small width of only 50µm and a pitch of 100µm. The rest of the total active area of

100×100mm2, where the occupancy is sufficiently low, is covered by two orthogonal

sets of 512 strips with a pitch of 400µm, realised on a second 50µm thick polyimide

foil. The strip foil is then glued onto the one with the pixels, with the central area

completely removed from the strip foil in order to open the pixels for charge collec-

tion. The strips are split in the middle and read out on both sides in order to equalise

their capacitances, also for the ones not ending at the pixel region. In Fig. 23, the pixel

and strip regions are displayed schematically, while Fig. 24 shows a photograph of the

complete readout foil. The readout foil is glued onto a light honeycomb sandwich panel

of 610 × 610mm2 size, which serves as support plate and also carries the front-end

electronics, the high voltage distribution circuit, and the GEM stack.

The GEM stack consists of three GEM foils of 10 × 10 cm2 active area, stretched

and glued onto larger frames of fibre glass material with 316 × 316 cm2 inner dimen-

sions. These frames with a thickness of 2mm are piled up and glued on top of each

other. The active part of a GEM foil is sectorised on one side into four parallel sectors

of equal size, and a fifth sector in the centre matching the pixel area of 32×32mm2. In
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order to minimize inefficiencies and spatial distortions of the drifting charge cloud at

the sector boundaries, the spacing between adjacent conductive Cu surfaces was cho-

sen to be 150µ, the spacing between GEM holes in two neighbouring sectors 350µ,

both values limited by the production yield. The central sector requires a separate line

between two longitudinal sectors, which locally increases the gap between holes to

550µ.

The foils are mounted such that the segmented sides face the drift cathode. The po-

tentials on the foils are defined through an external resistive divider. They are adjusted

such that the largest gain is provided by the first foil and it is stepwise decreasing for

the second and third foil. The segmented sides of a foil are supplied through individual

10MΩ loading resistors, while there are no loading resistors for the non-segmented

side. This configuration allows for an operation of the detector even with a potential

permanent short circuit in one of the sectors, and avoids a high electric field between

the last foil and the readout circuit in case of a discharge [? ]. The central sector of the

third GEM foil is powered by a separate supply through a 1MΩ serial resistor, which

allows an independent adjustment of the gain for the central region. This takes into

account the fact that a smaller effective gain is necessary for the central region because

the signal is induced on pads instead of two sets of strips for the peripheral region.

Efficiency scans performed with prototype detectors showed that an effective gain of

8000 is required for the strip region for fully efficient detection of minimum ionising

particles, while a gain of 6000 is sufficient for the pixel region. The triple amplification

together with the non-uniform gain distribution and the segmented GEM foils, which

were already used for the large-size COMPASS GEM detectors [17], ensures opera-

tion of the PixelGEM detectors without electrical discharges even in a high-intensity

hadron beam.

In order to minimise the material in the region near the beam, the gas-filled volume

extends to cover a total area of 316 × 316mm2. It is enclosed by a frame defining

the conversion volume, and a smaller honeycomb panel of 330× 330mm2 size, which

carries the cathode foil made of Cu-coated polyimide. The material exposed to the

beam is minimised by central holes of 30mm diameter in both honeycomb panels and

by reducing the thickness of each of the Cu layers on the drift cathode and the GEM

foils from originally 5µm to about 1µm.

Figure 25 shows a top view of an assembled detector, with the high voltage dis-

tribution board (lower right corner) and the 16 front-end electronics cards mounted

upside-down. During operation the whole detector is shielded from external electronic

noise by a thin aluminium-coated Mylar foil. As the large-area GEM detectors, the

PixelGEM detectors are operated in a gas mixture of Ar/CO2 (70%/30%).

A total of 2048 channels per detector are read out using the APV25-S1 preampli-

fier/shaper ASIC [11], which samples the input signal at a frequency of 38.88MHz into

an analog pipeline with a depth of 160 samples. Each chip is mounted onto a separate

front-end card connected to the readout circuit using high-density 130-pin connectors,

of which two pins are used to connect the ground level of the chip to the detector

ground. In contrast to the large-area detectors, where the front-end cards were directly

wire-bonded to the readout circuit, the connector solution provides much more relia-

bility and allows for a simple replacement of faulty cards. The front-end cards also

contain an external protection network consisting of a pair of high-speed switching
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Figure 25: A fully assembled PixelGEM detector, equipped with 16

APV front-end cards. The digitisation of the analog signals from the

APVs is done at an external ADC card, which is connected via the

grey cables.

Figure 26: Front-end card carrying

(from top to bottom) the 130-pin

connector, the protection network,

a ceramic pitch adaptor, and the

APV25-S1 ASIC for analog sam-

pling of the signals induced on the

readout electrodes.
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Figure 27: Residual distribution (difference between measured cluster position and track penetration point)

in x-direction for (left) the pixel region and (right) the strip region of a PixelGEM detector. The quoted

residual widths are obtained from fits of a sum of two Gaussians. When corrected for the track uncertainties,

spatial resolutions of 106µm (pixels) and 54µm (strips) are obtained for this particular detector.

diodes (BAV99) and an AC coupling using a 220 pF capacitor for each channel, and

a ceramics pitch adaptor. Figure 26 shows a photograph of the front-end card. Three

signal amplitudes per channel are multiplexed onto a single differential line for each

APV25-S1 chip and digitised by a pipelined 12-bit differential ADC at a sampling rate

of 40MHz. The signals from sixteen APV25-S1 chips are digitised on a custom-made

ADC card. This card also includes a Virtex FPGA [18], which performs pedestal sub-

traction with individual values for each channel, common mode noise correction and

zero suppression by applying individual thresholds for each channel.

After a successfully operated prototype, which was tested in a muon beam with

a flux up to 1.2 · 105 µ+/
(

mm2s
)

[19; 20], five PixelGEM detectors were installed

in the spectrometer in 2008. One detector was placed about 2.5m downstream of the

target. Two pairs of detectors mounted back to back, with the second rotated by 45◦

with respect to the first, were installed around SM2, at 19m and 24m downstream of

the target, respectively (see Fig. 3).

In the offline analysis, a pulse-shape analysis technique is used to extract the sig-

nal amplitude and time for each channel, a feature of great importance in a high-

intensity environment. Signals from neighbouring pixel channels on the detector are

then weighted by their amplitudes and grouped into clusters. Corrections for a non-

linear charge sharing between pixels are applied. These corrections have been deter-

mined in a dedicated test beam experiment, using high-resolution silicon microstrip

detectors [19]. At this stage also a small (percent-level) cross-talk between channels,

arising from the narrow and long PCB traces between the pixels and the front-end cards,

is removed. For the strip signals a simpler clustering algorithm based on a centre-of-

gravity method is applied.

In the following, the performance of the PixelGEM detectors at a hadron beam flux

density of 2.4 · 104 π−/
(

mm2s
)

(total flux of 6.3 · 105 π−/s), used for data taking,

is shown. Figure 27 shows the residual distribution, i.e. the difference between the

measured cluster position and the extrapolated penetration point of a reference track,

for the pixel region (left) and the strip region (right). As for the Silicon detectors, the

detector under investigation has been excluded from the track reconstruction, such that

unbiased residuals are obtained. The residual distributions are fitted with the sum of
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Figure 28: Time residual distribution (difference between measured cluster time and track time) for (left) the

pixel region and (right) the strip region (x-direction) of a PixelGEM detector.

a constant background and two Gaussians to account for different cluster sizes and

regions in the detector where the resolution is deteriorated due to sector boundaries.

After deconvolving the uncertainty on the reconstructed tracks, one obtains, for all five

PixelGEM detectors, spatial resolutions distributed around an average value of 125µm
with a standard deviation of 13µm for the pixel regions, and an average value of 65µm
with a standard deviation of 12µm for the strip regions. From the pulse-shape analysis

of the three samples read out per channel per event, one can extract the time of the

signal and thus efficiently remove background hits due to pile-up. The time resolution

is then determined by comparing the time extracted that way with the one measured

by scintillation detectors for a given track, as shown in Figure 28 for one particular

detector. The time resolutions obtained for the five PixelGEM detectors are distributed

around an average value of 11.2 ns with a standard deviation of 1.7 ns for the pixel

regions and an average value of 9.4 ns with a standard deviation of 1.1 ns for the strip

regions.

In order to determine the efficiency ǫ of a detector in a high-background environ-

ment, one has to take into account the presence of uncorrelated background hits that

may fall within the road width around a track with a probability b and thus artificially

increase the apparent efficiency ǫapp = ǫ+ b(1− ǫ). Here, the background probability

b at a given position on the detector is determined from hits that fall outside the road

width around a given track used for the efficiency calculation. Figure 29 shows the

background-corrected efficiency for a complete detector plane. Here, the pixel region

is merged into the strip region, hence the complete active area of 10×10 cm2 is shown.

The lines of lower efficiency parallel to the x and y axes correspond to the boundaries

between the HV sectors on the GEM foils. Few, or no tracks are reconstructed in the

ring-shaped region when this particular detector is excluded from the tracking to ob-

tain an unbiased efficiency determination. Background-corrected efficiencies for the

PixelGEM detectors were found to be above 97% for all detectors during data taking

in 2008.

The PixelGEM detectors are also used for data taking with muon beams of intensi-

ties around 107 µ+/s.
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5.3. Micromegas Detectors

Twelve Micromegas (MicroMesh Gaseous Structure, or MM) detectors are used

for tracking particles emitted at small angles. Assembled in 3 stations of four detectors

each, they are installed in the region between the target and the first dipole magnet SM1.

Each MM detector covers an active area of 40 × 40 cm2, except a central dead zone

with a diameter of 5 cm, and measures a single projection of a particle track crossing

the detector. To this end, the anode plane is divided in three zones, a central zone with

512 strips and pitch of 360µm, and two outer zones, each with 256 strips and pitch of

420µm. The detectors, of 1024 strips each, have a parallel plate electrode structure,

with a volume separated into two regions: a 5mm conversion gap with a moderate elec-

tric field (less than 1 kV/cm), where the ionising particle produces primary electrons,

and an amplification gap of 100µm with a much stronger field (typically 40 kV/cm),

where the primary electrons generate an avalanche. A 5µm thin metallic micro-mesh

(grid), which captures most of the ions produced during the avalanche, separates the

two regions. Another grid, which is used as a drift electrode, defines the conversion

gap region.

From 2006 onwards, the original MM detectors [1] were modified in order to sat-

isfy two additional requirements: operate in a strong magnetic field, and withstand

an increased flux of highly-ionising particles during data taking with hadron beam.

The first requirement comes from the use of a superconducting magnet with a 2.5T
solenoid field during data taking periods with the muon beam and the polarised target.

This magnet, designed to match the large angular acceptance of the COMPASS setup,

produces a strong fringe field that reaches 1T at the level of the nearest MM detector.

In order to minimise the effect of the solenoid field on the detector, the nickel grids

used in the first generation MMs were replaced with new 5µm thin, non ferromagnetic

copper grid foils. The new mesh used for the amplification gap has 65µm diameter

holes and a pitch of 90µm. The corresponding values of the drift electrode are 300µm
and 600µm.

The second requirement comes from the use of hadron beams, which produce a

large number of highly ionising secondary particles and generate nearly three orders

of magnitude more discharges per incident particle. Since the discharge rate is pro-

portional to the gain of the detector, the size of the conversion gap was enlarged from

3.2mm to 5mm in order to increase the number of primary electrons. The detectors

could then be operated at a lower gain while preserving a good efficiency. The gas

mixture used is Ne/C2H6/CF4 with corresponding volume fractions of 85%/10%/5%.

In comparison to data taking with a muon beam, the CF4 component was decreased

from 10% to 5%, thereby further reducing the discharge rate at the expense of a slight

decrease of the electron drift velocity. At the nominal hadron beam intensity of 5×106

particles per second impinging on a 40 cm long liquid hydrogen target, each MM detec-

tor sees an integrated flux of up to 30MHz, reaching 100 kHz per strip near the central

dead zone. The mean discharge rate in such conditions varies between 0.026Hz and

0.050Hz, depending on the specific plane and HV settings. During a discharge the

micromesh voltage decreases and thereby reduces the efficiency of the detector. The

decrease is recovered several microseconds after the discharge.

For all MM detectors, a digital readout of the signal using the SFE16 chip is used.

When recording the leading and the trailing edges of a signal, both the mean time
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and the amplitude of a hit can be calculated, the latter by using a time-over-threshold

technique. Adjacent hits are then combined to clusters. The average cluster size is 2.8
and 3.2 in the region with 360µm and 420µm pitch, respectively. The mean value

of the time resolution is 14 ns, compared to 8.5 ns measured for the first generation of

MM detectors. This loss in performance is due to the combined effect of the increased

conversion gap size, the decrease of the drift-gap electric field, and the use of a smaller

fraction of CF4 in the gas mixture.

The efficiencies of the MM detectors are determined using the same method as

described in Section 5.2 for the PixelGEM detectors. A two-dimensional representation

of the efficiency of one of the detectors is shown in Fig. 30. The mean efficiency values

obtained for the other 11 MM detectors are all in the range 97.5% - 98.5%. Note that

the use of copper grids with a less favourable geometric transparency than that of the

nickel grids has negligible effect on the final efficiency values.

Figure 31 shows the space residual distribution of a MM detector for nominal beam

intensity and running conditions. After subtracting the contribution of the track uncer-

tainty, the intrinsic spatial resolution obtained is 105µm. The resolution value is a

weighted average of the resolution in the central zone (360µm pitch), and that of the

two outer zones (420µm pitch). The four detectors of the third MM station operate in

the fringe field of the SM1 dipole magnet, which exerts a Lorentz force on the drifting

electrons. The resolution of these detectors varies from 110 to 145µm, depending on

the orientation of the strips relative to the SM1 field lines.
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Figure 31: Space residual distribution of a Micromegas detector. The quoted residual width is obtained from

a fit of a sum of two Gaussians.

5.4. Drift Chambers

A new large-size multiwire drift chamber (DC4) was installed already in 2006 in the

LAS part of the setup. The design of DC4 closely follows that of the medium-size DC

trackers [1] already operational in the COMPASS set-up, while the overall dimensions

were enlarged to match the angular acceptance downstream of the SM1 magnet. The

distance between active wires was increased by 1mm and the angle of the inclined

wires was decreased. The DC4 chamber also features a water-cooling system, which

ensures a good temperature stability of its frame.

The external dimensions of the DC4 detector are 294 × 254 × 17 cm3 with an

active gas area of 248 × 208 cm2. The detector has eight layers of wires and four

wire orientations: two vertical layers (X- and X ′-plane), two horizontal layers (Y - and

Y ′-plane), two layers with wires inclined with respect to the vertical axis by +10◦(U -

and U ′-plane) and two others by −10◦(V - and V ′-plane). The configuration of the

detector along the beam is UU ′, V V ′, XX ′, Y Y ′. Every second layer is staggered

by 4mm (half of the cell dimension) in order to minimise track ambiguities. Each

layer consists of 256 active wires made of gold plated tungsten and 257 alternating

potential wires made of beryllium, with diameters of 20µm and 100µm, respectively.

To avoid sagging, two nylon wires per plane are fixed perpendicularly to the active and

potential wires. The distance between every two active wires is 8mm. Each wire layer

is enclosed between two 25µm thick Mylar cathode foils, at a distance of ±4mm from

the wire. This configuration defines drift cells of 8×8mm2, which are small enough to

cope with counting rates as high as 250 kHz per wire. During operation of the detector,

the active wires are kept at 0V, whereas both Mylar foils and potential wires are set at

values close to -1700 V.

Central zones with a diameter of 28.6 cm and independent HV power supplies are

segmented in all cathode foils. During normal operation their HV values are kept

small enough (usually 900 V), which makes them blind to the high particle flux in

the vicinity of the beam. The central zones are activated only for detector alignment

purposes, when the beam intensity is low.

The gas used is a mixture of Ar, C2H6 and CF4 with volume fractions of 45%,

45% and 10% respectively. This gas ensures a fast charge collection (drift velocity is
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the DC4 chamber for one of its doublets. The quoted

width is from the fit of a simple Gaussian.

77µm/ns) while preserving a good spatial resolution. Full efficiency is reached for

gain values close to 104, corresponding to HV settings of approximately 1750V.

The read-out electronics of the detector is identical to the electronics used for the

already installed DC trackers. A single front-end card with 64 channels consists of

eight pre-amplifier/amplifier/discriminator chips[21], called ASD8. Each ASD8 card

is connected to a 64-channel F1-TDC board. The thresholds on the ASD8 card are

remotely controlled. The nominal threshold is set at values between 0.8V and 1.1V,

or between 25000 and 34000 electrons.

Due to its large size, the components of the DC4 tracker are sensitive to the temper-

ature variations in the hall. The thermal expansion or contraction of the DC4 aluminium

frame may alter the nominal wire tension and degrade the detector performances. In

order to minimise such effects, a specific cooling system was installed. The system

consists of copper pipes running on both sides of the detector frame. The copper pipes

are part of a closed secondary circuit filled with demineralised water and maintained at

constant temperature. Several probes, which are installed at various locations, contin-

uously measure the actual detector temperature. The cooling system limits the temper-

ature variation of the frame to within 2 K.

The efficiencies of the eight DC4 planes were measured at nominal running con-

ditions (hadron beam intensity of 5 × 106/s). They were found to be in the range of

95% to 97%. Figure 32 shows the efficiency of the first vertical plane (Y1) of the DC4

chamber.

The spatial resolution of the DC4 drift chamber planes is determined by taking

advantage of the staggered layers with the same orientation (doublet). The difference

between the positions of the hits in the two planes, x1 and x2 of a doublet (double resid-

ual, or DR), is independent of the track uncertainty associated with the other planes or

detectors. It includes a correction ∆x12(θtrack), which accounts for a non perpendic-

ular incidence of the track, i.e. a position shift when going from one plane to another.
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Figure 34: Sketch of a Mini Drift Tube module.

The distance between two planes being 8mm, this correction is small. The double

residual is therefore DR = x1−x2−∆x12(θtrack). Figure 33 shows the double resid-

ual distribution for the X-doublet of DC4, measured under nominal beam conditions.

Except for a shift of half a drift-cell length, the two layers have identical characteris-

tics; therefore the resulting DR resolution is σ2
DR = σ2

x1
+ σ2

x2
= 2σ2

x. The position

resolution for a single DC4 plane is consequently σx = 226µm. This result is obtained

in the central region of the detector, which corresponds to about one tenth of the total

detector area.

5.5. Rich Wall

The Rich Wall detector is a large-area tracker that is positioned between RICH-1

and ECAL1. The detector was built to improve the tracking accuracy at large angles

(150 < θ < 300mrad) downstream of RICH-1. The additional track points mea-

sured by the detector provide a better determination of large-angle particle trajectories

through RICH-1 and, as a consequence, improve the accuracy of Cherenkov ring re-

construction.

The detector has dimensions of 5.27×3.91m2 with a central hole of 1.02×0.51m2.

It consists of eight planes of Mini Drift Tubes (MDT) made up of MDT modules. An

MDT module consists of an eight-cell aluminium comb extrusion with a wall thickness

of 0.44mm, which is covered on the top by a 0.15mm thick stainless steel foil. Gold-

plated tungsten wires of 50µm diameter are strung in the centre of the cells. The

wire pitch is 10mm. A Noryl R© plastic envelope with a thickness of around 1mm
encapsulates the module. The wires are thermally glued to polyethylene plastic spacers

(not shown in Fig. 34) at equal distances of 1m along the length of the MDT to provide

electrostatic stability. A sketch of one MDT module is shown in Fig. 34.

Figure 35 shows a front view of an X-plane. It consists of 2 × 25 long MDT

modules (length 3910mm), and 2 × 12 short modules (length 1700mm) above and

below the central hole. Similarly, a Y -plane comprises 2 × 20 long MDT modules

(length 5270mm), and 2× 6 short modules (length 2125mm). The eight MDT planes

are arranged in four groups of two planes each, i.e. two X- or two Y -planes. The two

planes within one group are staggered by 2.5mm. Each group is mounted onto an

aluminium frame.

The readout electronics consists of front-end (FE) cards fixed on the detector frame

and digital (DG) cards plugged into the FE cards. The FE cards are connected to the

MDT signal wires via short shielded cables. Each FE card houses 16 MAD4 chips [22],
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Figure 36: Schematic view of the Rich Wall readout chain.

a threshold digital-to-analog converter (DAC), a test-pulse generation circuit, power-

supply filters and regulators. The FE card is connected to the DG cards through a

high-speed card edge connector. The DG card houses eight F1 TDC [23] chips, a

high-speed (40MHz) HOTLink chip, and initialisation circuits. The card reads out 64

TDC channels in parallel. Two 8-bit Analog Devices DAC8841 chips per DG card

are used to independently set the threshold of each MAD4 chip (common threshold

for four channels) and a third one is used to generate a variable-charge test pulse.

The readout chain shown in Fig. 36 is completed with FPGA-based HotGeSiCA cards

(see Section 8.1) programmed in two different ways. In the first stage, the data from

eight DG cards are multiplexed onto a single connection. Eight such multiplexers are

then connected to the second multiplexing stage consisting of one HotGeSiCA card

equipped with additional random access memory (RAM), which sends the data to the

readout buffers.

The gas mixture used in the Rich Wall detector is Ar/CO2 (70/30). For this gas
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Figure 37: Rich Wall residual distribution, showing the difference between reconstructed cluster position

and extrapolated track position along the axis perpendicular to the wire layer. The quoted sigma is extracted

by fitting a sum of two Gaussians.
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different trends in the curve below and above ∼ 175mrad are due to the different RICH-1 photon detector

types (see Section 6.1).

mixture an operating HV of 2050V was chosen. Ageing tests performed with this gas

mixture have shown no degradation effects for incident charges of up to 1C per cm
of anode wire length. The beam-induced MDT charge, integrated over the lifetime

of the COMPASS experiment, is comparable to this value. The Rich Wall detector is

operated in the drift mode where the coordinate of a crossing track is calculated from

the drift time in the MDT cell, using the measured RT relation. Operating the detector

in the drift mode allows us to obtain a single-plane coordinate resolution of the order

of 1.0mm, determined by fitting a sum of two Gaussians to the residual distribution

(Fig. 37). During operation the detector has shown a stable single-plane efficiency of

90–91%.

The beneficial effect of the Rich Wall detector on the Cherenkov ring reconstruction

in RICH-1 is shown in Fig. 38. In the polar angular range 150–300mrad the Cherenkov

ring resolution is improved by 20% on average.
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6. Particle Identification Detectors

The hadron physics programme at COMPASS requires the reconstruction of final

states with charged and/or neutral particles in a large angular range. Several types of

particle identification detectors (PID) are used to achieve this goal (see Fig. 3). Charged

pions and kaons, as well as protons, with momenta of up to 50GeV/c are identified in

the RICH-1 detector, while their energy is measured in the two hadron calorimeters,

HCAL1 and HCAL2. Photons emitted during the interaction and decay photons are

detected in two electromagnetic calorimeters, ECAL1 and ECAL2. Scattered muons

are identified in the two muon identification systems, consisting of drift tubes detectors

(MW1 and MW2) and absorber walls made of iron (Muon Filter 1) or concrete (Muon

Filter 2).

Since the publication of Ref. [1], the PID part of the setup was significantly up-

graded. New photon detectors were installed in the central region of RICH-1, and a new

readout system was implemented in its peripheral region. The new ECAL1 calorimeter

was added, which extends the acceptance for photon detection to large angles. The

ECAL2 calorimeter was upgraded with radiation-hard Shashlik modules in its central

region and with fully pipelined electronics. For both calorimeters, the calibration pro-

cedure and the monitoring of the individual modules were significantly improved. The

hadron calorimeters and the muon identification systems remained unchanged since

their description in Ref. [1] and are hence not discussed here.

6.1. The RICH-1 detector

The RICH-1 detector [24] covers the horizontal and vertical angular acceptances

downstream of the SM1 magnet (250 mrad×180 mrad). Its 3m long vessel is filled

with C4F10 gas as a radiator [25]. The refractive index of the radiator material corre-

sponds to Cherenkov thresholds of about 2.5, 9, and 17GeV/c for pions, kaons, and

protons, respectively. A steel pipe with a radius of 5 cm and thickness of 0.15mm
separates the vessel from the beam path. Cherenkov photons produced along the path

of a hadron are reflected by a 21m2 surface that consists of 116 spherical UV mirror

elements that are grouped into two spherical surfaces [26]. The mirrors are designed

such that the photons are focused onto two arrays of photon detectors (see Fig. 39),

located outside of the spectrometer acceptance.

6.1.1. Upgrade

Until 2004, Cherenkov photons were detected in Multiwire Proportional Chambers

(MWPC) equipped with solid-state CsI photocathodes that limit the MWPC operation

to gains below 5 × 104. The first stage of the electronics readout system [27] was

characterised by a long integration time; this was a limiting factor in the COMPASS

environment, where a high-rate uncorrelated background is present due to the large

muon beam halo. High rates and large correlated background are also typical for mea-

surements with a hadron beam. In addition, the long base-line restoration time (about

3.5µs) generated a non-negligible dead time.

In order to overcome these limitations, a major upgrade of the RICH-1 detector

was undertaken. Details can be found in Refs [28–30]. Two different technologies
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were chosen in order to minimise the overall cost of the project. In the peripheral re-

gions that cover 75% of the photo-detection surface, where the level of the uncorrelated

background is small, the MWPC/CsI photon detectors were kept. However, their front-

end electronics was replaced by a new system [28] that is based on the 128 channel

APV25 chip [11]. The new system provides two major improvements. First, it reduces

the effective time window from 3µs to 400 ns and decreases the dead-time losses of

the readout system to values close to 5%. Second, the APV25 chip performs a triple

sampling of the MWPC signal, which results in a much improved time resolution and

in an increase in the signal-to-background ratio [28] from 0.35 with the old system to

2.13 with the new one.

The central region of RICH-1, which covers 25% of the photo-detection surface,

is instrumented with a detection system based on Multi-Anode PhotoMultiplier Tubes

(MAPMTs) [30]. The MAPMTs are coupled to individual telescopes of fused silica

lenses which consist of a prismatic field lens followed by a concentrator lens, thereby

enlarging the effective active area of the photon detectors by a factor of seven. The

effective pad size that results from the MAPMT pixel-size and the lens telescope mag-

nification is about 12 × 12mm2. The new system detects about four times more

Cherenkov photons than the old one and reaches values as high as 60 photons per

ring. The MAPMT detectors are intrinsically fast and have time resolutions better than

1 ns. They are coupled to a readout system [29] based on the MAD4 high sensitivity

amplifier/discriminators and the standard COMPASS F1 TDCs.

6.1.2. Characterisation

A dedicated software package, called RICHONE [31], was developed for the RICH-

1 data reduction. It performs pattern recognition and particle identification, and char-

acterises the detector response. Figure 39 shows an example of a RICH-1 event in

the hadron beam environment showing many rings in the central detectors. The time

windows applied are the same as used in data reconstruction, namely 10 ns for the

MAPMT part and 250 ns in the MWPC part. Each visible ring belongs to a detected

particle. A major difference between the use of RICH-1 with muon and with hadron

beam is the different particle population in the events, which is due to the different

event multiplicity and particle phase space. The muon beam is characterised by a wide

halo, which extends over all photon detectors and has a flux comparable to that of the

focused beam. The Cherenkov photons that are emitted by the halo particles travelling

parallel to the beam are focused into the central zone of the RICH-1 photon detectors,

which results in a large background. The hadron beam can be better focused and has

hence much less halo. Nevertheless, due to the higher interaction rate in hadron scat-

tering, a large number of particles is emitted at small polar angles, i.e. in the very

forward region. These particles also populate the central region of the RICH-1 photon

detectors. A map of the integrated hit distribution in the central part of the RICH-1

photon detectors is shown in Fig. 40 for data taken with muon and positive hadron

beam. The distributions are normalised to the number of entries and the same scale is

used for the comparison. Both distributions show large occupancies for photons emit-

ted from particles traversing RICH-1 under small polar angles. The ring images in the

muon environment have more overlap since they are mostly produced by the parallel

halo particles, while in the hadron case the particles have a slightly broader polar angle
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Figure 39: A typical event display during hadron data taking. The 16 squares represent the detector areas; the

four central ones are equipped with MAPMTs. The small squares represent the hits detected in the photon

detectors.
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data taken with a muon beam and (right) data taken with a positive hadron beam.
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Figure 41: Horizontal axis projection of the integrated hit distributions for the lower photon detectors. Both

central and peripheral parts of RICH-1 are included. The shaded histogram refers to the muon environment,

the open to the hadron one. The small dips in the hit distributions correspond to the dead zones between the

detector parts equipped with MAPMTs and with MWPCs.

distribution. Figure 41 shows the projection of the hit distribution in the lower photon

detectors onto the horizontal axis, for both the muon and the hadron environment. Even

if the origin of the background is different in the two environments, the overall back-

ground distributions are similar. The same was observed when changing to another

hadron beam or target, so that the general properties of the detector response remain

the same as the ones measured with a muon beam [31]. The uncertainties in the re-

constructed angle of the individual Cherenkov photons is 2mrad in the central region

and 2.5mrad in the periphery, while the uncertainties in the determination of the mean

Cherenkov angle (ring angle) are 0.3mrad and 1.6mrad, respectively. These resolu-

tions allow pion-kaon separation at 95% confidence level for momenta up to 45GeV/c.
The average number of photons per ring at saturation, i.e. for β → 1, is 56 in the cen-

tral and 14 in the peripheral region. The dependence of the mean number of detected

photons per ring versus the corresponding Cherenkov angle is shown in Fig. 42 for the

detectors equipped with MAPMTs.
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Figure 42: Mean number of detected photons per reconstructed ring as a function of the corresponding

Cherenkov angle θCh in the central region of the RICH-1 detector for track angles θ between 30mrad and

90mrad. The line is a fit with the functional form N = N0sin2(θCh).

Part of the data taking in 2009 was devoted to a test of the Primakoff measurement.

For this test, RICH-1 was filled with N2 gas in order to have a smaller material budget

in the acceptance region. The response is largely different in this case as the refractive

index of N2 is lower than that of C4F10. In particular, the number of emitted photons at

saturation is expected to be lower by a factor of 4.8 for the N2 radiator. The number of

detected photons is then sufficient to allow for particle identification only in the central

part of RICH-1, which is equipped with MAPMTs. In this region, the average number

of photons per ring at saturation is 11.7, which has to be compared with 56 for the

C4F10 radiator (Fig. 42). The lower number of detected photons leads to an uncertainty

in the determination of the ring angle, which is larger by a factor 2.2 with respect to

the operation with the C4F10 radiator. Nevertheless, the upper momentum limit for

pion-kaon separation is very similar for the two radiators as the poorer resolution of N2

is compensated by a larger difference between the corresponding Cherenkov angles.

The thresholds of the Cherenkov effect are 5.6, 20, 38GeV/c for pions, kaons, and

protons respectively. Thus, in comparison to the values for C4F10 quoted above, the

momentum range for pion-kaon separation is severely reduced.

6.2. Electromagnetic calorimeter ECAL1

The ECAL1 calorimeter is part of the Large Angle Spectrometer. It consists of 1500

lead glass (LG) modules. For reasons of availability and cost, three types with different

dimensions are used, see Table 4. The calorimeter ECAL1 has a width of 3.97m and

a height of 2.86m, which corresponds to the angular acceptance for photons coming

from the centre of the liquid hydrogen target of 37mrad to 136mrad in the horizontal

direction and of 21mrad to 98mrad in the vertical direction. The central hole has a

size of 1.07 × 0.61m2. The ECAL1 calorimeter is installed on a motorised platform

that allows horizontal and vertical movements orthogonal to the beam direction, which

is used mainly for calibration purposes.
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Figure 43: Configuration of ECAL1. The central area is equipped with GAMS modules. The MAINZ

modules are installed above and below the GAMS area. The OLGA modules cover the outer left and right

regions.
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Table 4: Parameters of the ECAL1 lead glass modules.

Parameter Units GAMS MAINZ OLGA

LG type TF1 SF57 SF5

Density g/cm3 3.86 5.51 4.08
Rad. length (X0) cm 2.74 1.55 2.55
Total thickness X0 16.4 23.3 18.5
Moliere radius cm 4.7 2.61 4.3
Refractive index 1.65 1.89 1.67
Length cm 45 36 47
Surface cm2 3.83× 3.83 7.5× 7.5 14.1× 14.1
PMT type FEU-84-3 EMI 9236KB XP2050

6.2.1. Design and electronics

A front view of the ECAL1 calorimeter is shown in Fig. 43. The central part of

ECAL1 consists of 608 LG modules of transverse dimensions 3.83× 3.83 cm2, which

are denoted GAMS modules [32]. They are arranged in a 44×24 matrix with its central

28 × 16 array left empty. Above and below this central part, two 22 × 13 matrices of

“MAINZ” modules [33] are installed, which contain in total 572 LG modules. One

MAINZ module has the size of nearly four GAMS modules. In order to compensate for

the small difference in size, 1.6mm vertical gaps have been left between all columns

of MAINZ modules, except the two central columns. On both sides of the central

columns, the nearest two gaps are filled with iron plates. The two outermost parts of

ECAL1 consist of two matrices of 8 × 20 large-size “OLGA” modules [34]. Each

OLGA module has the size of nearly four MAINZ modules. Table 4 summarises all

relevant parameters of the LG modules used. It also contains the types of PMTs that

detect their Cherenkov light. The analogue signals coming from the PMTs pass through

shaper modules. The shaper modules preserve the integral value of a signal and enlarge

its width to 80 ns FWHM in order to match with the SADC sampling rate of 77.76

million samples per second.

In the offline event reconstruction the SADC information is used to extract the

amplitude and time of a signal relative to the trigger time. After subtracting the ADC-

baseline that is determined for even and odd samples separately averaging the first 3

samples for each hit, the separation between even and odd samples is implemented in

order to account for interleaved readout as described in Section 6.3.1. The amplitude

of a signal is determined as the difference between its absolute maximum and the cal-

culated baseline. The hit time is determined for each calorimeter module by selecting

those SADC samples with amplitudes An and An+1, which surround the position in

time that represents one-half of the maximum amplitude Amax. In order to improve

timing accuracy, the time at which the signal is reaching 50% of Amax is derived from

an interpolation between the samples n and n+ 1:

t =

(

n+
Amax/2−An

An+1 −An

)

× 12.86 ns , (1)

where 12.86 ns is the sampling period. For photon energies larger than 1GeV the
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Figure 44: Schematic view of the LASER monitoring system for ECAL1. The laser beam is distributed to the

ECAL1 modules using one primary (D1) and eight secondary (D2) light diffusion spheres. For clarity, only

one of the 8 primary fibres dispatching the light to D2, only one of the secondary 1500 fibres transmitting it

to the LG modules, and only one of the 8 front-end-monitoring (FEM) modules are explicitly shown.

resulting time resolution is about 1 ns.

6.2.2. Calibration and monitoring

For the calibration of ECAL1 LG modules the field of SM1 is set to zero. A 15GeV
electron beam is used, which is a compromise that accounts for the different dynamic

ranges of the three types of modules. An automatised calibration procedure changes

the position of the calorimeter between two consecutive spills, so that every module is

exposed during calibration. Up to several thousands electrons per module are collected

within each spill. The total cluster charge deposited, i.e. the sum of the charges of

the module being calibrated and its neighbouring modules, is compared to the incident

electron energy. Several iterations are necessary to determine the HV settings for all

modules.

The calibration coefficients, which relate the charge measured by each SADC to the

energy deposited in the corresponding module, are calculated taking into consideration

the energy range of the photons detected in that module during the experiment. Since

the energy of the photons decreases as the angle between the photon direction and

the beam axis increases, three different HV settings are applied. For the incident beam

energy of 190GeV, the settings are chosen such that the corresponding dynamic ranges

for the three types of modules extend up to 60, 30, and 20GeV for GAMS, MAINZ

and OLGA modules. The whole calibration procedure is applied once or twice per data

taking period of several months.

In order to control the light collection efficiency and the photomultiplier gains of

all 1500 LG modules, the ECAL1 calorimeter is equipped with a dedicated monitoring

system that is based on the design of Ref. [35]. It uses a single laser source, namely

a Minilite-1 model from Continuum [36]. The use of a single light source allows the

detection of possible light collection or PMT instabilities individually in each ECAL1
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Figure 45: ECAL1 module responses as monitored during a period of one week for (left) a stable module and

(right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning

of the period.

channel. The laser light is transmitted to the LG modules through one primary and

eight secondary optical fibre bundles. The fibre bundles are interconnected using light

diffusers that guarantee a uniform distribution of the light in the fibres. Each secondary

bundle consists of 240 fibres from which between 160 and 200 fibres are connected to

the LG modules.

A simplified drawing of the monitoring system is shown in Fig. 44. The laser in-

jects 532 nm light pulses with 5 ns FWHM into all calorimeter modules at a frequency

of 1Hz in the SPS inter-spill periods. The laser energy per pulse is tuned to an amount

that matches the photomultiplier signal amplitudes. Since the light output of the laser

source itself may vary between two consecutive pulses, an independent reference mea-

surement of the pulse amplitudes is required. Nineteen fibres, to make the available

light signal strong enough, from each secondary bundle are plugged into eight refer-

ence photodiodes. Each photodiode is connected to a temperature-stabilised electronics

circuitry [35], which is enclosed in a Front-End Monitoring (FEM) module. The eight

FEM signals are read out by the same SADC electronics as the calorimeter modules,

thus providing an eight-fold normalisation of the laser pulse amplitude. The ampli-

tude of the signals from the LG modules is determined as the peak value of the SADC

samples as obtained after pedestal subtraction.

The recorded laser monitoring amplitudes are used to correct the responses of all

ECAL1 modules on a run-by-run basis. The electron beam calibration provides the

starting values of the calibration coefficients Ci. These coefficients convert the photo-

multiplier signal amplitude from ADC channels to GeV using

Ai
GeV (t) = Ai

ADC(t)× Ci × Li(t)

Li(0)
. (2)

Here, Ai
ADC(t) is the ADC amplitude for the module i measured at a given time t,

Li(t) is the ADC amplitude of the monitoring amplitude of the module i at time t,
and Li(0) is the monitoring amplitude of the same module, but recorded during the

electron beam calibration run. The time t is taken as the time of the run, for which the

correction is to be applied. A display of two LG modules (a good one and an unstable

one) as a function of time is shown in Fig. 45.
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Figure 46: Configuration of ECAL2. The outer and intermediate regions are equipped with GAMS and

radiation-hardened GAMS modules respectively. The inner region is equipped with Shashlik sampling mod-

ules. The transverse sizes of all three types of modules are identical. The central hole of 2× 2 modules can

be seen as a white spot.

6.3. Electromagnetic calorimeter ECAL2

ECAL2 is a part of the Small Angle Spectrometer. It consists of 3068 calorime-

ter modules of three different types, all with the same transverse dimensions (3.83 ×
3.83 cm2). With its dimensions of 2.44 × 1.83m2, ECAL2 covers angular ranges

between 1.3mrad and 39mrad in the horizontal plane and between 1.3mrad and

29mrad in the vertical plane. In both planes the angular ranges are slightly larger

than the corresponding angular ranges of both ECAL1 (Section 6.2) and the hadron

calorimeter HCAL1. Accordingly, the peripheral rows and columns of ECAL2 are not

used; for the corresponding ECAL2 angles the photons from the target are either de-

tected in ECAL1 or absorbed in HCAL1. ECAL2 is installed on a motorised platform

allowing movements in both horizontal and vertical directions.

6.3.1. Design and electronics

The ECAL2 modules are arranged in a 64×48 matrix, as shown in Fig. 46. For data

taking with hadron beams, its central hole with respect to the nominal beam directions

is set to 2×2 modules. The central hole of the HCAL2 calorimeter is set accordingly to

10× 10 cm2. The outermost part of ECAL2 is equipped with 1332 TF1 lead glass [32]

modules, which are identical to the GAMS modules used for ECAL1. The intermediate

part of ECAL2 is filled with 848 radiation-hardened modules (GAMS-R) made out of
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Figure 47: Photographs of a Shashlik-type calorimeter module. Left part: the upstream face of the module

with its four central rods and 16 light fibres. Right part: the module itself with the fibres guide at the

downstream face.

TF101 material [37]. This material is a standard TF1 type LG, which is enriched with

0.2% of cerium. The innermost part is equipped with 888 Shashlik type modules (see

Fig. 47). The 39 cm long Shashlik modules are composed of 154 double layers, each

consisting of a 0.8mm thick lead plate and of a 1.55mm thick scintillator plate. The

photons from the Shashlik modules are collected by 16 wavelength-shifting light fibres

and guided onto FEU-84-3 photomultipliers.

The different ECAL2 modules have identical transverse dimensions, but different

radiation hardness properties. Calculations for the present ECAL2 configuration have

shown that with the COMPASS nominal hadron beam intensity and duty cycle the most

exposed modules, i.e. those located closest to the beam, would stand radiation doses

corresponding to several years of data taking for GAMS and GAMS-R and nearly 20

years for Shashlik, without significant degradation of their response.

The photomultiplier signals coming from the 3068 ECAL2 modules are first trans-

ferred to a shaper, which increases the signal width to 120 ns FWHM. The signals are

then digitised by sampling ADCs. The ECAL2 readout was upgraded with a new sam-

pling ADC system, which provides a dynamic range of 12 bit and allows more elaborate

data processing. The basic building block is a compact Mezzanine Sampling ADC card

(MSADC), which performs a digitisation of the 16 analogue input channels at 77.76

million cycles per second, with two interleaved multichannel ADCs [38]. Data process-

ing is implemented by a Xilinx Virtex4 FPGA [18]. The MSADC firmware includes a

digital ring buffer to compensate the trigger latency, a pipelined logic for pedestal cor-

rection, zero suppression and data formatting. In addition, an independent processing

chain is implemented on the FPGA to determine time and amplitude information for

the calorimeter trigger described in Section 7.5. As shown in Fig. 48, four MSADCs

are combined on a 9U VME carrier card, which merges the data from 64 calorimeter

channels and provides a serial 40 Mbit/s HOTLink interface to the HotGeSiCA mul-

tiplexer modules in the next readout stage. In order to reduce the power dissipation,

all MSADC supply voltages are generated centrally on the carrier card with DC/DC

converters. The resulting noise on the MSADC channels is below 1.5 least significant

bit.

The information from the MSADCs is also used to calculate the time for each event.

For each ECAL2 module, the algorithm interpolates between the times of the two sam-

ples around the one-half value of the maximum sampled amplitude (see Section 6.2).

The time resolution for ECAL2 is shown in Fig. 49. For energies higher than 2GeV,

resolutions of 1 ns or better are achieved.
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Figure 48: VME carrier card with four mounted MSADC modules.
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Figure 49: Standard deviation σ for the ECAL2 time resolution as a function of the photon energy E. The

solid curve is a fit to the data points using the expression: σ2(E) = 1.13/E + 0.22/E2 + 0.39.
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Figure 50: ECAL2 module responses as monitored during a period of one week for (left) a stable module and

(right) an unstable module. The vertical scale is normalised to the SADC charge measured in the beginning

of the period.

6.3.2. Calibration and monitoring

The ECAL2 calorimeter is calibrated by exposing all its modules to a 40GeV
electron beam. Apart from different geometry and different number of modules, the

calibration procedure is identical to that used for ECAL1 (see Section 6.2.2). The

charge deposited in each cluster of LG modules (as measured in the MSADCs) is cal-

culated and compared to the incident electron energy. After the data for all modules

are collected, few iterations are necessary to determine the calibration coefficients for

all Shashlik and LG modules. The final HV settings are calculated after taking into

account the energy ranges of the photons detected in the different parts of ECAL2.

The high voltages of the PMTs of the innermost 16 × 16 modules are set to measure

energies of up to 200GeV. In the surrounding part, which represents a 48× 48 matrix,

the maximal energy is set at 150GeV. Finally, in the two outermost parts with 8× 48
modules each, the PMTs are set to detect energies of up to 60GeV.

The time stability of the ECAL2 calibration is monitored using a LED-based mon-

itoring system. This light-distribution system consists of 30 fibre bundles, where the

number of fibres varies between 64 and 140 per bundle. Each bundle is illuminated

by six simultaneously activated LEDs. The combined use of six LEDs increases the

available light intensity and minimises possible intensity fluctuations by averaging out

the individual LED instabilities. The system is activated using a calibration trigger

with a frequency of 1Hz. A display of two ECAL2 modules with a stable and with an

unstable response is shown in Fig. 50. The information from the monitoring system is

used to correct short and long term drifts of individual cells on a spill by spill basis.

7. Trigger

The COMPASS trigger system for hadron beams is designed to select events that

carry all the information needed for exclusive measurements. A fast response is needed

to provide the time reference for the readout of all detectors. A physics trigger consists

of three subsystems: beam-defining elements to select beam particles crossing the tar-

get, veto detectors to reject events containing particles produced outside of the target

or outside of the spectrometer acceptance, and specific detector systems that account
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Figure 51: Arrangement of trigger elements in the spectrometer (schematic side view, not to scale).

for the particular physics case. The latter are: i) the proton trigger (Section 7.3) that is

used for measurements of diffractive scattering and central production processes with

momentum transfers t < −0.07GeV2/c2 (see Section 4.3), ii) the multiplicity trigger

that completes the coverage in t for reactions with higher charged track multiplici-

ties (Section 7.4), and the calorimeter trigger (Section 7.5) that is used for Primakoff

data taking. Figure 51 shows schematically the location of the trigger elements in the

spectrometer.

7.1. Beam Trigger

The beam trigger selects incoming beam particles and is used to define the reference

time of an event. In addition, it reduces the geometric acceptance of the beam in

the transverse plane to match the target geometry. It consists of a coincidence of a

scintillating fibre detector, SciFi1, with a beam counter. SciFi1 is located 7 m upstream

of the liquid hydrogen target. It has one vertical and one horizontal plane. Each plane

is read out by six multi-anode photomultiplier tubes (PMT) with 16 channels each. In

addition, the PMTs are read out at the last dynode stage, thus providing six analogue

sums for each of two planes of the detector.

The beam counter is a small scintillator disc that is located 50 cm downstream of

SciFi1. It has a diameter of 3.2 cm, a thickness of 4 mm, and is centred at the beam.

It is surrounded by a thin, black PVC tube covered inside by aluminised Mylar foil

with an internal reflection of better than 92%. A 35 cm long tube used as an air light-

guide is connected to a single EMI 9813KB PMT. The PMT is equipped with a voltage

divider that stands beam rates of up to 10 MHz. The efficiency of the beam counter was

measured to be 99.5% all over the surface of the disk, as shown in Fig. 52.

The beam trigger is defined by the coincidence of the beam counter signal and

the logical OR of the 6 analogue sums of the SciFi1 X plane. The time resolution is

measured to be 450 ps ± 50 ps (Fig. 53). It is used as a time reference of the trigger

system.

7.2. Veto Detectors

The veto system consists of two scintillation counters (“beam killers”), a ‘sand-

wich” veto detector (see Section 4.4) and a hodoscope veto system. It inhibits false
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Figure 54: Allowed combinations for target pointing in the RPD part of the proton trigger.

physics triggers. The overall dead time of the veto system was measured to be 13%-

16% for the nominal beam intensity of 5 · 106 s−1. For Primakoff data taking, it is

reduced to 8%-10% due to the lower beam intensity.

7.2.1. Beam killers

Two scintillating counters are positioned along the beam axis of the spectrometer

at z =+25 m (BK1) and z =+33 m (BK2). Both counters have a diameter of 3.5 cm

and a thickness of 0.5 cm. Their function is to inhibit a trigger signal coming from non-

interacting beam particles. The use of the beam killers introduces an angular cut-off

of 0.97 mrad with respect to the nominal beam axis. Including the beam killers in the

diffractive trigger (see Table 5), reduces its trigger rate by about a factor of 2.

7.2.2. Sandwich Veto Detector

A Sandwich veto detector (described in Section 4.4) is used to veto charged and

neutral particles that are detected outside of the angular acceptance of the spectrome-

ter and the RPD. Such particles are dominantly produced in inelastic, non-diffractive

reactions or in reactions in which the target protons are diffractively excited. Including

the Sandwich veto in the trigger improves the purity of the physics triggers by a factor

of about 3.5.

7.2.3. Hodoscope Veto System

The hodoscope veto system is the same as the one used for the muon programme.

It consists of three parts: a beam line hodoscope veto system (VBL) installed at z =
−20m, a Veto1 system located at z = −7.5m, and a Veto2 counter at z = −1.5m.

A detailed description can be found in Refs [1] and [39]. The hodoscope veto system

removes events with large multiplicities in the RPD.

7.3. Proton trigger

The proton trigger selects events with recoiling protons from the target. The RPD

(described in Section 4.3) information is used for two purposes: target pointing and

discrimination of protons from pions and delta-electrons by measuring the energy loss
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Figure 55: Correlation between the energy losses of protons and pions traversing ring A and stopping (or

traversing) ring B of the RPD. For each particle type the minimum and the maximum polar angles (50◦ and

90◦) are shown. The shaded area corresponds to the region rejected by the trigger logic.

in each ring of the RPD. Target pointing is implemented by allowing only for combi-

nations, where hits in one scintillator of the inner ring are followed by a signal in one

of the three corresponding outer ring scintillators, as shown in Fig. 54.

For a particle traversing the RPD, its energy losses in the inner and in the outer

rings are strongly correlated. This is used to reject electrons coming from the target

as well as part of the low-energy pions. Fig. 55 shows the calculated energy losses for

both protons and pions, and for the minimum and maximum polar angles (50◦ and 90◦)

of the RPD acceptance (see Section 4.3). The area to be rejected is defined using the

two levels of discriminator thresholds in both rings. The coincidence of low-threshold

signals for upstream and downstream PMTs of the inner (outer) ring is denoted by

ALow
i (BLow

j ), where i and j are the respective scintillator elements. Similarly, the

coincidence of the two high-threshold signals is denoted by the superscript “High”.

The trigger logic function for recoil protons has the following expression:

RPD =

12
∨

i=1

ALow
i,down ∧

2i+1
∨

j=2i−1

(

ALow
i BHigh

j ∨AHigh
i BLow

j

)

. (3)

Here, the signals from the downstream PMTs of the inner ring, ALow
i,down, are used to

minimise the time jitter with respect to the beam trigger. The trigger logic is set to

reject the electrons that cross both rings as well as pions that cross ring A but leave

less than few MeV in ring B. In Fig. 55, the region rejected by the proton trigger is

indicated by the shaded area.

In order to be able to measure the time-of-flight of all recoil protons, irrespective

of their velocities, a large time window of 50 ns is required for the coincidence be-

tween any of the inner-ring downstream PMTs with the geometrically allowed outer-

ring PMTs. The trigger logic function (3) is implemented in a single FPGA module

that is fed by the logic signals from all PMTs of the RPD.
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7.4. Multiplicity Trigger

The multiplicity triggers were built to extend the measurements to events with mo-

mentum transfers −t smaller than −t < 0.07GeV2/c2 that are outside the acceptance

of the proton trigger. It uses the multiplicity counter to estimate the charged-particle

multiplicities in the beam region or tag events with at least one (or two, see Table 5)

track at large angles.

The multiplicity counter (Fig. 56) consists of 12 trapezoidally shaped scintillator

slabs with a central hole of 20mm diameter. It covers the charged-particle acceptance

of the spectrometer at 1.7 m, which projects to a disk with a radius of 310mm. The

light is read out by one photomultiplier per slab. The counter was upgraded in 2009

with a scintillator disk with a diameter of 32mm, which is centered at the hole and

is read out by two photomultipliers. In order to minimise photon conversion in the

active area, all scintillators have a thickness of 3mm, which corresponds to 0.71% of

a radiation length. The photomultipliers for the inner disk are connected through an

83 cm long air light guide made of a tube skeleton of 15µm aluminised Mylar inside a

150µm thick plastic coating.

The two components of the multiplicity detector, the outer and the inner counters,

are used to build two independent triggers, MT1 and MT2. The MT1 multiplicity

trigger requires one hit or more in each element of the outer multiplicity counter. For

this purpose, the threshold per element is set to reject noise only, thereby selecting

charged particle multiplicities of one or larger. A logical OR of all elements is then

used as the trigger signal. The MT2 multiplicity trigger requires an energy deposit

corresponding to 1.6 MIPs10 or higher in the inner counter. Data were also taken in

stricter conditions for both MT1 and MT2. For MT1 this was achieved by using a

multiplicity logic instead of the logical OR, thereby selecting events where two or

more slabs of the outer counter are hit. For MT2 a higher energy deposit equivalent to

2.5 MIPs was required to select multiplicities of three or larger. These conditions enrich

events that have final states with higher multiplicities and therefore higher masses.

7.5. Calorimeter Trigger

The calorimeter trigger selects high-energy photons detected by ECAL2 within

12 × 12 cells, whereby 8 cells surrounding the beam hole are excluded, as depicted

in Fig. 57. The trigger logic is implemented in the existing ECAL2 readout module

described in Section 6.3.1. At the first stage, FPGAs mounted on the MSADC cards

detect a signal and extract, on a cell-by-cell basis, amplitude and time information. The

time information is obtained using a digitally implemented constant fraction algorithm.

In order to achieve good time resolution and clean up noise, signals below 800MeV are

rejected at the cost of a small uncertainty of the measurement of the total amplitude. At

a later stage, time and energy calibrations are applied. The sum of the time-correlated

energies in a selected region of cells is compared with a programmable threshold. The

achieved precision is σ = 4.97GeV for a 60GeV threshold, determined by fitting an

error function, as shown in Fig. 58. The main contributions to this precision are the

10minimum ionising particle
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Figure 56: The multiplicity counter. All dimensions are in mm.
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Figure 57: The active area of the ECAL2 trigger (shown in dark grey). The cells shown in light grey are

rejected due to high rates.

accuracy of the per-channel thresholds and the preliminary calibration constants used

in the trigger system. The overall time resolution could be reduced to about 1 ns by

digital signal processing, as illustrated in Fig. 59.

7.6. Physics Triggers

The final physics triggers are summarised in Table 5 together with their typical

rates. A standard physics trigger is generated by a combination of the beam trigger, the

veto system, and one of the specialised triggers described above.

The diffractive trigger (DT0) is the main physics trigger for spectroscopy data tak-

ing. Based on the proton trigger, it selects events with recoiling protons from the target.

Besides the low angle cut-off of the beam killers, DT0 introduces only a minimum bias

on the angular acceptance of forward particles.

The ”low-t” triggers, LT1 and LT2, are especially important for measurements with

solid-state targets. In this case, the recoil proton has to pass dense material that can lead

to large uncertainties due to multiple scattering or protons stopping in the material.

This means that for heavy targets the DT0 trigger is not as efficient as for the hydrogen

target. Therefore, a large part of the solid-state target data is recorded with prescaled

LT1 and LT2.

The Primakoff trigger (Prim1) uses the calorimeter trigger with a 60GeV thresh-

old. A secondary Primakoff trigger (Prim2) is based on a calorimeter trigger with a

threshold of 40GeV and a prescaling factor of two. Its purpose is to monitor the Prim1

trigger threshold.

The kaon trigger (KT) makes use of the CEDAR detectors in the beam line, which

are set to detect beam kaons (see Section 3.3). Signals from both CEDARs need to
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Figure 59: Time resolution of the CFD algorithm for a representative cell in the centre and signal amplitudes

above 800 MeV.
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Table 5: Overview of trigger subsystems, vetos and physics triggers used for data taking.
Trigger subsystem Logical composition

Beam trigger (BT) SciFi1 ∧ beam counter

Beam killer veto beam killer 1 ∧ beam killer 2

Veto Sandwich ∨ veto hodoscopes ∨ beam killer

Proton trigger see Eq. 3

Multiplicity trigger MT1 1 (later 2) el. of outer ring counter

Multiplicity trigger MT2 amp. inner disk > 1.6 MIPs (later 2.5 MIPs)

Calorimeter trigger
∑

12×12
cell amplitude > threshold

CEDAR trigger CEDAR1 multiplicity ∧ CEDAR2 multiplicity

Physics trigger Logical composition Rate / 10 s spill

Diffractive trigger DT0 BT ∧ proton trigger ∧̄ veto 180k

Low-t trigger LT1 BT ∧ MT1 ∧̄ veto 370k (140k)

Low-t trigger LT2 BT ∧ MT2 ∧̄ veto 620K (260K)

Primakoff trigger Prim1 BT ∧ calorimeter trigger (> 60GeV) ∧̄ veto 260k

Primakoff trigger Prim2 BT ∧ calorimeter trigger (> 40GeV) ∧̄ veto 450k

Kaon trigger KT BT ∧ CEDAR trigger∧̄ veto 30k

be present for the trigger in order to maximise its purity. It is used as a kaon-enriched

beam trigger for luminosity monitoring via K → 3π decays and for systematic studies.

Further auxiliary triggers are set up for monitoring purposes, systematic studies and

alignment purposes (see Section 9.2). They include an additional beam trigger with a

transverse acceptance of 3.9× 3.9 cm2, which is required for the alignment procedure.

The Veto Inner trigger and Halo triggers make use of the hodoscope veto system to

detect straight halo tracks for muon data taking, which is utilised in the alignment

procedure, as well.

All inputs to the trigger system and the signals of the individual sub-triggers and

triggers themselves are monitored with TDCs and scalers. In addition, the individual

signals of the multiplicity counters are monitored by sampling ADCs.

8. Data Acquisition

The COMPASS data acquisition system (DAQ) has been designed to cope with high

trigger rates and large data flow. For data taking with hadron beams both interaction

rate and particle multiplicity per interaction are higher than for a muon beam, making

these requirements even more important. The DAQ is based on a pipelined architecture,

which was fully implemented for the 2008/2009 data taking. It is complemented with

a Detector Control System (DCS), which permanently monitors all parameters relevant

for the operation of the setup. The general structure of the COMPASS DAQ and DCS

systems were described in Ref. [1]. In this section their main characteristics are shortly

reviewed; only the most important improvements and modifications are discussed.

8.1. General structure of the COMPASS data acquisition system

For typical hadron beam intensities of up to 5 · 107 particles per spill, the various

COMPASS triggers combine to a total trigger rate of more than 30 kHz. The overall

number of electronic channels is larger than ∼ 250 000, and the generated event size

has a mean value of 40 kB. Accordingly, a data rate of up to 1.2 GB/s is acquired during

the 9.6 s long SPS spill. When averaged over a typical SPS accelerator ‘supercycle” of

42 s (duty factor of 23%), these data generate a flow of about 270MB/s. Note that as a
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Figure 60: Trigger rate versus event size. The COMPASS DAQ system is compared to several

large-scale experiments. The comparison is done for first-level (L1) triggers or their equivalent.

function of the actual SPS accelerator usage, the length of the supercycle may change

by several seconds. As a consequence, the instantaneous data flow of the COMPASS

readout system must be able to reach peak throughput values of up to 350MB/s. In

comparison with other large-scale experiments, the COMPASS data acquisition system

operates with relatively moderate event sizes, but features high trigger rates (Fig. 60).

The DAQ system is controlled by the Trigger Control System (TCS). The TCS

synchronises the elements of the front-end electronics by providing a common low-

jitter system clock of 38.88 MHz, an encoded trigger signal, and event identification

information. More than 150 data concentrator modules (called readout-driver modules

in Ref. [1]) receive this information and distribute it further to the front-end cards. The

system has a star-like network topology implemented using optical network elements

and passive splitters. The system clock is used for front-end pipeline data processing

and time measurements.

The overall structure of the COMPASS DAQ system is shown in Fig. 61. The

detector signals collected by the front-end electronics are digitised in either TDC or

Sampling ADC (SADC) cards. The data coming from the digitisation cards are then

transmitted to the concentrator modules through a HOTLink interface [40]. Two types

of concentrator modules were specifically developed for the COMPASS detectors:

CATCH and GeSiCA, including a more recent version, called HotGeSiCA. All mod-

ules are housed in VME crates. Spill and event numbers, reference clock and synchro-

nisation signals are provided to the concentrator modules by an optical link coming
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Figure 61: Overview of the COMPASS DAQ system. Data coming from the detectors are first

digitised in the front-end cards and then merged in the concentrator modules, either CATCH

or GeSiCA(HotGeSiCA). The data from the concentrator modules are first sent to the Readout

Buffers and then transmitted to the Event Builders. The data are temporarily saved on disk,

before being migrated to the Central Data Recording facility.
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from the TCS. The HOTLink interface is also used to transmit this information to the

front-end cards.

Each 9U CATCH module [41] houses four CATCH mezzanine cards (CMC) that

receive detector signals coming from Micromegas, scintillating fibres, wire chambers,

and hodoscope detectors. The CATCH firmware merges the data from the mezzanine

cards and transmits them to the central readout buffer computers through a S-LINK

optical link [42].

For detectors with low occupancies the data of up to 4 CATCH modules are mul-

tiplexed by an S-LINK MUX card before being transmitted to the readout computers.

The S-LINK MUX card houses one S-LINK source card and is mounted on P3 con-

nectors on the backside of a VME crate.

The 9U GeSiCA modules can read up to four 12-channel GEM or Silicon SADC

cards. The more recent 6U version named HotGeSiCA is also able to read SADC,

MSADC, and APV data from the RICH and PixelGEM detectors. Although smaller

in size, the HotGeSiCA module has eight RJ45 or optical HOTLink ports, instead of

four for GeSiCA. In addition, the HotGeSiCA module can be equipped with 500 MB

of memory and a HOTLink output interface for cascading HotGeSiCA modules and

concentrating the data from up to 64 front-end cards. This readout scheme is used for

the Rich Wall detector (see Fig. 36). Similar to the CATCH modules, the GeSiCA

and HotGeSiCA modules send data through a S-LINK interface to the readout buffers,

while the information coming from the TCS receiver is transmitted to the front-end

electronics through a HOTLink connection.

The DAQ system is composed of two main types of computers, called Readout

Buffers (ROB) and Event Builders (EB). All computers run Linux operating system

(see Table 6). Each ROB is equipped with up to four spill-buffer PCI cards. The PCI

cards collect the information from the corresponding concentrator modules via S-LINK

optical fibres. The data are temporarily stored in a daughter SDRAM card of 512 MB

or 1 GB memory during the spill, before being fully transmitted to the computer. All

ROBs are connected to all EBs through a Gigabit Ethernet interface. The role of each

EB is to build a complete event using the information from all the ROBs, to split the

data into files of 1 GB each (chunks), and to store these files on its internal disks. In

addition, the EBs run an on-line filtering software used for both data filtering and data

quality monitoring. The software used for the data acquisition is the DATE acquisition

framework [43], developed for the CERN experiment ALICE.

From the EBs disks, the data files are transferred to the CERN computer centre into

the CASTOR hierarchical storage system [44]. Files are copied to CASTOR disk pools

by multiple TCP/IP streams through a 10GB/s optical link and then stored to tapes. Up

to 20TB of data per day can be stored on tape when the experiment is running.

8.2. Trigger rate and dead time settings

In order to achieve high trigger rates with reasonable dead times, several improve-

ments of the data acquisition chain were necessary. The dead time, as defined by the

Trigger Control System, depends on three minimum time intervals. These are: the time

interval between two consecutive triggers, the time interval for three successive trig-

gers, and the time interval for ten successive triggers. During data taking with a muon

beam these values were set to 5, 75 and 250µs, respectively.
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Figure 62: Data acquisition dead time for three different TCS settings, as measured as a function

of the attempted trigger rate. The settings used in 2008/2009 are shown in triangles.

For data taking with hadron beams, the minimum time between two consecutive

triggers was decreased to 3µs. Smaller values were prevented due to a noise correlated

with the previous trigger and appearing on the front-end cards of the MWPC detectors.

The minimal time interval for no more than three triggers was set at 30µs. Smaller

values could lead to an overflow in the TDC multi-event buffer. A third minimal time

interval is required by the internal buffer of the APV chip, which can store up to 10

events. This time is set according to the speed of the analogue output signal sent by

the APV chip to the SADC cards. Analogue values are sent by the APV chip at a

frequency of 20MHz, corresponding to a digitisation time (including overheads) of

21µs per event. More than 200µs are then necessary to read ten events, justifying the

250µs limit. Dedicated tests have shown that in the future the ten events interval can

be reduced to 125µs if the APV read-out frequency is increased to 40MHz and the

SADC card firmware is modified accordingly.

Figure 62 shows a comparison between the dead times resulting from the different

trigger settings. The improvement of the time interval for three triggers results in a

significant decrease of the dead time. For the nominal hadron data taking trigger rates

of 30 kHz the new settings generate a dead time of 15% instead of 28%.

8.3. DAQ hardware and database architecture

The COMPASS DAQ system operates with a large number of hardware (Table 6)

and software components, which are controlled through various parameters. These

parameters are produced by on-line processes, operator entries, slow-control of the

detectors, or result from specific run conditions. Together with other monitored quan-

tities, such as trigger rates, run and spill information, they are stored in several MySQL

[45] and Oracle [46] databases.
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Table 6: Summary of the COMPASS data acquisition hardware, as used in 2009. Dual and quad-core

processors are indicated in the parenthesis near the processor name. Both memory and disk sizes are given

in GB.

Service Nb Processor Memory size Disk size

Event builders 12 Xeon, 3 GHz (×2) 4 1100

8 Xeon, 2.5 GHz (×4) 4 5600

Read-out buffers 5 Xeon, 2 GHz (×4) 4 500

8 Xeon, 3 GHz (×2) 4 250

16 Pentium-3, 866 MHz 1 18

File servers 2 Xeon, 3 GHz (×2) 4 1100

Gateways computers 2 Pentium-4, 3 GHz (×2) 2 82

Database servers 3 Xeon, 3 GHz (×2) 4 1100

Run control 4 Pentium 4, 3 GHz (×2) 2 82

Front-end CPUs 26 Celeron, 336 MHz 0.256

The front-end configuration database incorporates all information relevant to the

front-end modules and processors. The logbook database collects a large number of

experimental parameters and operator comments relevant for a specific data-taking pe-

riod, usually defined as a run. Parameters that are likely to change more frequently,

such as beam information, beam line settings, scalers and some monitoring values, are

stored in a spill database. The DATE configuration database is used for the description

of the on-line computers (ROBs, EBs, FSs,..) as well as for parameters relevant for

the data acquisition. This database also includes the configuration of the on-line filter

software. Another database, called DATE message log database, collects all process

logs and messages.

The 130GB of data from all MySQL databases are hosted on two physical servers,

synchronised through a master–master replication. Clients connect to the database

through a virtual address pointing to a third server. The third server runs a MySQL

Proxy software [47] that monitors the communication between the client and the database.

Besides the proxy, the third server also hosts a web server Apache [48] and a mon-

itoring service (Nagios) [49]. The web service provides interfaces to run logbook,

database administration programs, and diagnostic tools. Nagios monitors the availabil-

ity of database servers and the state of replication.

A specific database table is used for the Detector Control System (DCS), e.g. for

monitoring of ECAL1 and ECAL2 modules. On the other hand, read-out values of pa-

rameters obtained by the DCS independently are copied to a dedicated database table.

Full MySQL database backup is being executed regularly, whereby the binary log

that is created during the replication is regarded as incremental backup. Furthermore,

the databases are periodically replicated into the CERN computer centre.

8.4. Detector Control System

The Detector Control System (DCS) [50] collects data from the various detectors,

hardware devices, and data acquisition elements with programmable reading cycles.

For the COMPASS experiment the actual cycle times range between 2 seconds and

30 minutes. It provides a user-friendly interface, which is used to set remotely most
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parameters relevant for operating the experimental setup. When predefined conditions

are met, namely if monitored values go beyond predefined thresholds or settings, it

displays on-line warnings and alerts in the user interface, sounds acoustic alarms in the

control room, notifies predefined recipients by SMS and email and, when necessary,

switches off sensitive detector channels. All values and alerts are stored in a centralised

Oracle database with a frequency of typically few minutes per monitored parameter.

Queries on the database are executed regularly for storage of data, or on demand.

The DCS architecture consists of three layers: the supervisory layer, the front-ends

layer and the devices layer. The supervisory layer of the DCS is based on a com-

mercial SCADA system (Supervisory Control and Data Acquisition), PVSS-II [51],

adopted by CERN. On top of PVSS-II, a package of software tools called Joint COn-

trol Project (JCOP) Framework [52] is also used. Developed at CERN, this package is

specific for high-energy physics applications. The front-ends layer includes the drivers

necessary for the hardware devices and provides the communication protocol between

the supervisory layer and the devices layer. The devices layer comprises all hardware

elements and sensors.

The system is flexible enough to easily incorporate new detectors and monitored

parameters. For the data taking with hadron beams in 2008/2009, a number of new

detectors were included in the system: RPD, Sandwich veto, Multiplicity Counter,

Beam Killers, Beam Counter, PixelGEMs, liquid hydrogen target, and the new Silicon

detectors with their cryogenic devices. In addition, the monitoring of the CEDARs and

the two electromagnetic calorimeters was considerably improved.

New high voltage and low voltage channels and VME crates were used and inte-

grated in the DCS for the hadron data taking. They are monitored and controlled by

OPC or DIM servers [53; 54], with which they communicate by use of the CAN11 and

CAENet field buses [55].

The monitoring of CEDAR parameters (pressures, temperatures, HVs and motors)

is done via a DIP server maintained by CERN [56]. The ratio of the pressure to the tem-

perature is calculated for every spill. If the value is found outside the appropriate range,

a warning signal requesting a correction of the CEDAR gas pressure is generated.

The monitoring of the two electromagnetic calorimeters required a substantial ex-

tension in the number of monitored channels, namely 1500 for ECAL1 and 3068 for

ECAL2. Between spills, the calorimeter modules of ECAL1 and ECAL2 are flashed

by a laser and LED light pulses, respectively (see Section 6.2.2 and Section 6.3.2).

The DAQ on-line filtering software collects the responses from all modules, calculates

the average amplitudes for each spill, and stores them in the conditions database. The

DCS reads them, compares them to the reference values, and defines its state of alert.

The voltage and the current of the powering system of ECAL1 and ECAL2, the power

supply of the LED monitoring system and the status of the laser of ECAL1 were added

to the list of controlled parameters.

The monitoring of the liquid hydrogen target and of the cryogenic system of the

Silicon detectors is done using a dedicated Programmable Logic Controller (PLC) and

a control system. Pressures, temperatures, vacuum gauge values and liquid levels are

11Controller Area Network. ISO standard 11898, see e.g. www.iso.org.
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Figure 63: Implementation of supervision, front-end and device layers of the Detector Control System.

transmitted to the DCS using a MODbus [57] server.

The data generated by the DCS are temporarily saved on a local disk whose con-

tents are transmitted to a centralised CERN Oracle database with a cycle of a few

seconds. Parameters that are relevant for the physics analysis are regularly copied to a

COMPASS MySQL database or are provided to users as ROOT trees or ASCII files.

9. Event Reconstruction and Detector Performance

The main reconstruction software is called CORAL (COmpass Reconstruction and

AnaLysis); it is detailed in Ref. [1]. CORAL outputs mDST (“mini Data Summary

Trees”) files that contain reconstructed events and information related to the detectors.

The mDST files are organized in tree-like structures based on the ROOT [58] package.

The information stored in the mDST is analysed using a dedicated software called

PHAST (PHysics Analysis Software Tool). Besides accessing the mDST data, PHAST

provides an environment for physics analysis and includes tools for mDST creation,

further data processing and filtering. The event reconstruction in CORAL comprises

all detectors except the RPD and the CEDARs, which are included at the PHAST level,

i.e. during the mDST processing stage.

This section describes the tracking method, the detector alignment procedure, and

the vertex reconstruction technique used in the analysis. It gives also details on the

analysis flow for detectors introduced into or upgraded for the hadron setup, namely

for RPD, RICH-1, CEDARs, and ECALs.

9.1. Track Reconstruction

The track reconstruction software reconstructs trajectories of charged particles,

thereby determining such properties as their momentum and total radiation length tra-

versed. It uses the measurements from the tracking detectors and combines them with

the description of the magnetic fields and material distribution in the setup. For the

material distribution the ROOT geometry package [59] is used. The included detectors
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are all tracking detectors, trigger hodoscopes and the beam telescope (SciFi and Sili-

con detectors before the target in Fig. 3). Prior to the reconstruction process, a time cut

relative to the trigger time is applied to all hits.

The track finding algorithm is subdivided into two steps. First, it searches for

straight track segments in the zones that are free of strong magnetic field or of large ma-

terial thickness. In these zones the particle trajectories can be approximated by straight

lines. In a second step, called “bridging”, the straight track segments from different

zones are combined over dipole magnets and hadron absorbers. In order to account for

the deviation from a perfect straight line, as caused by fringe fields and multiple scatter-

ing, an iterative approach is used with progressively wider search roads. This approach

is motivated by the idea of first solving the case of the straighter tracks, which have

higher momenta, and turning to the more difficult case of the lower-momentum tracks

only after the hits used in the first iterations have been removed from the search proce-

dure. This scheme still yields many ghost tracks, particularly in the later iterations that

have wider “roads”. To filter these out, candidate tracks are checked against a lookup

table of all tracks within the accessible phase space, which was produced in a dedicated

MC simulation.

The track fitting procedure is based on a Kalman filter [60]. It comprises the treat-

ment of multiple scattering, which is based on a prior estimate of the track momentum.

A “forward” fit, which starts from the most upstream tracking plane, gives the best esti-

mate of the track parameters in the plane of the detector with the last hit. A “backward”

fit, which starts from the most downstream tracking plane using the same hits, gives

the best estimate at the first hit. A process combining the results of the two fits, which

is known in the Kalman formalism as “smoothing”, is used to determine the local best

estimate at any position along the track. For each of these estimates, the procedure also

determines the uncertainty in terms of the covariance matrix of the parameter vector.

Outlier detection and elimination as well as the resolution of left/right ambiguities in

drift detectors are also done within this framework.

For the data taken with hadron beams, the sequential three-step structure of straight

zone track finding, bridging and fitting was adapted to the high rate. A search for

straight track projections in the vertical plane spanning several zones of the spectrom-

eter is attempted at an early stage. A re-evaluation of the hit patterns is undertaken

after bridging, once the momenta are fairly well known and the number of competing

candidate tracks is reduced. These modifications improve the tracking through the drift

chambers that are located in high fringe fields around the SM1 magnet and in the Sil-

icon vertex detectors that are placed in the close vicinity of the target and are densely

packed with hits.

The event reconstruction was further improved by allowing some update of the

track information after vertex reconstruction (see Section 9.3). If the weighted mean

time of the hits associated to the incident particle of a primary vertex deviates from the

trigger time more than expected by statistical fluctuations, in the order of a few ns, the

latter is re-evaluated. After correcting it and updating the hits in the drift detectors, the

tracks are either refitted or the search is restarted from scratch.

For the evaluation of the performances of the tracking package, a GEANT3-based

simulation of the COMPASS setup is used, as described in Section 10.1. The evaluation

is based on criteria of association, reconstruction, and reconstructibility. A track is
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associated to a MC particle if more than a fraction f of the hits originate from this

particle. Here, pions decaying into muons are considered the same single particle. A

MC particle is declared reconstructed if a track fulfilling some ad hoc requirements

can be associated to it. Not reconstructible (or not worth to be reconstructed) are those

particles that fall outside the acceptance or are not relevant for the physics process

being under study. In the examples presented below, the fraction f is set at 75%, only

primary particles are considered, the reconstructed tracks must be bridged over one or

both magnets and must originate from the primary vertex.

Several MC samples were evaluated, corresponding to different final states of the

COMPASS hadron programme. They give similar performance values. As an ex-

ample, Figs. 64, 65 show the results for the case of the dissociation of 190GeV/c
pions on a hydrogen target into five charged pions with an invariant mass in the range

1GeV/c2 ≤ M(5π) ≤ 4GeV/c2. This process was selected, because it has a larger

angular coverage compared to other processes.

The efficiency is defined as the ratio of number of reconstructed reconstructible

particles over the number of reconstructible ones. With the criteria defined above, this

corresponds to the fraction of primary particles reconstructed with momentum and con-

nected to a vertex. The efficiency represents the combined performance of all involved

detectors of the reconstruction software: a particle may fail to be reconstructed because

it decays, re-interacts, re-scatters, because of inefficiencies of the trackers or because of

deficiencies of the algorithm. In order to isolate the contributions of the software, the

efficiency that an ideally performing algorithm would reach is computed in a special

mode by exceptionally making use of the Monte Carlo truth information. The usual

track finding steps are bypassed and the track hit patterns are determined instead by

accumulating hits along the known trajectories of the generated particles up to a point

where multiple scattering or reinteractions become dominant. The overall efficiency is

then factorised into this ideal efficiency characterising the setup and a software contri-

bution. The two factors, as well as their product, are shown as a function of momentum

in Fig. 64. While beyond 10GeV/c the overall efficiency is nearly flat, it starts to de-

crease below that value. The software contribution is stable at 95% down to about

1.5GeV/c.
The momentum resolution is obtained from the statistical distribution of the mo-

mentum residual for the reconstructed sample. The distribution is first binned as a

function of the momentum, and in each bin it is fitted with a double Gaussian and the

average standard deviation is taken as the resolution. This is done for particles bridged

over SM2 (and possibly also over SM1), those bridged over SM1 only, and those only

tracked in the fringe field of SM1. The latter have a very poor resolution, but can

nonetheless be useful to reject unwanted final states. The simultaneously obtained an-

gular resolution is dominated by the contribution from multiple Coulomb scattering in

the target material (5% X0 in case of the liquid hydrogen target).

9.2. Alignment procedure

In order to achieve the optimal reconstruction performance, a precise knowledge

of the position and orientation in space of the more than 200 tracking detector planes

of the COMPASS spectrometer is mandatory. In many cases, the geometrical survey

of the experimental setup does not reach a precision that is comparable to the spatial
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Momentum (GeV/c) 

0 20 40 60 80 100 120 140 160

P
/P

) 
(%

) 
  

∆(
σ

0

0.5

1

1.5

2

2.5

3

3.5

P
/P

) 
(%

) 
  

∆(
σ

F
ri

n
g

e 
fi

el
d

 

0

5

10

15

20

25

SM1 fringe field

SM1

SM2

Figure 65: Relative momentum resolution as a function of track momentum. The standard deviation of

the reconstruction error is shown for tracks deflected by the SM2 magnet alone or by both SM1 and SM2

(squares), by the SM1 magnet alone (circles) and for those deflected by the fringe field of SM1 only (trian-

gles, right scale).

71



Time (h)

0 5 10 15 20 25 30 35 40 45

m
)

µ
P

o
si

ti
o
n
 c

o
rr

ec
ti

o
n
 (

-5

0

5

10

15

20
SI01U
SI02U
SI03U
SI04U
SI05U

Temperature

C
)

°
T

em
p
er

at
u
re

 (

20

22

24

26

28

30

32

Figure 66: Run-by-run alignment correction applied to the silicon detector positions and correlation with

ambient temperature.

resolution of the detectors. It is used as the starting point for an alignment procedure,

which uses a sample of reconstructed tracks. The whole procedure is done in three

steps with different sets of data. Each step is repeated until the corrections become

negligible compared to the detector resolution.

The first step uses data recorded with a muon beam with the spectrometer magnets

switched off. Therefore, straight trajectories can safely be assumed and all spectrom-

eter arms including the beam telescope contribute to the reconstruction of a particle

track. In order to reach a broad illumination of all spectrometer parts, these data are

recorded with a widely defocused muon beam and by using both beam (see Section 7.1)

and veto counters (see Section 7.2) as trigger. The alignment is performed by minimis-

ing the total χ2 of all tracks in the sample, keeping four detector planes (GM04XY,

GM10XY) fixed. For these pivotal points, the positions determined by an optical sur-

vey of the experimental setup has to be used in order to keep the coordinate system

fixed in space. For all other planes, corrections for a translation along the measured

coordinate, a rotation around the beam axis, and the effective pitch are introduced.

The effective pitch takes into account a possible inclination of the detector plane with

respect to the beam axis. The position along the beam axis is normally fixed to the

position determined by the geometrical survey; a fit is only attempted if the residual

distribution with respect to the beam axis of a given plane indicates a possible problem.

The minimisation is done by the Millipede program [61], which analytically inverts a

large but sparsely populated matrix.

For the second step of the procedure, the detector planes downstream of the target

are aligned with the spectrometer magnets switched on. The magnetic field not only

shifts the positions of the mechanical support of some detectors, but also influences the

internal processes of charge propagation in gaseous detectors. The effect is strongest

for some of the small-area trackers in the fringe field of SM1 (MM03 and GM01),

where the Lorentz-force acting on drifting and amplified charges results in an apparent

translation of the detector planes of up to 400µm. For these detectors, a correction in

form of an effective shift is applied, since the distortion is uniform over the active area

of the respective detector within the spatial resolution.
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Figure 67: Distribution of scattering angle of the outgoing pion vs the position of primary vertex along the

beam axis from Primakoff data, illustrating the improvement of the vertex resolution between (left) standard

alignment and (right) run-by-run alignment. The structures correspond to interactions in the different targets

used in the measurement (see Table 3) and in the first Silicon station downstream of the targets.

As the third step, the beam telescope upstream of the target is aligned with respect

to the spectrometer that is kept fixed in space. This step is essential to optimise the

reconstruction of vertices in the target. As a result, a primary vertex is reconstructed

for up to 90% of the triggered events.

The alignment of the tracking stations is completed by a separate procedure for the

silicon stations to fully exploit their high resolution. For these stations, displacements

of up to 50µm were observed, which are caused by variations in the temperature of the

support structure. Therefore, a separate alignment for the silicon micro-strip telescope

was produced for each run to account for these variations. As an example, Fig. 66

shows the corrections applied to the five silicon tracker stations in the horizontal plane

as a function of time. The effect of this time-dependent alignment on the resolution is

illustrated in Fig. 67 for the distribution of the scattering angle vs. the vertex position.

For the events with Primakoff kinematics, in which the one outgoing track has a a very

small scattering angle, the improvement is substantial. The background can therefore

be reduced by a considerable fraction. As a result the distribution in Fig. 67 (right)

matches the simulation, in which a perfect alignment is assumed (see Fig. 89 in Sec-

tion 10.1).

The calorimeters are aligned with respect to the tracking detectors by using a sep-

arate procedure that associates charged particle tracks with signals in the calorimeters.

Residuals are computed between the expected impact point of the track and the re-

constructed shower position in the calorimeter. The calorimeter positions are adjusted

accordingly in the plane transverse to the beam.

9.3. Vertex Reconstruction

The vertex reconstruction uses as input the charged tracks reconstructed in the spec-

trometer and in the beam telescope (see Section 9.1). Only two kinds of vertex topolo-

gies are considered: primary vertex and secondary vertex. The former designates the

association of one beam track with any finite number of spectrometer tracks, whereas

the latter corresponds to a combination between two oppositely charged tracks with a

common origin.
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Tracks are fed into the vertexing procedure as vectors of parameter estimates and

their corresponding covariance matrices. Only tracks with momentum are accepted.

Also, a cut is applied on the difference of the track times for the incoming and outgoing

tracks, except for those reconstructed only in drift detectors.12

The contruction of a primary vertx is achieved in an iterative procedure that starts

with the set of all tracks compatible with a given beam track and progressively removes

outliers using an inverse Kalman filter. This procedure is prone to failing if the initial

set of tracks contains a large number of fakes, because the preliminary estimate of the

vertex position may then be too far from the truth. A recovery mechanism is therefore

applied in order to reconnect one by one tracks that were unduly discarded. The overall

procedure provides a good vertex-finding efficiency (see Fig. 64).

The vertex resolution for the hadron setup is is found to be significantly better

than that of the muon setup described in [1]. The improvement is due to the reduced

multiple scattering in the thinner targets employed with the hadron beam, as well as to

the use of precise silicon microstrip detectors at both ends of the targets. For example,

on the 5π sample already used to evaluate the tracking performances and for fully

reconstructed 5π final states, the resolution along the beam axis varies from 0.75 to

4.7mm, depending on the 5π invariant mass, while the resolution across the beam

axis lies in the 13 to 16 µm range. The vertex resolution achieved is illustrated in

Fig. 67 for a single charged particle final state. Similarly, Fig. 68 shows the system of

nuclear targets described in Section 4.2 as reconstructed for a three-particle final state.

The sixteen lead and tungsten targets are all clearly separated. Thanks to the good

resolution, the various details of the liquid hydrogen target are distinctly visible in the

two-dimensional xy and xz distributions shown in Fig. 69 and Fig. 70.

Secondary vertices are reconstructed again using the Kalman filter for any pair of

oppositely charged tracks that satisfy a cut on the minimum distance of approach. Any

track can thus be associated with several secondary vertices and the primary vertex.

Reconstructed neutral particles can then be tested against different particle hypotheses

and the neutral particles can again be combined with other charged tracks to study

heavier hadrons (see Section 10.1).

12For each reconstructed vertex, the output comprises its Cartesian coordinates and the list of its associated

particles together with their reduced track parameters at the common origin, which encode only directional

and momentum information.
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9.4. Recoil Particle Detection

The 12 PMTs of the inner ring and the 24 PMTs of the outer ring of the RPD (de-

scribed in Section 4.3) provide information about the integrated charge and a set of

time hits. Each possible combination of upstream and downstream PMTs is used to

determine a coordinate along the longitudinal direction of the scintillator and the time

at which the particle crossed it. Hits are discarded if their reconstructed position is out-

side the fiducial dimensions of the scintillators with a safety margin of 20 cm. Recon-

structed hits for the inner ring elements are associated to hits in the three corresponding

outer ring elements to form tracks. For each track, the momentum is determined from

the time of flight using the proton mass hypothesis and the calculated position of the

hits. The track is extrapolated backwards to the vertex that is reconstructed using the

beam track and the tracks of the scattered particles. A correction on the momentum is

determined by accounting for the amount of the material crossed by the recoil particle.

After reconstruction, a set of RPD tracks is available for event selection and physics

analysis.

The calibration of the RPD is done using proton-proton elastic scattering events.

The impact point of the scattered proton in the scintillator and its momentum can be

predicted from the kinematics of this reaction. Matching of measurement and predic-

tion allows for tuning the position offsets on each individual counter and the global

offset of the RPD position in the COMPASS reference system. The correlation of the

predicted longitudinal vertex position and the one determined using the information

from the RPD is shown in Fig. 71. The momentum calibration is done by adjusting

time offsets between each possible pair of scintillators in ring A and ring B. The en-

ergy loss is calibrated using the features of the energy loss distribution as a function of

the velocity of the proton. The maximum in the energy loss distribution is adjusted to

agree with a Monte Carlo simulation (see Fig. 15). For the inner ring, the corresponding

distribution does not show the rising part seen in Fig. 15, hence the maximum energy

loss ∆E is used for calibration.

For elastic pp scattering, the correlation (difference by 180◦) between the azimuthal
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Figure 73: Momentum transfer correlation between the recoil proton detected in the RPD and the scattered

proton detected in the spectrometer.

angles φSpec determined from tracking the scattered proton in the spectrometer and

φRPD measured on the recoiling proton with the RPD is shown in Fig. 72. The value

of the corresponding resolution, of about 80mrad, is a consequence of the 24-fold

segmentation of the outer ring barrel and the multiple scattering encountered by the

recoiling particle in the target. The measured momentum transfer |t| as determined

from forward and from RPD tracks is presented in Fig. 73. A clear correlation between

the two measurements over the covered range of momentum transfer is observed.

9.5. RICH-1

The separation between the different hadron types in RICH-1 is illustrated in Fig. 74,

where the Cherenkov angles for reconstructed rings are shown as a function of the par-

ticle momenta. The four clearly visible bands correspond to electrons, pions, kaons

and protons. For comparison, the same picture for the N2 radiator (see Section 6.1.2)
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Figure 75: Cherenkov angle for reconstructed rings

as a function of the particle momentum for the N2

radiator.

is shown in Fig. 75. In this case, the Cherenkov angle at saturation reaches only

24.5mrad, a value that is about a factor of two smaller than the corresponding value

for the C4F10 radiator.

The particle identification (PID) efficiency was evaluated on samples of pions and

kaons from the decay of φ and K0
S mesons, respectively. The PID relies on an extended

maximum-likelihood method. For each particle, different likelihood functions corre-

sponding to the relevant mass hypotheses are computed and then compared. The likeli-

hood function parametrises the photon distribution taking into account both the photons

emitted by the considered particle (the Cherenkov signal) and the photons emitted by

other particles in the event (the background). For the background parametrisation, the

map of the integrated hits (see Section 6.1) in the photon detector is used. The PID

probabilities (efficiency and mis-identification probabilities) are shown in Fig. 76 as

a function of the particle momentum. The efficiency is larger than 90% in the re-

gion below 30GeV/c, where the Cherenkov angles for different mass hypotheses are

well separated. Correspondingly, the mis-identification probabilities are close to zero.

Above 30GeV/c, the Cherenkov angle starts to saturate, and as a consequence the ef-

ficiency decreases and the mis-identification probability increases. Moreover, the high

momentum region corresponds to small polar angle values, and thus to a region with

larger hadron multiplicity in the events.

9.6. CEDARs

As detailed in Section 3.3, two CEDARs are used to select the particle type in

the hadron beam. Beam particles can be identified by requiring a minimum number

of hits in the eight PMTs attached to each of the two detectors. For protons, this

method achieves high efficiency and purity due to the good separation of proton and

pion rings as discussed in Section 3.3. On the other hand, an online efficiency for kaon

identification of only 35% is obtained using hit multiplicities, which is due to the large

beam divergence and the small difference between kaon and pion ring radii. In the

offline analysis this efficiency increases to 48% for physics events with a vertex in the

target.

For measurements with negative hadron beams both CEDARs are set on kaon iden-

tification, requiring good kaon efficiency. In order to further improve the kaon iden-
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Figure 76: Identification efficiency and mis-identification probabilities as a function of the particle momen-

tum for (left) a pion sample and (right) a kaon sample.

tification, a different method was developed for offline analysis. It is based on beam

particles reconstructed in the beam telescope before the target and makes use of the

response of each PMT individually to improve PID for particles that do not travel par-

allel to the CEDAR optical axis. In a first step, the response of the PMTs for kaons and

pions is determined as a function of the horizontal and vertical angles between track

and CEDAR optical axis, θx and θy . These angles are obtained from tracks measured

in the beam telescope, which are traced back to the CEDAR position using the known

beam optics.

A clean kaon sample is obtained from data taken with the CEDAR kaon trigger

plus a beam trigger by selecting decays of beam kaon into three charged pions K− →
π−π+π− outside the target region. The probability for a kaon to produce a signal in

one of the photomultipliers is:

P(θx,θy)(signal|K) =
Number of beam particles with signals in PMT

Number of beam particles in kaon sample
. (4)

In order to identify a particle, the probability is needed that a signal is produced by a

kaon. This probability can be calculated using Bayes’ theorem:

P(θx,θy)(K|signal) =
P(θx,θy)(signal|K) · P(θx,θy)(K)

P(θx,θy)(signal)
. (5)

Here, P (K) and P (signal) are the probabilities to have a kaon with (θx, θy) in the

beam and to get a signal from any beam particle with (θx, θy), respectively. Similar

equations hold for a pion sample, which is obtained using diffractive production of

three charged pions on liquid hydrogen, π−p → π−π+π−p.

Since the beam divergences for pions and kaons are the same, the probabilities

P(θx,θy)(K) and P(θx,θy)(π) can be dropped together with the common P(θx,θy)(signal).
The only quantities needed are the probabilities (Eq. (4)) for kaons and pions to produce

a signal in a PMT. In order to avoid regions with low statistics, a cut (θ2x + θ2y)
1/2 <

200mrad is applied to the data before further analysis. As an example, the probability

distributions P (signal|π) for all eight PMTs of CEDAR 2 are shown in Fig. 77. The

insets in the centre of the figure illustrate the position of a pion and a kaon ring rela-

tive to the PMT positions for θx = 0 and θy = 0 (left) and for θx > 0 and θy = 0
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Figure 77: Dependence of P (signal|π) on θx (horizontal) and θy (vertical) for the eight PMTs of CEDAR 2

(arranged according to the CEDAR geometry). The range for both angles is from −250µrad to 250µrad.

The insets in the centre illustrate the position of a pion (dashed line) and a kaon (full line) ring relative to the

PMT positions for θx = 0 and θy = 0 (left inset) and for θx > 0 and θy = 0 (right inset).

(right). No pions are expected to be detected for θx = 0 and θy = 0 as the detector

was set on kaons for the negative beam (left inset in Fig. 77) yielding photon rings for

pions larger than the diaphragm. However, PMT hits are expected when the photon

ring intersects with the diaphragm due to beam divergence. As an example, pion and

kaon photon rings with positive θx are shown in the right inset. The photon ring from

the pion illuminates the PMTs on the left side, thus reducing the kaon identification

efficiency.

Using the probabilities for all PMTs, the log-likelihood for a beam particle being a

kaon is calculated according to:

logL(K) =
∑

signal

logP(θx,θy)(signal|K) +
∑

no signal

log
[

1− P(θx,θy)(signal|K)
]

, (6)

where the first sum only counts photomultipliers with a signal and the second sum only

those without a signal. A corresponding equation holds for the log-likelihood for a

beam particle to be a pion. Figure 78 shows the distribution of logL(K) vs. logL(π)
for (a) the kaon and (b) the pion sample, while (c) shows the results for an unbiased

beam sample. The intensity in (c) reflects the beam composition, namely that the kaon

component is nearly two orders of magnitude smaller than the pion component.

Kaons and pions are identified requiring a certain difference between logL(K)
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Figure 78: Values for the log-likelihoods function for different samples obtained from CEDAR 2 calculated

for (a) the kaon sample, (b) the pion sample and (c) an unbiased beam sample. The line indicates logL(π) =
logL(K).

and logL(π). The particle is identified as kaon If logL(K) > logL(π) + A, and as a

pion if logL(π) > logL(K) + B. In all other cases no PID is given. The likelihood

differences A and B are chosen by optimising purity and efficiency simultaneously.

A good balance between high efficiency and high purity is achieved for the choice of

A = B = 1.

In order to determine the purity of the CEDAR identification, the reactions π−p →
K−K0

S p and K−p → π−K̄0
S p are used. Due to conservation of strangeness, the

incoming hadron is tagged by the outgoing hadron. The K0
S and K̄0

S are reconstructed

using the two-pion invariant mass distribution. The negatively charged outgoing par-

ticle is identified using RICH-1 information. After selecting incoming kaons with the

CEDAR, its purity is determined by the ratio of identified pions in RICH-1 divided by

the total number of identified particles. Thus the kaon purity p(K) is given by

p(K) =
NRICH(π)

NRICH(K) +NRICH(π)
. (7)

The purity for pions is obtained in the same way.

In order to determine the efficiency for pions and kaons, their numbers as obtained

from the CEDARs are divided by the respective numbers of pions and kaons assuming

the known beam decomposition (see Section 3.1). The values for kaon efficiency and

purity are given in Table 7.
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Table 7: Efficiencies and purities for the likelihood method (A = B = 1) in comparison with the multiplicity

method. Only statistical errors are given.

Kaon efficiency Kaon purity

Multiplicity method (48.4± 0.2)% (86.9± 0.9)%
Likelihood method (80.3± 0.4)% (85.4± 0.9)%

The kaon identification efficiency is improved by almost a factor of two for the

likelihood method in comparison with the multiplicity method when applied offline,

while the corresponding purities are nearly identical. With the multiplicity method

pion identification is not possible as the pressure was adjusted for kaon identification

for the data taken with the negative hadron beam. The likelihood method allows for

pion identification as well. The values obtained for pions are similar to those obtained

for kaons.

In the analysis of Primakoff data, the CEDAR information is needed for an effi-

cient kaon rejection. Using an optimisation of the likelihood method described above,

pions are identified with an efficiency higher than 95%, while the kaon component is

suppressed by more than a factor of 20.

9.7. Electromagnetic calorimeters

Event reconstruction in ECAL1 and ECAL2 is performed by using time and signal

amplitude information as directly extracted from the SADC samples. The signal am-

plitude for each module is converted into energy applying conversion coefficients that

were derived from the electron beam calibration. The variation of the amplitudes over

the data taking period is accounted for by using the information provided by the Laser

and LED monitoring systems. Details about signal extraction, electron calibration, and

data monitoring are given in Section 6.2.

The energy calibration of each module is further improved by using the data derived

from an analysis of the π0 → γγ decay process. The π0 calibration is performed

prior to the final data reconstruction on a fraction of the collected events. The two

decay photons are singled out after having defined clusters of deposited energy and

performed fits based on the definition of a shower profile. During the final data analysis,

additional corrections are applied according to the specific data set, namely diffractive

dissociation or Primakoff scattering.

9.7.1. Clusters and showers

For both ECALs, the event reconstruction consists of associating an energy deposit

in one or several adjacent modules to a single incident particle. A set of energy de-

posits that is assumed to originate from a single particle is called in the following a

shower; the full energy deposit and hit position of the particle are calculated from it. In

many cases, two or more showers overlap and form a cluster. Thus precise knowledge

of the shower profile facilitates the separation of overlapping showers. In addition, it

improves spatial and energy resolutions and limits the impact of inefficient or noisy

cells. Clusters of two or more particles can result from electromagnetic showers initi-
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ated in the material upstream of the ECAL or from decay photons that hit the ECAL at

a distance smaller than the lateral shower size.

The data analysis procedure starts by defining a cluster of neighbouring modules, in

which the deposited charges are larger than a pre-defined threshold (see Section 9.7.3).

The cluster is then split into showers employing a parametrisation for the lateral spread

of the shower profile [62]. The shower parameters for the lead glass and Shashlik

modules are determined using electrons from a dedicated calibration beam (see Sec-

tion 3.2). For Primakoff data taking in which mainly high-energy photons are detected,

no electron beam with the corresponding energy is available. The shower parameters

are therefore derived using single photons from real data events.

9.7.2. Shower profile

The shower profiles used in the reconstruction are based on an empirical cumulative

function, as defined in [62]. If the energy deposited by a shower is projected onto a

transverse axis with the shower center at 0, the fraction of the total shower energy

accumulated between −∞ and a position x on this axis can be described by:

F (x) =
1

2
+

1

π

∑

i

ai · arctan
x

bi
. (8)

In addition to providing a good description of this ratio, Eq. 8 is conveniently re-

lated to the energy deposited in each module [62]. Up to three contributing shower

components (denoted by the index i) are summed up, with parameters ai and bi de-

scribing the relative weight and width of each component, respectively.

In order to obtain the shower profile parameters, the following procedure is applied.

A column-wise calculation of the ratio of the energy accumulated so far over the total

energy of clusters, taking the simple centre-of-gravity as the central position, yields a

distribution that is fitted with the cumulative function Eq. 8 describing the shower. This

is illustrated in Fig. 79 (left), which represents the fraction of the total energy deposited

up to a particular column at a given distance from the shower center. The fraction of

the total energy deposited in a column as a function of its distance from the shower

center is shown in Fig. 79 (right).

This concept can be extended to two dimensions. In this case, the ratio between the

accumulated energy up to a point (x,y) and the total energy of the shower is given by:

F (x, y) =
1

4
+

1

2π

∑

i

ai ·
(

arctan
x

bi
+ arctan

y

bi
+ arctan

x · y
bi
√

b2i + x2 + y2

)

.

(9)

The first two terms account for the ratio along x and y projections, while the third term

adds an asymmetry along the diagonal.

Different sets of parameters are used for each module type. In ECAL1 the same

profile with three contributions is used for all modules. The parameters were obtained

for the GAMS-2000 spectrometer [62]. Since COMPASS makes use of the same lead

glass modules, the parameters are unchanged.

In ECAL2, the profiles of both lead glass and radiation-hardened lead glass mod-

ules are described by two contributions, with parameters derived from the electron
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Figure 79: Shower reconstruction: (left) fraction of total shower energy collected from −∞ up to a particular

distance from the shower center (Eq. 8); (right) fraction of the total energy deposited in a column as a function

of its distance from the shower center.

beam calibration. For the Shashlik modules, the profile consists of three contributions.

The corresponding parameters are obtained from Primakoff data events that contain a

single high-energy cluster. In both cases it has to be assumed that a cluster contains

only one shower.

The two-dimensional ratio defined in Eq. 9 is used to calculate the relative energy

deposited by a shower at the position (uj , vj) in each module:

Gj (x, y) = F (uj +∆, vj +∆)− F (uj +∆, vj −∆)

− F (uj −∆, vj +∆) + F (uj −∆, vj −∆) . (10)

Here uj = Xj − x and vj = Yj − y are local coordinates relative to the cen-

tre (Xj ,Yj) of each module, j denotes an index over all modules and ∆ is half the

transverse size of a module.

9.7.3. Clustering and shower reconstruction

In a first step, signals from adjacent modules are combined to form a cluster. Start-

ing from the first module not yet used in the cluster, each of the (vertical, horizontal, and

diagonal) neighbours is checked for a measured energy above a threshold of 100MeV
for ECAL1, and of 200MeV for ECAL2. For each new module added to the cluster,

its neighbours are treated the same way.

In a second step, a fit of the shower profiles to the cluster data is performed. The fit

improves the spatial resolution of the calorimeter and separates overlapping showers.

The fit is first done with a single shower. Further showers are added one by one with a

new fit being performed after each added shower. The parameters of the first shower are

initialised to those of the module with the highest energy in the cluster and its neigh-

bours. The energy is set to the sum of the energies of those modules, the position and

time are set to the mean of the respective information weighted with the energy of each

of those modules. When adding more showers, the module searched is the one with

the largest relative discrepancy between its measured energy and the energy predicted

to be deposited by all showers fitted to the data so far. The centre of the new shower
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candidate must be located at a distance larger than
√
2/2 times the module width from

the centre of the nearest shower. A difference in energies is also required: the central

module of the new shower must contain at least 20% of the energy deposited by all

other showers in this module. If such a module is found, the information it provides

together with the information from the neighbouring modules is used to initialise the

parameters of a new shower.

According to Eq. 10, the energy deposited by a shower of energy ei at impact point

(xi,yi) in a module at position (Xj ,Yj) can be calculated as:

Epred
j,i = ei ·Gj (xi, yi) . (11)

As several showers might be fitted into the same cluster, the total energy of all

showers in the module is given by:

Epred
j =

∑

i

Epred
j,i =

∑

i

ei ·Gj (xi, yi) . (12)

In addition to the energy, the time information is also used. The time ti of a shower

is defined as the mean value of the times of all modules contributing to the shower,

weighted with the energy deposited in each module. Similarly to the predicted energy

deposit in a block, the predicted time is calculated as:

T pred
j =

∑

i

ei ·Gj (xi, yi)

∑

i ei ·Gj (xi, yi) · ti
∑

i ei ·Gj (xi, yi)
. (13)

The predicted energy and time are compared to the measured energy Emeas
j and

time Tmeas
j in each module. The Minuit fitter from the ROOT package [58] is used to

optimise the shower parameters to maximise the likelihood:

− logL =
1

2

∑

j







(

Emeas
j − Epred

j

)2

σ2
j,E

+

(

Tmeas
j − T pred

j

)2

σ2
j,T






. (14)

The errors on the measured energies σ2
j,E and times σ2

j,T (Fig. 49) are calculated

from an energy dependent parametrisation that has been determined from data before-

hand. With this procedure the fit distinguishes between in-time showers and pile-up

events.

The procedure of trying to add a new shower is stopped if the fit describes the data

well or if the maximum number of showers in a cluster has been reached. The decision,

whether the last shower added improves the fit, is based on a comparison of the log-

likelihood normalised to the number of degrees of freedom. It is also checked that all

showers have energies above the energy threshold and that they fulfill the requirements

on the distance between two showers described above.

This fitting procedure returns the energy ei, the position (xi, yi) and the time ti of

each shower fitted into a cluster.

The number of modules contributing to the total shower energy reaches 5 × 5 for the

highest energy photons. A cluster may contain from one to six showers, the distribution

varying as a function of the beam intensity and the trigger conditions. Figure 80 (left)
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Figure 80: ECAL2 fit results for (left) number of modules per cluster and (right) number of fitted showers

per cluster.

shows the distribution of the number of modules in one cluster (cluster size) in ECAL2

for the diffractive dissociation data. The number of reconstructed showers per cluster

is shown in Fig. 80 (right).

For ECAL1 a simplified version of the procedure described above is employed.

For the larger MAINZ and OLGA modules, an improvement of the performance by

using shower profiles was not found. Each module with a deposit larger than that of

any of its neighbours is used as a starting point for a new shower. Energy and position

of this module are used to initialise the parameters of the shower. If larger than the

energy threshold, the information contained in the neighbouring modules is then used

to improve the position of the shower by calculating its centre of gravity.

9.7.4. Calibration with π0 → γγ decays

The π0 calibration procedure is performed, prior to the final analysis, using a frac-

tion (equivalent to 1 to 2 days of data taking) of the physics events. The reconstruction

of the incident and outgoing particle tracks is required, with a definition of a primary

interaction vertex. Only showers with energies Eγ larger than 1GeV for ECAL1 and

3GeV for ECAL2 are taken into account. Showers associated with charged tracks are

discarded. In order to minimise combinatorial background, only events with less than

5 showers are used.

The two-photon invariant mass Mγγ is calculated for every pair of showers, as-

suming that both photons originate from the interaction vertex. Only pairs with in-

variant masses within ±50MeV/c2 around the nominal π0 mass, Mπ0 , are considered

as valid π0 candidates. For each of two showers, a two-dimensional histogram Eγ vs

(Mγγ − Mπ0) is filled, which is associated with the shower’s central module. The

central module is defined as the module which contains the highest fraction of the de-

posited energy. The values stored in the two-dimensional histograms are used as a

starting point for the calibration procedure.

For most ECAL modules a slight energy dependence is observed, as illustrated

in Fig. 81 (left). However, various types of unusual behaviours may also be present,

e.g. as the one shown in Fig. 81 (right), which resuls from a saturated photomultiplier

tube. The variations are accounted for by introducing correction factors that depend on

the photon energy. The correction factors are calculated in energy slices of 2 GeV. In
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Figure 82: Difference ∆M between reconstructed and nominal π0 masses in ECAL2 for (left) before cali-

bration and (right) after calibration.

each slice the spectrum is fitted with a Gaussian for the π0 peak and with a first order

polynomial for the background, in an interval of ±20MeV/c2 around the π0 peak. The

results of the fits are displayed in Fig. 81 as black crosses; its horizontal and vertical

tick marks represent the 3σ fit error and the bin size, respectively. The fitted mass

differences are then used to calculate the correction factor αi for each energy slice i,

αi =
1

(1 + ∆Mi

M
π0

)2
, (15)

where ∆Mi is the fitted mass offset. The correction factor for each module is calculated

assuming that the energy of the second decay photon is measured precisely. Since this

is not the case, the π0 calibration is done iteratively, each iteration adding corrections to

the result from the previous iteration. Typically, after 8 to 10 iterations the procedure

converges. The result is a significant improvement of the π0 mass resolution and of

the π0 mass offset, as shown in Fig. 82. After calibration, the mean value of the peak

position shifts from 9.0MeV/c2 to 0.0MeV/c2. The mass resolution improves from

7.6MeV/c2 to 4.6MeV/c2.

The calibration significantly improves the response of the individual ECAL2 mod-
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ules, as illustrated in Fig. 83. A similar improvement is observed for ECAL1. For

most modules, the reconstructed pion mass after calibration agrees within less than

1MeV/c2 with the nominal π0 mass for π0 energies up to 160GeV.

The resulting calibration is used to correct the individual module responses dur-

ing the event reconstruction procedure. The precise value of the correction factor α,

which corresponds to the actual energy deposited in each module, is determined by

interpolation.

9.7.5. Additional corrections

Additional corrections, which are evaluated independently for the different data

sets, are applied on top of the shower fit result. For the diffractive dissociation data, the

reconstructed energy E as measured in a Shashlik module for an electron is compared

with the corresponding charged track momentum p. A position dependence of the

ratio p/E is then observed, as indicated in Fig. 84. This dependence reflects slight

inefficiencies in the vicinity of the four central rods. It is accounted for by using the hit

position as determined by the shower fit.

The photons detected in the calorimeters cover an energy domain that extends from

less than 1 GeV for ECAL1 to more than 120 GeV for ECAL2. The measured cluster

times for both ECAL1 and ECAL2 show a slight energy dependence, mainly for low

photon energies. This dependence, which is always smaller than 1 ns, is fitted to the

data and accounted for.

9.7.6. High-energy photons

For photon energies above 80 GeV, the kinematics of the Primakoff-Compton reac-

tion, π− + (A,Z) → π− + γ + (A,Z), constrain the detected photons to the central

4 × 4 ECAL2 modules. The energy deposited in these modules must be accurately

determined, even for values as large as 95 % of the beam energy. With the π0 calibra-

tion alone this cannot be achieved. For higher energies a different method is applied.

During the Primakoff data-taking period, muon beam data for systematic studies are

periodically collected. These data also contain Primakoff-Compton events with photon

energies nearly as high as the beam energy. Moreover, since the Beam Momentum Sta-

tion (BMS) is present in the beam line, the muon incident momentum is known. Since

the scattered muon momentum is also measured, the energy conservation (exclusivity)

in the process provides an independent prediction of the energy of the emitted photon.

The comparison with the actual ECAL2 measurement based on the π0 mass calibration

exhibits a slightly falling slope as a function of the photon energy, as shown in Fig. 85.

This trend does not only depend on the photon energy but also on the actual hit

position within the Shashlik modules. The observed dependence is fitted with a three-

dimensional function that includes both intra-cell coordinates and the shower energy.

The correction reaches values of up to +7GeV and −12GeV, as shown in Fig. 86. The

major part of this correction is due to the steel rods that tie the Shashlik stack together,

as previously explained in Section 9.7.5. During data taking with a pion beam, the BMS

is removed and no measurement of the incident pion momentum can be performed. It

is assumed that the corrections to the ECAL2 calibration for muon and pion beams

are identical. This assumption is supported by the data itself; after applying the above

intra-cell corrections, both the position and the standard deviation of the exclusivity
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peak with a pion beam improve, similarly to the improvement achieved with a muon

beam. Fig. 87 illustrates the effect of these corrections on the central modules of

ECAL2.

9.7.7. Efficiency of photon detection

The efficiency for the reconstruction of single photons is defined as the fraction

of photons that originate from the target reconstructed in one of the calorimeters. It

thus includes effects of geometric acceptance for photons like dead material, and the

intrinsic performance of the calorimeters related to thresholds, etc. The reconstruc-

tion efficiency is evaluated by a Monte-Carlo procedure using diffractive events for the

π−π0π0 channel (see Section 10.1) with 0.1 < t′ < 1.0GeV2/c2. The thresholds ap-

plied correspond to those in the analysis of physics data (0.6GeV for ECAL1, 1.2GeV
for ECAL2).

Figure 88 shows the single-photon reconstruction efficiency as a function of pho-

ton energy, and as a function of the photon direction in the laboratory system. The

single-photon reconstruction efficiency is rather uniform at a level of 60% for photon

energies above approximately 5GeV. However, the acceptance strongly depends on

the direction of the photon. In the centre a drop due to the beam hole in ECAL2 can

be seen at ∆y/∆z = 0 and ∆x/∆z = 0.005. The circular shape overlapping with

the hole is attributed to photons lost in the beam pipe of RICH-1. Further outside, at

∆y/∆z ≈ ±0.02, the shadow of HCAL1 and SM2 on ECAL2 is visible as a horizon-

tal line, while the vertical lines at ∆x/∆z ≈ ±0.04 stem from a non-perfect overlap

of ECAL1 and ECAL2. A general trend of lower acceptance towards outer regions is

also visible, which is caused by the loss of photons with an energy below the ECAL1

threshold.
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10. Monte Carlo simulation and performance of the setup

The interpretation of physics processes that involve hadron beams and several par-

ticles in the final-state particles requires a thorough understanding of the experimental

setup. This requirement can only be achieved through a realistic simulation of the ap-

paratus and a detailed knowledge of its acceptance as function of any of the kinematic

variables that are relevant in a particular physics process. The Monte-Carlo code used

to describe the setup and to determine its acceptance is described below. It is followed

by a selection of characteristic experimental results, for each of the two beam polarities

and for various particles in the final state. All results were obtained with the nominal

hadron beam momentum of 190GeV/c.

10.1. Monte Carlo simulation and acceptance

The simulation of the COMPASS setup is performed using a dedicated Monte-

Carlo (MC) code called COMGEANT. The code can be linked to external event gener-

ators specific to the reaction mechanism that is dominant in a given channel. Final-state

particles are then propagated through the setup. The digitisation of the MC data and

the subsequent reconstruction are carried out with the same software that is used for

reconstructing the measured events.

Three different event generators are used to simulate diffractive reactions, central

production, and Primakoff reactions. The partial-wave analysis method employed for

diffractively and centrally produced n-body final states takes into account the accep-

tance of the apparatus using Monte-Carlo pseudo data, where the final-state hadrons

are distributed isotropically in the n-body phase space. In addition to the decay phase

space, the generators also simulate the production kinematics. Diffractive events are

generated with a t′ distribution that is tuned to the data. The central-production gen-

erator [63] simulates exponential t′ distributions for both beam and target vertices.

For Primakoff-Compton scattering, the generator calculates differential cross sections

with contributions due to polarisability, first-order Compton vertex corrections, and

soft photon emission [64].

For all generators, the beam phase space spanned by the positions and angles of the

incoming particles is generated using parametrizations extracted from real data. Since

the incident energy is not measured, it is reconstructed from the kinematics of fully

exclusive events. Interactions in the target volume are distributed in the target material

according to the target positions. Primary interactions of the beam particles in materials

and detectors surrounding the target are not generated.

Scattered and secondary particles are propagated through the spectrometer by the

simulation code COMGEANT, based on GEANT 3.21 [65]. Multiple scattering, en-

ergy loss, shower development, and secondary interactions are taken into account. This

includes interactions of electrons and photons with detector material and creation of

electromagnetic showers by these particles. Additional physics processes like hadron

interactions and in-flight decays are also taken into account. Furthermore, pile-up

events due to two or more particles occurring in the same time window can be gen-

erated.

The digitisation of the simulated events is performed in CORAL (see Section 9.1).

Dead and active materials along the tracks are accounted for with the ROOT geome-
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Figure 89: Monte Carlo simulation of the Primakoff-Compton reaction, showing the reconstructed position

of the primary vertex along the beam direction as a function of the scattering angle of the outgoing pion.

Note that interactions outside the target material are not simulated.

try package [59]. Charged-particle tracks are reconstructed from the simulated hits in

the tracking detectors using the same procedure as for the real data (see Section 9.1).

Detector properties such as efficiencies and resolutions are implemented in the recon-

struction software using information from the experimental data. For RICH-1, the

purity and efficiency of the detector are determined from the measured events and sep-

arately unfolded from the simulated data. For the electromagnetic calorimeters, shower

profiles are extracted from the ECAL MC data, and a π0 calibration is performed as

for real data (see Section 9.7). The RPD information is passed directly to the PHAST

physics analysis software.

An example of the good MC description achieved for the Primakoff-Compton re-

action is shown in Fig. 89 for the reconstructed primary vertex as a function of the pion

scattering angle. A qualitative comparison with Fig. 67 (see Section 9.3) shows that the

agreement between MC and data is good. Background effects, e.g. from interactions

with the detectors downstream of the target, are minimized by applying selection cuts

identical to those used for the specific physics process.

Other observables relevant for the Primakoff-Compton reaction are discussed in

Section 10.2. The momentum distributions of the electromagnetic component for pion

and muon interactions with a solid target are well reproduced by the MC simulations

(see Fig. 97). The π−π+π− decay of the K− mesons in the beam, a process used

for flux normalisation, is accurately simulated as illustrated by the momentum transfer

distributions in Fig. 96.

The MC simulation of the photon reconstruction efficiency for channels with final-

state photons is validated by comparing the acceptance-corrected particle decay yields

for different decay channels. For example, the resulting branching ratios of ω →
π−π+π0 and ω → π0γ agree within 5% with the PDG values.

The acceptance of the apparatus is determined by comparing the reconstructed and

generated MC events. In the Partial Wave Analysis (PWA) formalism employed for

diffractive scattering, the full multidimensional acceptance for a given final state is

used. For example, in three-body analyses (like π−π+π−) for fixed four-momentum

transfer and three-body mass the acceptance depends on five kinematic variables. The
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Figure 90: Acceptance for the diffractively produced π−π+π− final state (left) as a function of the 3π
invariant mass and (right) as a function of the polar angle of the π+π− isobar in the Gottfried-Jackson

frame.

acceptance determined by the simulated phase-space events is then used as an input to

the fits performed in the PWA formalism.

For the purpose of illustration, the acceptance for a particular variable can be de-

termined by projecting the multi-dimensional acceptance onto this variable. In Fig. 90,

the acceptance for the π−π+π− final state of diffractive dissociation is evaluated in the

t′ range between 0.1 and 1GeV2/c2. It is a fairly flat function of the invariant three-

pion mass from near threshold up to 2.5GeV/c2 and of the polar angle of the π+π−

isobar in the Gottfried-Jackson frame (see definition in Section 1).

More pronounced modulations of the acceptance are observed for channels where

one or several final-state particles are identified by the RICH-1 detector. The impact

of the particle identification on the acceptance in the K−π+π− channel is depicted in

Fig. 91 for both the Kππ invariant mass distribution and the Gottfried-Jackson angle

of the π+K− isobar. The reduction of the acceptance is mainly due to the limited

momentum range available for kaon identification (see Section 9.5).

Figure 92 shows the corresponding acceptance plots for the π−π0π0 final state.
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Compared to the charged-pion channel, the acceptance for the channel containing neu-

tral pions is smaller and its dependence on the three-pion mass is more pronounced.

The decrease of the acceptance is mainly due to the photon detection efficiency, which

is lower than that for charged particles as photons may get absorbed in passive mate-

rials before reaching the calorimeters. The largest absorption is caused by the beam

pipe of the RICH-1 detector (see Section 6.1), an effect which is mainly important for

forward-going photons. Nevertheless, the detection of four photons smears the effect,

so that the angular modulation of the acceptance remains weak and similar to that of

the charged-pion case.

10.2. Performance of the hadron setup

The performances of the individual detectors and of the reconstruction software

were presented in the previous sections. Here, the main characteristics of the setup are

presented with examples from various physics processes.

10.2.1. Kinematic distributions

The selection of exclusive events with a primary vertex inside the target is a prereq-

uisite for most analyses performed on the data with hadron beams. Exclusive events are

selected by requiring energy conservation and transverse momentum balance between

incoming and outgoing particles. Figure 93 shows the distributions of the difference

between the energy of the outgoing particles and of the incoming beam particle, for the

diffractive dissociation into three charged pions and for the Primakoff pion Compton

scattering. The beam momentum station, which is used to determine the momentum of

each incoming beam particle when operating the muon beam, is removed for hadron

beams in order to reduce the amount of material in the beam. Therefore, the beam en-

ergy is set to the value determined by the beam line settings. In the diffractive process,

the energy of the outgoing pions is combined with the recoil proton energy measured

by the RPD. In the Primakoff reaction, the incident pion energy is shared between the

scattered pion and the emitted photon, whereby the contribution of the target recoil

remains negligible. The widths of the energy balance distributions shown in Fig. 93

are dominated by the momentum spread of the beam particles (see Section 3.1), with
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Figure 93: Energy balance between outgoing and incoming particles for (left) diffractive dissociation with

three charged pions in the final state and (right) for Primakoff scattering.
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Figure 94: Squared four-momentum transfer for

π−π+π− events produced by a pion beam imping-

ing on a liquid hydrogen target, and selected by the

DT0 trigger.
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Figure 95: Squared four-momentum transfer for

π−π+π− events produced by pions hitting a lead

target, and selected by the multiplicity trigger.

a smaller contribution from the finite momentum resolution for charged particles and

also from the finite energy resolution for photons in the case of the Primakoff reaction.

The physics processes studied in COMPASS can be identified via their character-

istic dependence on the reduced squared four-momentum transfer t′, which is calcu-

lated from the four-momenta of the incoming beam particle and the outgoing parti-

cles according to the equations given in Section 1. While Primakoff reactions pro-

ceeding through the exchange of quasi-real photons dominate the cross section at

t′ < 0.001GeV2/c2, diffractive and central production reactions prevail at larger val-

ues of t′. Here we show measured t′ distributions for the different physics triggers

mentioned in Section 7.6.

Figure 94 shows the t′ distribution recorded with the diffractive trigger DT0, de-

termined from events with three charged pions in the final state. The cut at t′ ≈
0.07GeV2/c2 is due to the requirement of a signal in the RPD. The DT0 trigger thus

enhances events with high t′. The small leakage of events with t′ < 0.07GeV2/c2

presumably originates from δ electrons or pions accidentally firing the RPD.

The multiplicity triggers LT1 and LT2 are used to also include events with lower

values of t′, since no recoil proton is required. The corresponding t′ distribution mea-

sured with a pion beam and solid nuclear targets (Section 4.2), shown in Fig. 95, ex-
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Figure 96: Squared four-momentum transfer of reconstructed beam kaons (data points) compared to the

Monte Carlo simulation of purely electromagnetic interaction (solid lines). The dashed line is an exponential

fit, used to determine the resolution.

hibits an exponential increase of the number of events towards low values of t′. In the

first few bins also Primakoff events contribute, in addition to those generated by strong

interaction.

A good resolution on the measurement of t′ is important in order to distinguish

between Primakoff and diffractive scattering. The resolution at very small values of

t′ is determined using the decay of beam kaons into two or three charged pions. For

free-particle decays, t′ is by definition zero, and the measured width of the t′ dis-

tribution, shown in Fig. 96, gives a direct estimate of the resolution. A width of

3.6 · 10−4 GeV2/c2 is obtained from the data, in good agreement with the resolu-

tion from Monte Carlo simulations. At higher values of t′, the resolution can only be

determined from Monte Carlo simulations. A value of 7 · 10−3 GeV2/c2 is obtained

for 0.1GeV2/c2 < t′ < 1.0GeV2/c2, from the simulation of diffractive production of

three charged pions.

For the measurement of the pion polarisability, exclusive π−γ events are selected

from the data sample collected with the calorimeter trigger (see Section 7.5). The left

panel of Figure 97 shows the distribution of the four-momentum transfer |Q| =
√
t′,

chosen here to emphasize its shape at small values. The peak at |Q| ≈ 0.02GeV/c
mainly contains quasi-real photoproduction events. The fact that the interaction is

purely electromagnetic at very low values of t′, which correspond to large impact pa-

rameters, becomes clear when comparing it to the right panel of Figure 97 that shows

the corresponding distribution taken under the same conditions, but with a µ− beam

instead of a π− beam. For the pion beam, the strong interaction dominates at |Q| val-

ues above 0.05GeV2/c2, resulting in typical diffractive structures. The Monte Carlo

simulation, superimposed as solid line in both panels, describes both cases very well.

10.2.2. Mass resolution

The mass resolution of the spectrometer is determined using known narrow states

that are reconstructed in the spectrometer via their decay into neutral and/or charged

particles. Here we show distributions for two-photon decays (π0, η), for decays into

final states with charged particles only (K0
S , φ, Λ, Ξ), and for decays into final states

containing both charged and neutral particles (η, ω, η′, f1).
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Figure 97: Momentum transfer distributions for exclusive (left) π−γ and (right) µ−γ events. The data

(dotted lines) are compared to the MC simulation (solid lines).
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Figure 98: Two-photon invariant mass distribution as measured in ECAL2, in the (left) π0 mass region

and (right) η mass region. The solid curves are fits to the signal and to the background. The values of the

resolution achieved are indicated in each plot.

The invariant mass distributions of photon pairs in the π0 and η mass regions, as

measured by ECAL1 and ECAL2, are shown in Fig. 98. The distributions are obtained

from diffractive interactions of a 190GeV negative hadron beam impinging on a liquid

hydrogen target. Apart from the standard event selection mentioned in Section 10.2.1,

only clusters with energies larger than 0.6GeV in ECAL1 and 1.2GeV in ECAL2

are selected. Energy resolution values of 7.8MeV/c2 and 3.9MeV/c2 are obtained

for the two-photon π0 peaks detected in ECAL1 and in ECAL2, respectively. The

corresponding values for the η meson are 19.5MeV/c2 and 11.7MeV/c2.

Hadrons reconstructed from decay modes that contain only charged particles are

shown in Fig. 99. In an inclusive selection, the following resolutions are obtained:

5.90MeV/c2 for the K0
S , 1.9MeV/c2 for the φ(1020), 1.99MeV/c2 for the Λ and Λ̄

and 2.80MeV/c2 for the Ξ±.

Complex resonance decays with more than three particles in the final state are re-

constructed e.g. by combining a π0 or η in the γγ channel with a neutral pair of pions

(π+π−) leaving the primary vertex. The left panel of Fig. 100 shows the invariant

mass spectrum of the π−π+π0 final state in the ω(782) mass region from central pro-

duction reactions of a proton beam with the liquid hydrogen target. As shown in the

right panel of Fig. 100, selecting the η instead of the π0 gives access to the decays

η′(958) → π−π+η and f1(1285) → π−π+η, which are reconstructed from diffractive
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Figure 99: Reconstructed invariant masses for charged particles in the final state. The peaks shown are

for (top left) K0
S(498), (top right) φ(1020), (bottom left) Λ(1115), and (bottom right) Ξ±. The K0

S , Λ,

and Ξ± particles are produced in inclusive reactions. The dashed curve in the φ(1020) plot is a fit to the

background.
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Figure 101: Dalitz plot for three diffractively produced charged pions after a cut of ±130MeV/c2 around

the π2(1670) mass.

π−p → π−π+π−pγγ events. Deconvoluting the natural width of the ω, a resolution of

the spectrometer of 6.6MeV/c2 is obtained. The natural width of the η′ is negligible,

so the width of the peak directly gives a resolution of 6.1MeV/c2 in this mass range.

Three-body decays of short-lived resonances with correspondingly larger widths

can be studied in Dalitz plots or by using the technique of PWA. A high-statistics

Dalitz plot for the π−π+π− final state (5 · 107 events) is depicted in Fig. 101, where

the invariant mass of the 3π system was required to be within ±130MeV/c2 around

the nominal mass of the π2(1670) resonance. The bands correspond to the decays

π2(1670) → ρπ and π2(1670) → f2(1270)π.

11. Summary

In this paper, a detailed description of the COMPASS experimental setup as used

for the physics programme with hadron beams is given. Operational since 2002, the
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setup was designed for both hadron structure and hadron spectroscopy studies. It makes

use of the various beams available at the CERN M2 beam line, namely positive and neg-

ative hadrons, positive and negative muons, and electrons. The apparatus operates with

beams in the energy range of 100 to 200 GeV and is able to detect charged and neu-

tral hadrons in the final state. Two large-aperture dipole magnets provide wide angular

and momentum acceptances. While the major part of the setup remains essentially un-

changed, its target region is reconfigurable as a function of the specific experimental

programme.

For several years, the COMPASS setup was successfully used with muon beams

and with a large-size polarised target for spin structure studies. After a week of ex-

ploratory data taking period in 2004, an important part of the COMPASS hadron pro-

gramme was conducted in 2008 and 2009. Over the years, several new components

were added to the setup, according to the requirements of the hadron physics pro-

gramme and also to improve the overall performance of the apparatus.

Immediately upstream of the COMPASS setup, two CEDAR detectors were in-

stalled into the M2 beam line. Based on the Cherenkov effect, the CEDARs identify

the hadron beam particle, separating kaons, pions and protons. A new target system,

consisting of either a solid-state target holder or a liquid hydrogen target was built. A

Recoil Proton Detector, surrounding the target, provides access to exclusive measure-

ments. An accurate vertex resolution was achieved by adding nitrogen-cooled Silicon

microstrip detectors upstream and downstream of the target.

Several new PixelGEM detectors were positioned along the setup for particle track-

ing at very small angles. Modified Micromegas detectors were used for tracking imme-

diately downstream of the target in the presence of high hadron fluxes. Two additional

large-size drift chamber detectors were also installed in order to improve the detection

at large polar angles.

Both charged and neutral particle identifications were considerably improved. An

important upgrade of the RICH-1 detector was carried out, resulting in higher efficiency

and increased rate capability. The ECAL1 calorimeter was completed and added to the

setup, while ECAL2 was modified to withstand the high flux in the case of hadron

beams.

The main part of the trigger system was rebuilt for use with hadron beams. Several

new trigger and veto elements such as recoil proton detector, multiplicity counter, and

sandwich veto were added, thereby optimizing the system for diffractive scattering. A

new digital calorimeter trigger was developed for selecting Primakoff reactions. The

data acquisition system was further tuned in order to stand high trigger rates with low

dead time. The detector control system was adapted to include the new detectors and

upgraded with new monitoring features.

All new detectors were successfully included in the full software analysis chain.

The tracking, reconstruction, simulation, and analysis tools were updated and adapted

to the use with hadron beams. The acceptance of the apparatus covers large angular

and momentum ranges and is nearly uniform for all kinematical variables. The overall

characteristics of the setup illustrate its important potential for hadron spectroscopy

studies. Invariant masses of up to 3 GeV/c2 are covered with statistical accuracies

significantly better than in previous experiments. The good energy resolutions achieved

allow access to a large number of meson and baryon resonances. In summary, the
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upgraded COMPASS setup is fully operational for use with the various hadron beams

available at CERN.
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Dear Editors, 

 

Please find attached a corrected version of our paper. The corrected version includes  all the typos 
mentioned by Referee 3, as well as some modifications, following his question about the CEDARs.  

We also take the opportunity to correct two minor mistakes, in Sections 3.1 and 3.3.1, explained 
below. 

Here are the answers to Referee 3:  

Suggested corrections: 

The vertical scale of Fig. 45 is not normalized to the measured value in the beginning ofthe period (of 
one week), as stated in the caption; 

-> ANSWER:  Figure 45 has been corrected.  

The sentence in page 81, lines 1824-1825 is inappropriate since both the purity and the efficiency 
cannot be maximized at the same time. 

-> ANSWER: The sentence on page 81 has been changed to avoid ambiguity. 

Several typos were also found. Most of them are, however, expected to be corrected in the 

type-setting process. 

For examples, 

page  15 line  250: "a a",  
page  16 line  295: "protons",  
page  24 line  491: "are are",  
page  46 line 1017: "the types of PMTs",  
page  49 line 1114: "i.e.",  
page  72 line 1654: " a separate",  
page  82 line 1848: "method method",  
page 101 line 2288: ",or" -> "for"?  
-> ANSWER: Typos have been corrected.  

 

In addition, I have some minor questions/comments on the newly added detectors. 

1) CEDAR 

In Fig. 11, the background due most likely to pions is flat, whereas I naively expect some structure 
around 34.2 mbar/K as seen in Fig. 9, even if off-axis pions have already  been preferentially selected 
by CEDAR1.  

-> ANSWER:  The background below the kaon peak could come from several sources, not only pions.   
The paragraph 3.3.3 that includes Fig.11 was modified accordingly.   

*Response to Reviewers &/or Editor



 

2) PixelGEM 

The boundaries between the sectors in the GEM electrode cause efficiency drops as shown in Fig. 
29. In addition, the boundaries could make the track coordinate measurements  nearby degraded, 
and possibly biased. In particular, those in the first GEM's electrode,  facing the active volume, 
distort the drift field. Is it definitely necessary to divide  the GEM electrodes into five segments for 
protection against discharges?   The central sector in the third GEM's electrode, powered separately 
for reduced gain,  could also affect the coordinate measurements near its boundary. 

-> ANSWER: The sector boundaries indeed cause inefficiencies and local distortions of position 
information due to the bending of field lines, as the referee correctly remarks. In order to minimize 
the effect, the boundaries have a width of 150 um between conductive Cu surfaces and 350 um 
between holes. The central sector requires a separate line between two longitudinal sectors, 
increasing the gap between holes to 550 um. The reduced position resolution is taken into account 
in the recontruction by increasing the uncertainty for hits in the vicinity of sector boundaries. For the 
residual distribution shown in Fig. 27, these effects are included in the second Gaussian distribution 
with larger width, and are thus averaged over. The segmentation of the 10x10 cm2 active area into 5 
sectors was mainly motivated by the goal to minimize the inefficient region in case of a permanent 
short circuit in one of the sectors. In addition, the reduced energy stored in a smaller sector helps to 
further suppress discharges [S. Bachmann et al., NIM A 479, 294 (2002)], although no dedicated 
studies have been performed for the PixelGEM detectors in the particular environment in COMPASS. 
During beam operation, no discharges were observed. 

The text has been modified accordingly (see attached TeX file): 

3) RICH1 

Is it feasible to replace the photocathode of the multi-anode PMT with ultra or super  bialkali for 
further improvement of photo-electron statistics?  Micro-channel plate PMT could be another 
choice. It has excellent timing resolution  and is rather insensitive to magnetic fields, though 
expensive. In addition, it has a  simple response to single photons, in contrast with the double-peak 
pulse height spectrum   characteristic of R7600. 

-> ANSWER:  The MAPMTs can, in principle, be replaced with ultra or super bialkali ones. 
Nevertheless, the number of detected photoelectrons is already very large and an improved 
statistics would have a marginal effect both concerning the measurement resolution and the 
efficiency of the reconstruction algorithm. At the same time, already in the present configuration, 
the probability that two photoelectrons impinging onto the same pad is not completely negligible; 
when two photoelectrons are detected by the same cell there is no statistical advantage: the digital  
electronics in use do not distinguish between 1 and 2 photoelectrons.  

A higher quantum efficiency would increase this effect further and, as a consequence, a larger 
fraction of the detected photoelectrons  would not be of use. 



MCP-PMTs are, of course, an other option, even if (as suggested by the reviewer himself) very 
expensive. This detector type was not mature enough  when the RICH-1 upgrade was implemented 
(2005-06). 

As proven by us in the paper "P. Abbon et al., Nucl. Instr. and Meth. A 616 (2010) 21", the MAPMT 
double-peak pulse height is not a problem at the gain at which we operate the MAPMTs and using 
the read-out electronic chain in operation at COMPASS RICH-1. 

Concluding, the MAPMT system performs very well and, even if other options can be adequate or 
even provide better performance, the present MAPMT-based photon detection system is fully 
satisfactory. 
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