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Abstract 31 

This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal 32 

direct current stimulation (tsDCS) on upper- and lower-limb corticospinal excitability. Yet, 33 

despite studies assessing thoracic tsDCS influences the spinal ascending tract and reflexes, 34 

none assessed the effects of this technique over upper- and lower-limb corticomotorneuronal 35 

connections.  36 

In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial 37 

magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi 38 

(ADM) muscles before (baseline, B), and at a different time-points (0 and 30 minutes) after 39 

anodal or cathodal tsDCS (2.5 mA, 20 minutes, T9-T11 level). In 8 of the 14 subjects we also 40 

tested the soleus H-reflex, the F-waves from AH and ADM before and after tsDCS.  41 

Both anodal and cathodal tsDCS left the upper-limb MEPs and F-wave unchanged. 42 

Conversely, while leaving lower-limb H-reflex unchanged, they oppositely affected lower-43 

limb MEPs: whereas anodal tsDCS increased resting motor threshold ({mean±SEM} 107.33 44 

± 3.3%, increase immediately after tsDCS, and 108.37 ± 3.2% increase 30 min after tsDCS 45 

compared to baseline), and had no effects on MEP area and latency, cathodal tsDCS increased 46 

MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ±22.0% increase 30 47 

min after tsDCS compared to baseline) without affecting resting motor threshold and MEP 48 

latency.  49 

Our results show that tsDCS induces polarity specific changes in corticospinal excitability 50 

that last for more than 30 min after tsDCS offset and selectively affect responses in lower-51 

limb muscles innervated by lumbar and sacral motorneurons. 52 

 53 

Key words: direct current stimulation; spinal cord stimulation; spinal cord; corticospinal 54 

system; tsDCS; tDCS; TMS; motor potentials. 55 
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 56 

Introduction 57 

Transcutaneous spinal direct current stimulation (tsDCS) is a simple, painless and 58 

noninvasive technique for modulating spinal cord function in humans (Cogiamanian et al. 59 

2012; Cogiamanian et al. 2011; Lamy and Boakye 2013b; Priori et al. 2014). tsDCS consists 60 

in delivering a constant direct current (DC) at 1.5-2.5mA over the spinal cord through a pair 61 

of sponge electrodes. The technique induces effects lasting from minutes to hours 62 

(Cogiamanian et al. 2008; Lamy et al. 2012; Lim and Shin 2011; Winkler et al. 2010) and is 63 

well tolerated by subjects. After the first reports (Cogiamanian et al., 2008; Winkler et al., 64 

2010), this non-invasive method for spinal neuromodulation has come into increasingly 65 

widespread use (Cogiamanian et al. 2011; Hubli et al. 2013; Lamy and Boakye 2013b). 66 

Although different settings and stimulation parameters have been used, the “monopolar” 67 

montage (active electrode over the lower thoracic spinal cord, return electrode over the right 68 

arm) reduces the spread of the current towards the higher spinal cord levels or to the 69 

brainstem (Parazzini et al. 2014). Equally important, longitudinal electrical fields, as those 70 

induced by this montage, may have important implications for rehabilitation as they promote 71 

axonal regrowth and prevent fiber degeneration (Hernandez-Labrado et al. 2011). 72 

In earlier research in our laboratory (Cogiamanian et al., 2008), we found that thoracic 73 

anodal tsDCS depresses the cervico-medullary SEP component (P30). tsDCS also modulates 74 

post-activation H-reflex dynamics (Winkler et al., 2010; Lamy et al., 2012) and the flexion 75 

reflex in the human lower limb (Cogiamanian et al., 2011). Further experiments reported that 76 

tsDCS impairs conduction in the ascending nociceptive spinal pathways thus increasing pain 77 

tolerance in healthy subjects (Truini et al. 2011). Cervical spinal DC stimulation increased 78 

upper-limb muscle motor evoked potential (MEP) amplitudes (Lim and Shin, 2011). The 79 

effects induced by tsDCS could arise from the influence of electric field on impulse 80 
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conduction, membrane excitability, GABAergic and glutamatergic transmission (Priori et al. 81 

2014). Whatever the mechanisms, by modulating spinal cord function, tsDCS could provide a 82 

novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in 83 

managing various pathological conditions, including pain, spasticity and movement disorders.  84 

Having more information on the underlying mechanisms is an essential prerequisite 85 

for designing future clinical applications and, more specifically, to understand whether and 86 

how tsDCS influences the corticospinal system would be relevant. Though interesting, the 87 

work of Lim & Shin (2011) on upper limb motor responses cannot rule out possible non 88 

specific effects. Hence, to expand the knowledge about the tsDCS effects on the human 89 

corticospinal pathways, we tested upper and lower limb MEPs elicited by transcranial 90 

magnetic stimulation (TMS) in a group of healthy subjects before and after tsDCS. To 91 

evaluate possible motorneuronal or reflex excitability changes induced by tsDCS we also 92 

tested the F-wave from the lower limb abductor hallucis (AH) and the upper limb abductor 93 

digiti minimi (ADM) muscles and the H-reflex from soleus muscle.  94 

 95 
Materials and Methods  96 
 97 
Transcutaneous spinal DC stimulation (tsDCS) 98 

With participants lying supine on a comfortable couch, tsDCS (2.5 mA, 20 min) was 99 

delivered by a constant current programmable electrical stimulator (HDCStimTM, Newronika, 100 

Italy) connected to a pair of electrodes, one centred over the spinous process of the 10th 101 

thoracic vertebra with the major axis longitudinally placed so that it spanned from 9th to 11th 102 

thoracic vertebrae, and the other above the right shoulder on the deltoid muscle (Cogiamanian 103 

et al., 2008, 2011). Because the tibial nerve arises from L4 to S3 spinal levels that correspond 104 

to 9th to 12th vertebral level, the active tsDCS electrode was placed over lumbar and sacral 105 

motorneurons. tsDCS electrodes were thick (6 mm) rectangular pieces of saline-soaked 106 

synthetic sponge (7 x 5 cm, 35 cm2). We applied current at a density of 0.071 mA/cm2 and 107 
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delivered a total charge density of 85.7 mC/cm2 which is below the threshold values for tissue 108 

damage (Liebetanz et al. 2009; McCreery et al. 1990). The wide electrode surface avoided the 109 

possible harmful effects of high current density. Apart from occasional, transient and short-110 

lasting tingling and burning sensations below the electrodes, tsDCS remained below the 111 

conscious sensory threshold throughout the experimental session. tsDCS polarity (cathodal or 112 

anodal) refers to the electrode over the spinal cord.  113 

 114 

Motor evoked potentials (MEPs) 115 

Transcranial magnetic stimulation (TMS) was delivered by a Novametrix Magstim 116 

200 stimulator (Magstim®, Whitland, Carmarthenshire, UK) through a flat coil (outer 117 

diameter 13.5 cm) in which current flows clockwise (viewed from above). The coil was kept 118 

in a constant position centered over the vertex for both upper and lower limb; for the upper 119 

limb one edge of the coil was slightly tilted towards the hemisphere to be stimulated (Groppa 120 

et al., 2012). Motor evoked potentials (MEPs) were recorded at rest by two standard non-121 

polarizable Ag/AgCl surface electrodes (diameter 10 mm; Technomed Europe®), one placed 122 

over the belly of the abductor digiti minimi (ADM) muscle, and the other on the skin 123 

overlying the first metacarpophalangeal joint of the fifth finger of the left hand; for lower 124 

limbs, MEPs were recorded through one electrode placed over the belly of the abductor 125 

hallucis (AH) muscle and the other on the first metatarsophalangeal joint of the left toe. 126 

Because both ADM and AH have been used in many TMS studies in normal subjects and in 127 

patients (Chen et al. 1998; Nakanishi et al. 2006; Osei-Lah and Mills 2004), and our 128 

laboratory uses both muscles in routine TMS studies, we selected these two muscles for our 129 

experiments. 130 

Stimulation intensity was set at 120% of resting motor threshold (RMT) defined as the 131 

minimum stimulator output that evoked MEPs higher than 50 μV in at least five out of 10 132 
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trials when muscle is completely relaxed (Di Lazzaro et al. 1999; Ni et al. 2007). The 133 

threshold was set differently for each muscle and was analyzed at each time point (B, T0, 134 

T30). However, to compare MEP modifications across time we used the same stimulation 135 

intensity (baseline). A total of ten MEPs were collected at approximately 10 s intervals and 136 

averaged for each time point. MEPs were amplified and filtered (bandwidth 3Hz–3kHz, 137 

Nicolet Viking IV P). Three different variables were measured: RMT (% of stimulator 138 

output), onset latency (ms) and area-under-the curve (mVms) of motor response. RMT was 139 

measured before and after tsDCS, MEP area and latency were measured off-line on the MEPs 140 

averaged from ten sweeps.  141 

 142 

H-reflex 143 

H-reflexes were elicited in eight subjects by delivering 1 ms rectangular pulses 144 

through Ag/AgCl electrodes (10-mm diameter), placed over the left tibial nerve at the 145 

popliteal fossa (inter-electrode distance 20 mm), and recorded from the soleus muscle, 146 

through Ag/AgCl electrodes (10-mm diameter) placed 2 cm apart over the muscle belly. The 147 

leg was fixed, with the hip semi-flexed (~110°), the knee slightly flexed (~150°), and the 148 

ankle in approximately 10° plantar flexion. The current intensity was progressively increased 149 

to obtain H-reflex threshold (defined as the minimum stimulation intensity that evoked 150 

reproducible response higher than 50 uV), maximal H-reflex, and maximal compound muscle 151 

action potential (CMAPmax). To avoid post-activation effects, the tibial nerve was stimulated 152 

at intervals randomly varying between 10 and 20 s.  153 

To define threshold and maximum size of H-reflex, stimulation began at 0 mA intensity and 154 

increased in 1 mA steps up to the intensity eliciting the maximal H-reflex. Signals were 155 

amplified and band-pass filtered (3Hz–3kHz). We measured the H-reflex size (peak-to-peak 156 

amplitude, mV) and we calculated the Hmax/CMAPmax ratio. 157 
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 158 

F-wave 159 

F-waves were elicited in eight subjects with a 25% supra maximal stimulation applied 160 

to the tibial nerve and recorded from the abductor hallucis (AH) muscle, or to the ulnar nerve 161 

and recorded from the abductor digiti minimi (ADM) muscle through a pair of 10 mm surface 162 

Ag/AgCl electrodes in a belly-to-tendon configuration. Tibial-nerve evoked F-waves from the 163 

AH muscle were obtained by 20 stimuli delivered to the left ankle and at an interstimulus 164 

interval of 1 s (1 Hz). Similarly, ulnar F-waves from ADM muscles were elicited by 20 165 

stimuli delivered to the ulnar nerve at the left wrist with an interstimulus interval of 1 s (1 166 

Hz). Subjects were asked to fully relax. To ensure the absence of muscular activity we 167 

recorded the audio EMG feedback from the same muscles used for MEP recording at all time 168 

points. F-wave mean latency (ms), minimal latency (ms), mean amplitude (mV), mean 169 

temporal dispersion (ms) were collected and analysed. The filter setting was 15-1500Hz and 170 

skin temperature at the ankle and wrist was kept above 32°C. 171 

 172 

Subjects and experimental procedure 173 

A group of 14 healthy right-handed volunteers (nine women and five men, mean 174 

[±SD] age 25.6 ± 4.3 years) participated in the study, which was approved by the institutional 175 

review board. Before enrollment, the study protocol was explained to each subject and 176 

informed written consent was obtained. The experimental procedures were conducted in 177 

accordance with the declaration of Helsinki.  178 

Subjects were studied before and after anodal and cathodal tsDCS. Cathodal and 179 

anodal tsDCS in each subject were tested in random order and at least 1 week elapsed 180 

between sessions. The subjects were blinded about tsDCS polarity. Because preliminary 181 

experiments showed that anodal and cathodal tsDCS elicited MEP changes in the opposite 182 
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directions and subjects were unable to discriminate stimulation polarity (as for brain tDCS), 183 

as in previous works (Cogiamanian et al. 2008; Truini et al. 2011), we avoided using sham 184 

stimulation.  185 

Soleus H-reflex, lower (AH) and upper (ADM) limb MEPs and F-wave were recorded 186 

before tsDCS (baseline), immediately after tsDCS offset (T0), and at 30 min after tsDCS 187 

offset (T30); all tests were performed in the same order as we have listed them above. For all 188 

the electrophysiological recordings we chose the left side to avoid any possible modification 189 

on motor response on the right side due to the current flowing through the reference tsDCS 190 

electrode possibly acting on peripheral nerves. During each tDCS session, subjects were 191 

interviewed to assess the general tolerability of the procedure, and were asked to report any 192 

adverse effect, particularly itching, tingling, burning, and pain sensations. 193 

 194 

Data analysis 195 

We analyzed statistical significant changes for the following variables: MEP threshold 196 

(percentage of the maximum stimulator output), MEP area (mVms), MEP latency (ms); H-197 

reflex threshold, H-reflex latency (ms), H-reflex amplitude (µV), and Hmax/CMAPMax 198 

amplitude ratio; F-wave mean latency (ms), minimal latency (ms), amplitude (µV) and 199 

temporal dispersion (ms). All the neurophysiological measures were considered as 200 

independent variables and were analyzed separately. Each variable is expressed throughout 201 

the text as a percentage of baseline values (= 100%), after anodal and cathodal tsDCS, at T0 202 

and T30.  203 

First, to verify the absence of biases due to intra-subject changes across tsDCS 204 

sessions, a t-test was run to compare baseline data for anodal and cathodal tsDCS. Values of 205 

p<0.05 were considered to indicate statistical significance. 206 
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Then, tsDCS-induced changes in each variable were tested with a two-way repeated 207 

measure analysis of variance (ANOVA) (STATISTICA 5.5, StatSoft Inc.) with main factors 208 

‘‘stimulation”, two levels (anodal and cathodal), and “time”, three levels (B, T0 and T30). 209 

Bonferroni corrected t-tests were used for post hoc comparison (p<0.025). Values in the text 210 

and figures are expressed as mean±SEM. 211 

 212 

Results 213 

All participants tolerated the procedure well and none of them reported adverse effects. 214 

Participants occasionally referred a slight tingling or itching sensation below the stimulating 215 

electrodes (not distinguishable between the two polarities) that disappeared within few 216 

seconds or after wetting the electrode sponges.  217 

 218 

tsDCS effects in the lower limb muscles 219 

No differences were found between anodal and cathodal tsDCS in baseline values for 220 

any of the measured variables in the lower-limb muscles. Neither anodal nor cathodal tsDCS 221 

induced changes in H-reflex and F-wave variables (Table 1). 222 

Though MEP latency showed an un-specific effect of time (two-way ANOVA, factor 223 

“time”: p = 0.009) (baseline latency values were in general shorter than latency values at T30 224 

(post-hoc analysis: baseline vs T30 103.53 ± 0.95%, p=0.008), MEP latency was not affected 225 

by tsDCS (two-way ANOVA, factor “stimulation”: p = 0.83), nor by the interaction between 226 

tsDCS and time (two-way ANOVA, interaction “stimulation x time”: p = 0.85). 227 

RMT was affected by tsDCS (two-way ANOVA, factor “stimulation”: p = 0.012; 228 

factor “time” p=0.11; interaction “stimulation x time”, p=0.011). More specifically, after 229 

anodal tsDCS (Figure 1A) RMT increased (post hoc analysis anodal tsDCS: T0A vs. BA: 230 

107.33 ± 3.3%, p = 0.006; T30A vs. BA: 108.37 ± 3.2%, p = 0.002), whereas after cathodal 231 
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tsDCS (Figure 1B and Figure 2A) it remained unchanged (post hoc analysis, cathodal tsDCS: 232 

T0C vs. BC: 96.83 ± 2.3%, p = 0.15; T30C vs. BC: 100.60 ±2.1%, p = 0.8).  233 

MEP area was also modulated after tsDCS (two-way ANOVA, factor “stimulation”: p 234 

= 0.96; factor “time” p=0.78 interaction “stimulation x time”, p=0.008) (Figure 2B): whereas 235 

after anodal tsDCS MEP area failed to change (post hoc analysis anodal tsDCS: T0A vs. BA: 236 

66.09 ±9.1%, p = 0.24; T30A vs. BA: 58.12 ±10.48%, p = 0.13), after cathodal tsDCS MEP 237 

area increased (post hoc analysis cathodal tsDCS: T0C vs. BC: 139.71 ± 12.9%, p =0.018; 238 

T30C vs. BC: 132.74 ±22.0%, p = 0.02).  239 

In conclusion, anodal tsDCS increases RMT whereas cathodal tsDCS increases the 240 

MEP area in lower limb muscles. 241 

 242 

tsDCS effects in the upper limb muscles 243 

No differences were found between anodal and cathodal tsDCS in baseline values for 244 

any of the measured variables in the upper-limb muscles. Neither anodal nor cathodal tsDCS 245 

induced changes in F-wave variables (Table 1). 246 

The two-way ANOVA disclosed no anodal or cathodal tsDCS-induced effect on MEP 247 

variables (Figure 1C and 1D, Figure 2C and 2D). RMT did not change over time and across 248 

sections (Figure 2C: two-way ANOVA, factor “stimulation”: p = 0.54; factor “time” p=0.14; 249 

interaction “stimulation x time”, p=0.48), nor it did MEP area (Figure 2D: two-way ANOVA, 250 

factor “stimulation”: p = 0.58; factor “time” p=0.63; interaction “stimulation x time”, p=0.23). 251 

MEP latency was not affected by stimulation (two-way ANOVA, factor “stimulation”: p = 252 

0.26; interaction “stimulation x time”, p=0.29) but showed the unspecific time-related 253 

increase at T30 compared to baseline (two-way ANOVA, “time” p=0.013; post-hoc analysis: 254 

baseline vs T30 103.53 ± 0.95%, p=0.011). 255 

 256 
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 257 

 258 

Discussion 259 

Whereas tsDCS leaves H-reflex, F-wave and upper-limb RMT and MEPs size 260 

unchanged, it modulates the excitability in corticospinal projections to lower limb muscles for 261 

at least 30′ after stimulation offset, inducing polarity-dependent excitability changes: anodal 262 

tsDCS significantly increases RMT, whereas cathodal stimulation increases MEP area.  263 

The absence of F-wave changes in our experiments therefore argues against the 264 

occurrence of changes in postsynaptic motorneuronal excitability after tsDCS. The absence of 265 

H/M ratio changes in this and a previous study from our group (Cogiamanian et al. 2011) 266 

agrees with previous observations (Lamy et al. 2012; Winkler et al. 2010). 267 

The tsDCS-induced corticospinal excitability changes at lower limb level are in line 268 

with our previous observation that tsDCS modulates conduction along human spinal 269 

ascending pathways (Cogiamanian et al., 2008; Truini et al., 2011) and are consistent with the 270 

effects of anodal spinal DC on motor potentials elicited by cortical stimulation in the mouse 271 

triceps surae (Ahmed, 2011). 272 

How tsDCS influences the corticospinal system remains hypothetical. First, because 273 

tDCS influences neurotransmitters in the brain (Rango et al. 2008), tsDCS could do the same 274 

in the human spinal cord, ultimately modulating the corticospinal output as in animals 275 

(Ahmed and Wieraszko 2012). As recently shown in animals (Ahmed, 2013), cathodal tsDCS 276 

can amplify segmental responses to supraspinal drive by increasing glutamate release at the 277 

spinal level, although mice typically lack the monosynaptic corticomotoneuronal synapse of 278 

higher primates. Another possibility is that tsDCS could influence neural activity in ascending 279 

spinal pathways, ultimately modulating the excitability in their cortical targets including the 280 

motor areas, as changes in RMT suggest. Possible support for a cortical mechanism comes 281 
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from a report that invasive spinal stimulation seems to modulate intracortical facilitation 282 

(Schlaier et al. 2007). Thus, our data expand, rather than be simply contradictory, previous 283 

knowledge on putative tsDCS targets, including supra-spinal, and possibly polarity-specific, 284 

effects of spinal current polarization; this possibility also agree with recent evidence in rats 285 

that non-invasive spinal stimulation modulates the activity of gracile nucleus and primary 286 

somatosensory cortex (Aguilar et al. 2011). 287 

Finally, tsDCS could influence the conductive properties of the corticospinal tract, for 288 

example by decreasing/increasing the number of axons conducting an action potential. For 289 

instance, anodal tsDCS can induce a hyperpolarizing conduction block thus blocking action 290 

potentials along the pyramidal tract (Bhadra and Kilgore 2004). However, given that we used 291 

low current intensities, anodal block could not be the sole explanation for the effects of anodal 292 

tsDCS; moreover, it’s known that, also in routinary electrodiagnostic testings, geometry and 293 

tissue distribution of electrical fields are additional critical parameters for inducing a 294 

hyperpolarizing block (Dreyer et al. 1993; Kirshblum et al. 1998). 295 

Although the mechanisms underlying the tsDCS-induced changes in the corticospinal 296 

system remain speculative, our finding that anodal tsDCS seems mainly to affect the RMT 297 

whereas cathodal tsDCS predominantly influences MEP area is intriguing. A possible 298 

explanation is that the mechanisms underlying cathodal and anodal tsDCS differ and could 299 

have a different putative circuit(s)-pathway(s)-neurotransmitters, i.e. anodal current might 300 

preferentially act on one target system, whereas cathodal current acts on another. This 301 

possibility agrees with evidence that anodal and cathodal brain tDCS act through different 302 

brain neurotransmitters: for instance, whereas anodal tDCS reduces gamma aminobutyric acid 303 

(GABA), cathodal tDCS decreases glutamate (Stagg et al. 2009). Increase in MEP area 304 

following cathodal tsDCS is in line with previous reports (Aguilar et al. 2011; Ahmed 2013; 305 

2011; Alanis 1953; Eccles et al. 1962) and agree with data in animals showing an increased 306 
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recruitment of larger motor units following cathodal polarization (Ahmed and Wieraszko 307 

2012); as suggested in a recent work by our group, cathodal, but not anodal, stimulation could 308 

have a trans-synaptic effect mediated by spinal interneurons likely involving Renshaw cells 309 

network (Bocci et al. 2014).  310 

Among methodological issues related to our study the first is that to avoid subjecting 311 

participants to another experimental session, we decided not to test them under sham 312 

conditions. Sham testing was also unnecessary given that even though changes induced by 313 

cathodal tsDCS and anodal tsDCS go in opposite directions, subjects cannot distinguish 314 

between the two polarities. We therefore considered each polarity as the best possible control 315 

for the other as previously reported (Cogiamanian et al. 2008; Lamy and Boakye 2013a; 316 

Truini et al. 2011). Besides, as recently showed by Kessler and colleagues (Kessler et al. 317 

2012), sham stimulation may be an inappropriate control condition for some studies, because 318 

sensory side effects seem to be more frequent and severe in active than in sham tDCS.  319 

A second methodological issue is about possible pitfalls concerning the use of H-320 

reflex and F-wave to assess spinal motorneuron excitability. The absence of H-reflex changes 321 

suggests no modification to small motorneurons and the lack of F-wave effects rules out 322 

changes in large motorneurons (McNeil et al. 2013). However, the classical view that H-323 

reflex and F-wave represent separate and complementary events at spinal level, i.e. 324 

presynaptic inhibition versus changes in intrinsic motorneuron excitability (Fisher 1992; Leis 325 

et al. 1995), is questionable. In fact, while H-reflex could be also affected by post-activation 326 

depression and changes in axonal excitability itself (McNeil et al. 2013; Pierrot-Deseilligny et 327 

al. 1981), many reports have suggested that F-waves offers only a flawed measure of 328 

motorneuron excitability (Hultborn and Nielsen 1995). 329 

A further important point is to compare our data with those by Lim and Shim (Lim and 330 

Shin, 2011) who found that cervical spinal DC stimulation influences upper-limb MEPs. But 331 
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they did not report polarity-specific effects. Their results cannot be compared with ours 332 

because they studied a different anatomical region, with a different recording montage and 333 

stimulation intensity, and used smaller electrodes. Finally, there are known features in how 334 

corticospinal excitability differs between the upper and lower body, which may account, at 335 

least in part, for differences between our results and data obtained by Lim and Shin. 336 

Particularly, monosynaptic corticomotorneuronal projections, with fast conducting motor 337 

units, are more prominent for hand than for proximal arm or lower limb muscles (Brouwer 338 

and Ashby 1992; Dalpozzo et al. 2002; Palmer and Ashby 1992); in this view, lack of changes 339 

in MEPs amplitude following anodal tsDCS may be caused by the greater desynchronization 340 

of corticomotorneuronal input compared with upper limb muscles, related to the involvement 341 

of fibers with different sizes or activation of polysynaptic descending pathways. 342 

Overall, our data support the conclusion that tsDCS induces changes in corticospinal 343 

tract excitability. The first clinical observations with tsDCS are encouraging: Hubli (Hubli et 344 

al., 2013) found that anodal tsDCS can improve gait in patients with spinal cord injury. 345 

Together with a previous report describing how tsDCS influences ascending spinal pathways 346 

(Aguilar et al., 2011), the present experiments suggest that the spinal cord could act as a 347 

“highway” for conveying tsDCS-induced changes to the brain thereby inducing 348 

suprasegmental effects in the brain and brainstem. Because tsDCS is simple, safe and non-349 

invasive, our observation opens the way to new approaches using this technique in widely 350 

ranging neurological conditions characterized by corticospinal and spinal cord dysfunction 351 

and possibly even in brain disorders.  352 

 353 
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Figure Legends 362 

Figure 1. A, B - Lower-limb motor evoked potentials (MEPs) before (baseline, B), 363 

immediately after (T0) and at 30 min (T30) after anodal (A) or cathodal (B) tsDCS in a 364 

representative subject. Horizontal calibration 10 ms; vertical calibration 1 mV; each trace is 365 

the superimposition of five sweeps. The table on the right side reports the average values of 366 

RMT, MEP area, and MEP latency for the represented subject. Note that whereas anodal 367 

tsDCS decreased the MEP area at T0 and T30, cathodal tsDCS increased the MEP area. 368 

Vertical arrows represent the stimuli. C, D - Upper-limb motor evoked potentials (MEPs) 369 

before (baseline, B), immediately after (T0) and at 30 min (T30) after anodal (C) or cathodal 370 

(D) tsDCS in a representative subject. Horizontal calibration 10 ms; vertical calibration 0.5 371 

mV; each trace is the superimposition of five sweeps. The table on the right side reports the 372 

average values of RMT, MEP area, and MEP latency for the represented subject. Note that 373 

neither anodal nor cathodal tsDCS affected MEPs. Vertical arrows represent the stimuli. 374 

 375 

Figure 2. A, B - Effects of transcutaneous spinal direct current stimulation (tsDCS) on resting 376 

motor threshold (A, RMT) and motor evoked potentials (B, MEP) area when responses were 377 

recorded from abductor hallucis muscle (AH; data are expressed as % of baseline). Group 378 

data are presented as mean ± SEM changes induced by anodal (gray) or cathodal (dark gray) 379 

tsDCS immediately after current offset (T0) and 30 minutes later (T30; error lines are 380 

standard error of the mean, SEM). Note that anodal and cathodal tsDCS induced significantly 381 

different, opposite changes in RMT and MEP area. C, D - Effects induced by tsDCS on RMT 382 

(C) and MEP size (D) when responses were recorded from abductor digiti minimi (ADM) 383 

muscles. Group data are presented as mean ± SEM changes induced by anodal (gray) or 384 

cathodal (dark gray) tsDCS immediately after current offset (T0) and 30 minutes later (T30; 385 
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error lines are standard error of the mean, SEM). Neither anodal nor cathodal tsDCS 386 

significantly changed RMT or MEP area. ** = p<0.05. 387 

 388 

Table 1 -Changes in F-wave and H-reflex variables over time (B, T0, T30), in both 389 

experimental conditions (anodal and cathodal stimulation). We found no significant changes 390 

in F-wave and H-reflex variables across the different time points. p values refer to two-way 391 

repeated measures ANOVA with “stimulation” and “time” as factor (interaction effects). Data 392 

are shown as mean values ± SEM. Minimal, mean latencies and temporal dispersion are 393 

expressed in ms, H-reflex area as mVms. 394 

395 
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 F-wave H-reflex 

 AH ADM Soleus 

 Minimal 
Latency 

(ms) 

Mean 
Latency 

(ms) 

Dispersion 
(ms) 

Minimal 
Latency 

(ms) 

Mean 
Latency 

(ms) 

Dispersion  
(ms) 

Threshold 
(ms) 

Latency 
(ms) 

Area 
(mVms) 

Ratio 
H/M 

Anodal 
(mean ± 
SEM) 

B 46.4  
± 

 1.3 

48.2 
 ± 

 1.5 

4.3 
 ± 

 0.6 

25.8 
 ± 

 0.6 

27.9 
 ± 

 0.8 

2.9 
 ± 

 0.5 

14.7 
 ± 

 3.5 

28.9 
 ± 

 1.0 

7.4 
 ± 

 1.0 

0.4 
 ± 

 0.1 

T0 47.0  
±  

1.5 

49.3  
± 

 1.4 

4.3 
 ± 

 0.5 

26.2 
 ± 

 1.0 

27.8 
 ± 

 0.8 

2.8 
 ± 

 0.7 

13.9 
 ± 

 2.8 

28.3 
 ± 

 1.3 

7.1 
 ± 

 0.6 

0.4 
 ± 

 0.05 

T30 47.2 
 ± 

 1.4 

50.5 
 ± 

 2.5 

4.4 
 ± 

 0.7 

26.3 
 ± 

 0.9 

28.3 
 ± 

 1.9 

3.0 
 ± 

 0.4 

13.9 
 ± 

 1.8 

29.3 
 ± 

 1.4 

7.7 
 ± 

 0.9 

0.4 
 ± 

 0.13 

Cathodal 
(mean ± 
SEM) 

B 46.3 
 ± 

 1.2 

48.6 
 ± 

 1.2 

4.4 
 ± 

 0.5 

25.3 
 ± 

 1.2 

27.8 
 ± 

 1.5 

3.0 
 ± 

 0.7 

14.1 
 ± 

 3.0 

28.0 
 ± 

 1.2 

7.7 
 ± 

 0.6 

0.4 
 ± 

 0.04 

T0 46.3 
 ± 

 1.4 

48.8 
 ± 

 1.7 

4.7 
 ± 

 0.3 

25.5 
 ± 

 1.5 

28.0 
 ± 

 1.0 

3.1 
 ± 

 0.4 

14.1 
 ± 

 2.5 

27.8 
 ± 

 1.3 

7.6 
 ± 

 1.1 

0.4 
 ± 

 0.1 

T30 47.2 
 ± 

 1.6 

49.1 
 ± 

 1.5 

4.8 
 ± 

 0.7 

26.0 
 ± 

 1.1 

28.3 
 ± 

 1.0 

2.8 
 ± 

 0.6 

13.8 
 ± 

 2.7 

28.9 
 ± 

 0.8 

7.9 
 ± 

 1.4 

0.3 
 ± 

 0.3 

p-value  0.6 0.2 0.8 0.3 0.9 0.3 0.8 0.7 0.8 0.3 
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