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SUMMARY

The purpose of the present paper is developmemt Hbn-singular Method of Fundamental
Solutions (NMFS) for Stokes flow problems, widelypéicable in biomedical engineering. The
NMFS is based on the classical Method of Fundarh&@dhutions (MFS) with regularization of
the singularities. The Stokes problem is decompastdthree coupled Laplace problems. The
solution is structured by collocating the pressmd the velocity field boundary conditions by the
Laplace fundamental solution. The regularizatioadkieved by replacement of the concentrated
point sources by distributed sources over the disttand the singularity of fundamental solution.
The NMFS solution is compared to MFS solution andlgical solution (a.s.) in case of simple
2D duct flow. The described developments repreadiist use of NMFS for Stokes problems.
The method requires the discretization on the bagndnly and is easily applicable in 3D, thus
representing an ideal candidate for solving compimmedical engineering free and moving
boundary flow problems in the future.
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1. INTRODUCTION

The modeling of vascular systems with its contaibkbd represents a complex multiscale and
multiphysics fluid-structure interaction problemhél blood rheology is depending on the scale
considered. For example, the particulate flow lmelset considered when taking into account the
interactions of the blood cells on the micro lewld the non-Newtonian turbulent flow has to be
considered on the macro level. For an exhaustaagrrent of these topics as well as biomedical
motivations we refer to [1,2,3] and the referentesein. Due to the complexity of the spectra of
the problems appearing in vascular systems, tisesiesubstantial need to apply novel numerical
methods to related problems. For this purposentbthod of fundamental solutions (MFS) [4]

appears to be an ideal candidate, since it is ahlews boundary collocation technique,

particularly suitable for tracking moving and freeundary problems. The method has similar
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coding complexity in 2 or 3D. The main drawbacktloé method represents the fact that it is
straightforwardly suitable only for problems witimdwn fundamental solution, and that when
using singular fundamental solution, there is adrteeinclude an artificial boundary, positioned
outside the physical boundary in order to makecthibbcation possible. The optimal location of
the artificial boundary is a delicate issue. In gyah it can be observed that if the artificial
boundary is too close to the physical one, therattwairacy of the problem is poor. On the other
hand, if the artificial boundary is too far ther tbroblem becomes ill-posed. Recent advances of
the method for fluid [5], porous media flow with mng boundaries [6] and for solid mechanics
[7], which involve regularization of the singulde, permit to omit the artificial boundary. We
shall refer to the latter as the non-singular métlod fundamental solutions (NMFS) and
demonstrate its use for a class of vascular systieatseduce to a simple Stokes flow. One of the
simplest related examples is that of a straighfoum rigid duct with a steady rate of a laminar
liquid flowing through it. In order to demonstratiee NMFS for such problems, we use the
regularized Laplace fundamental solution, as sugdesy Liu [8], combined with the
decomposition of the 2D Stokes problem into thraplacian problems [9First, we intend to
describe briefly the underlying mathematical foratigdn of our method in a quite general
framework. Second, we will show the applicability aur novel technique by considering the
flow in a duct.

2. GOVERNING EQUATIONS

Let Q be a connected two-dimensional domain with boundar We consider Cartesian
coordinate system with base vectadrsand iy and coordinatesx and y.The velocity field

q=ui,+v  is solution of the following Stokes equatiofl.a) and satisfies the
incompressibility condition (1.b)

HAg(x, y)=0P(x y) inQ, 0OE=0 inQ, (1.a, 1.b)

with & representing the viscosity ari®l the pressurévioreover, aguing as in [9] one can
prove that (1.a) and (1.b) are equivalent to

Af(x,y)=04g(x y) =0, AP(x, y)=0in Q du+d v=0 in 9Q (2.a, 2.b, 2.c, 2.d)

provided the components andV of the velocity vectoq satisfy

au(x y)= (X »+§ RX Y, av(x y)= o X »% RxyinQ. (3.2, 3.b)

In this paper, for simplicity, we assume that the temponentgu, v) of the velocity field
satisfy the Dirichlet conditions on the boundal®

u=uinodQ, v=V in 0Q (4.a, 4.b)

wheret andV are two given sufficiently smooth functions. Exdem to other types of
boundary conditions is straightforward.



2. SOLUTION PROCEDURE AND NUMERICAL EXAMPLE

The underlying idea of both the methods employeth@ present paper, namely the MFS and
NMFS, consists in representing the three harmanictfons f , g, and P, appearing in (2.a-c)

as a linear combination ofN global approximating functions with unknown coeffiats,
determined through collocation with the boundaryditions. We take the fornp of the
approximation functions for MFS (fundamental saluatiof Laplace equation (5.a)) arﬁzl for
NMFS (desingularized fundamental solution (5.b))

1 go(p s); p# s
@p,s)=—=log(Ip-sI*), ¥(p.s) = ( j 1

.S dA——Io —;;p=s
21 nR2 (j )co(p ) g P
(5.a, 5.b)

where p denote points on the physical boundary, andenote the source points lying on the
artificial boundary in case of MFS and on the pbgkiboundary in case of NMFSA(S, R)
represents a circular disk with radiu® centered ats. We considerN source pointss,,

j=1,...N and N collocation pointsp, , i=1,....N and we discretize the problem by
representingf , g, andP as

(0)=>a0(,5).00)=Dbe(.5) PEI=YcpM.5)  (6a6b 60)

where @ has to be replaced witlr}o when dealing with the NMFS method. We then plug th
above choices into (3.a-b), (2.d) and (4.a, 4.BsRctively, we reformulate our boundary value
problem (1.a, 1.b, 4.a-b) to the solution of adineystem of3N algebraic equation®\x =b
where the3N x3N full matrix A has to be meant as a discretization of the inhgartial
differential equation, theBN x1 vectorx collects the unknown coefﬂuental,bl ,C; in (6.a-C)
and the3N x1 vectorb contains the given information of the Dirichlet Indiary condition (6.a,
6.b). We solve the Stokes problem (l1.a) and (1.m) a rectangular domain

Q =(X%, %)X (= Y Vo) % =2,,=0.5, for laminar flow between two plates. The follogin
a.s. [9] is considered(X, ) =2i( Y- ¥)o, Pu=10, P=6, v(x, y)=0,
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Fig.1a.The profile ofu atx=0 alongy axis. Fig.1b.Error as a function of the discretization.



where the Dirichlet boundary conditions in (4.ayl44.b) are derived directly from the a.s. We
solve the problem with MFS and NMFS. We use 120@idistant boundary nodes picking the
source points at a distance 0.0417 from the phlysmandary in MFS method. On the other hand
the numerical solution computed with the NMFS hasrbobtained with the same number of
boundary nodes and by choosifiyin (6.b) equal to 0.0033. In Fig. 1.a the firstnmwnent of

velocity field alongx =0 is presented (+:MFS, 0:MMFS, -:a.s.). Moreoverfig. 1.b we show

the error computed as the Euclidean norm of thierdifice between the a.s. and the MMFS

solution, measured along the profite= 0 in 11 equidistant points on the inter\[aJyO, yo] .

3. CONCLUSIONS

The Laplace decomposition technique combined wiMFS is for the first time applied for
solving a simple Stokes problem where both compinehfluid velocity are specified on the
boundary of the solution domain. The accuracy dficdiency of the new method is validated by
considering a simple test example arising in stefbmly problems. Moreover, we show that the
NMFS solution converges to the a.s. with the insirga number of the nodes. The future
extensions of the presented work will be focusedl@mm in axisymmetry and 3D, as well as free
and moving boundary problems. The developed methdtth, its boundary only character of
discretization, can potentially be used in effextsimulation of a broad spectrum of involved
biomedical problems. Indeed, even though we arerelat for a general computational
haemodynamics problems the non-linear convective té the Navier Stokes equation cannot be
dropped out, we believe that the adopted linearahoauld find application in the study of small
scale problems, such as the blood flow in capillars
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