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Abstract. It is known that the order of a finite group of diffeomorphisms of a 3-

dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g − 1),

and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody

(or equivalently, of its boundary 3-manifold), faithful on the fundamental group, is

bounded by a quadratic polynomial in g (but not by a linear one). In the present

paper we prove a generalization for handlebodies of arbitrary dimension d, uniformizing

handlebodies by Schottky groups and considering finite groups of isometries of such

handlebodies. We prove that the order of a finite group of isometries of a handlebody

of dimension d acting faithfully on the fundamental group is bounded by a polynomial

of degree d/2 in g if d is even, and of degree (d+ 1)/2 if d is odd, and that the degree

d/2 for even d is best possible. This implies then analogous polynomial Jordan-type

bounds for arbitrary finite groups of isometries of handlebodies (since a handlebody of

dimension d > 3 admits S1-actions, there does not exist an upper bound for the order

of the group itself).
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1. Introduction. All finite group actions in the present paper will be faithful, smooth

and orientation-preserving, and all manifolds will be orientable. We study finite group

actions of large order on handlebodies of dimension d ≥ 3 and genus g > 1.

An orientable handlebody V d
g of dimension d and genus g can be defined as a regular

neighbourhood of a finite graph with free fundamental group of rank g embedded in the

sphere Sd; alternatively, it is obtained from the ball Bd by attaching along its boundary

g copies of a handle Bd−1 × [0, 1] in an orientable way, or as the boundary-connected

sum of g copies of Bd−1 × S1. The boundary of V d
g is a closed manifold Hd−1

g which is

the connected sum of g copies of Sd−2 × S1.

By [Z1] the order of a finite group of diffeomorphisms of a 3-dimensional handlebody

V 3
g of genus g > 1 is bounded by the linear polynomial 12(g − 1) (see also [MMZ,

Theorem 7.2], [MZ]); also, a finite group G acting faithfully on V 3
g acts faithfully also

on the fundamental group. On the other hand, since the closed 3-manifold H3
g admits

S1-actions, it has finite cyclic group actions of arbitrarily large order acting trivially on
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the fundamental group, and the same is true also for handlebodies V d
g of dimensions

d > 3. However it is shown in [Z4] that if a finite group of diffeomorphisms of H3
g = ∂V 4

g

acts faithfully on the fundamental group then the order of the group is bounded by a

quadratic polynomial in g (but not by a linear one), and hence the same holds also

for 4-dimensional handlebodies V 4
g . As a consequence, each finite group G acting on

H3
g or V 4

g has a finite cyclic normal subgroup G0 (the subgroup acting trivially on the

fundamental group) such that the order of G/G0 is bounded by a quadratic polynomial

in g ([Z4]).

There arises naturally the question (as asked in [Z4]) whether there are analogous poly-

nomial bounds also for the orders of finite groups acting on handlebodies V d
g of arbitrary

dimension d. Whereas finite group actions in dimension 3 are standard by the recent

geometrization of such actions after Thurston and Perelman, the situation in higher

dimensions is more complicated and not well-understood. Hence one is led to consider

some kind of standard actions also in higher dimensions. We will do so by uniformizing

handlebodies V d
g by Schottky groups (groups of Möbius transformations of the ball Bd

acting by isometries on its interior, the Poincaré-model of hyperbolic space H
d), thus

realizing their interiors as complete hyperbolic manifolds, and then considering finite

groups of isometries of such hyperbolic (Schottky) handlebodies (see section 2 for the

definition of Schottky groups).

Our main results are as follows.

Theorem 1. Let G be a finite group of isometries of a hyperbolic handlebody V d
g of

dimension d ≥ 3 and of genus g > 1 which acts faithfully on the fundamental group.

Then the order of G is bounded by a polynomial of degree d/2 in g if d is even, and of

degree (d+1)/2 if d is odd. The degree d/2 is best possible in even dimensions whereas

in odd dimensions the optimal degree is at least (d− 1)/2.

By hypothesis such a group G injects into the outer automorphism group of the funda-

mental group of V d
g , a free group of rank g. We note that by [WZ] the optimal upper

bound for the order of an arbitrary finite subgroup of the outer automorphism group

Out(Fg) of a free group Fg of rank g > 2 is 2g g! (i.e., exponential in g). It is shown in

[Z2] that every finite subgroup of Out(Fg) can be induced (or realized in the sense of

the Nielsen realization problem) by an isomorphic group of isometries of a handlebody

V d
g of sufficiently high dimension d.

Without the hypothesis that G acts faithfully on the fundamental group, the proof

of Theorem 1 gives the following polynomial Jordan-type bound for finite groups of

isometries of V d
g .

Corollary. Let G be a finite group of isometries of a hyperbolic handlebody V d
g of genus

g > 1, and let G0 denote the normal subgroup of G acting trivially on the fundamental

group. Then the following holds.
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i) G0 is isomorphic to subgroup of the orthogonal group SO(d−2), and the order of the

factor group G/G0 is bounded by a polynomial as in Theorem 1.

ii) G has a normal abelian subgroup, a subgroup of G0, whose index in G is bounded

by a polynomial as in Theorem 1.

By the classical Jordan bound, each finite subgroup G of a complex linear group

GL(d,C) has a normal abelian subgroup whose index in G is bounded by a constant

depending only on the dimension d (see [C] for the optimal bound for each d; see also

[Z5] and its references for generalizations of the Jordan bound in the context of diffeo-

morphism groups of manifolds).

In more algebraic terms, Theorem 1 is equivalent to the following:

Theorem 2. Let E be a group of Möbius transformations of Sd−1 which is a finite

effective extension of a Schottky group Sg of rank g > 1. Then the order of the factor

group E/Sg is bounded by a polynomial in g as in Theorem 1.

Here effective extension means that no element of E acts trivially on Sg by conjugation.

By [Z2] every finite effective extension of a Schottky group can be realized by a group

of Möbius transformations in some sufficiently high dimension d.

As a consequence of the geometrization of finite group actions in dimension three, using

the methods of [RZ, section 2] every finite group G of diffeomorphisms of a 3-dimensional

handlebody V 3
g is conjugate to a group of isometries, uniformizing V 3

g by a suitable

Schottky group (which depends on G). This is no longer true in higher dimensions;

however, if G is a finite group of diffeomorphisms of a 4-dimensional handlebody V 4
g

then, uniformizing V 4
g by a suitable Schottky group, G acts also as a group of isometries

of V 4
g inducing the same action on the fundamental group (applying the methods of [Z4]

to the boundary 3-manifold H3
g of V 4

g ). This raises naturally the following:

Questions. i) Is every finite groupG of diffeomorphisms of a handlebody V d
g isomorphic

to a group of isometries of a hyperbolic handlebody V d
g (inducing the same action on

the fundamental group)?

ii) Is every finite group G of diffeomorphisms of a ball Bd (i.e., a handlebody of genus

zero) or of a sphere Sd−1 isomorphic to a subgroup of the orthogonal group SO(d)?

In general, such a finite group G of diffeomorphisms is not conjugate to a group of

isometries of a handlebody resp. to a group of orthgonal maps; we note that ii) is not

true for finite groups G of homeomorphisms of Bd or Sd−1, see [GMZ, section 7].

In section 2 we prove the first part of Theorem 1. In section 3 we present examples

of finite isometric group actions on handlebodies which show that the degree d/2 of

the polynomial bound in Theorem 1 is best possible in even dimensions (even for finite
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cyclic groups G), and that a lower bound for the degree in odd dimensions is (d− 1)/2.

Note that for d = 3 the bound (d + 1)/2 is not best possible since it gives a quadratic

bound instead of the actual linear bound 12(g − 1); for odd dimensions d > 3 we have

no intuition at present if the optimal bound should be (d− 1)/2 or (d+ 1)/2.

2. Schottky groups and the Proof of Theorem 1. A Schottky group Sg of rank or

genus g is a group of Möbius transformations acting on a sphere Sd−1 = ∂Bd defined

in the following way (analogously to the Schottky groups in dimension two acting on

S2, see [L],[M] or [R, p. 584]; see also [Z2] for the following). Let S1, T1, . . . , Sg, Tg

be spheres of dimension d− 2 in Sd−1 which bound disjoint balls B1, D1, . . . , Bg, Dg of

dimension d − 1; choose Möbius transformations f1, . . . , fg such that fi(Si) = Ti and

fi maps the exterior of Bi to the interior of Di. Then it is easy to see that f1, . . . , fg
are free generators of a free group Sg of Möbius transformations. The complement in

Sd−1 of the interiors of the balls Bi and Di is a fundamental domain for the action of

Sg on Sd−1−Λ(Sg) where Λ(Sg) denotes the set of limit points of Sg in Sd−1 (a Cantor

set). In this definition, one may consider round spheres S1, T1, . . . , Sg, Tg (thus defining

a so-called classical Schottky group), or just topological spheres (and it is known that

non-classical Schottky groups esist); however this is not relevant for the present paper,

in particular in the examples constructed in section 3 the Schottky subgroups will be

always classical).

The group of Möbius transformations of Sd−1 extends naturally to the interior of the

ball Bd (”Poincaré extension”) where it becomes the group of orientation-preserving

isometries of the Poincaré-model of hyperbolic space H
d. The action of Sg is free and

properly discontinuous on the interior H
d of Bd, and a fundamental domain for this

action is the region of Hd bounded by all hyperbolic hyperplanes defined by the spheres

Si and Ti (i.e., half-spheres of dimension d− 1 orthogonal to Sd−1 along these spheres).

The quotient (Bd−Λ(Sg))/Sg is a handlebody V d
g whose interiorHd/Sg has the structure

of a complete hyperbolic manifold, and we say that the Schottky group Sg uniformizes

the handlebody V d
g . When speaking of a finite group G of isometries of a handlebody

V d
g we then intend that V d

g can be uniformized by a Schottky group Sg such that G

acts by hyperbolic isometries on the interior of V d
g .

Let V d
g be a handlebody uniformized by a Schottky group Sg. Let G be a finite group of

isometries of V d
g which induces a faithful action on the fundamental group. The group

of all lifts of elements of G to the universal covering Bd − Λ(Sg) of V
d
g defines a group

E of Möbius transformations of Bd, with factor group E/Sg
∼= G, so we have a finite

extension

1 → Sg →֒ E → G → 1;

by general covering space theory, this extension is effective since G acts faithfully on

the fundamental group of V d
g (isomorphic to the group Sg of covering transformations).

4



Lemma 1. The extension 1 → Sg →֒ E → G → 1 is effective if and only if E has no

non-trivial finite normal subgroups.

Proof. Let F be a finite normal subgroup E. Since the intersection of F with the normal

torsionfree subgroup Sg of E is trivial, the normal subgroups F and Sg of E commute

elementwise (any commutator fsf−1s−1 of elements f ∈ F and s ∈ Sg is an element

of both F and Sg and hence trivial). Hence if if the extension is effective, F has to be

trivial.

Conversely, suppose that every finite normal subgroup of E is trivial. The subgroup of

elements of the finite extension E of Sg inducing by conjugation the trivial automor-

phism of Sg is clearly finite (since the center of Sg is trivial), normal and hence trivial,

so the extension is effective.

This completes the proof of Lemma 1.

As a consequence of Stalling’s structure theorem for groups with infinitely many ends,

a finite extension E of a free group is the fundamental group π1(Γ,G) of a finite graph

of finite groups (Γ,G) ([KPS]); here Γ denotes a finite graph, and to its vertices v and

edges e are associated finite vertex groups Gv and edge groups Ge, with inclusions of

the edge groups into the adjacent vertex groups. The fundamental group π1(Γ,G) of the

finite graph of finite groups (Γ,G) is the iterated free product with amalgamation and

HNN-extension of the vertex groups amalgamated over the edge groups, first taking the

iterated free product with amalgamation over a maximal tree of Γ and then associating

an HNN-generator to each of the remaining edges. We note that each finite subgroup

of E = π1(Γ,G) is conjugate into a vertex group of (Γ,G), and that the vertex groups

are maximal finite subgroups of E (see [ScW], [Se] or [Z3] for the standard theory of

graphs of groups and their fundamental groups).

We will assume in the following that the graph of groups (Γ,G) has no trivial edges, i.e.

no edges with two different vertices such that the edge group coincides with one of the

two vertex groups (by collapsing trivial edges, i.e. amalgamating the two vertex groups

into a single vertex group); we say that such a graph of groups is in normal form.

We denote by

χ(Γ,G) =
∑ 1

|Gv|
−
∑ 1

|Ge|

the Euler characteristic of the graph of groups (Γ,G) (the sum is taken over all vertex

groups Gv resp. edge groups Ge of (Γ,G)); then, by multiplicativity of Euler character-

istics under finite coverings of graphs of groups,

g − 1 = −χ(Γ,G) |G|

(see [ScW] or [Z3]); note that this is positive since we are assuming that g > 1.
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The finite extension E = π1(Γ,G) of the Schottky group Sg is a group of Möbius

transformations of Bd and acts as a group of hyperbolic isometries on its interior H
d.

Each finite group of isometries of hyperbolic space Hd has a global fixed point in H
d and

is conjugate to a finite group of orthogonal transformations of Bd (which are exactly

the isometries of Hd which fix the origin in Bd). In particular each finite vertex group

Gv of E = π1(Γ,G) has a fixed point in H
d and is isomorphic (conjugate) to a subgroup

of the orthogonal group O(d), and different vertex groups of (Γ,G) have different fixed

points (since the vertex groups are maximal finite subgroups of E and the action of E

is properly discontinuous in H
d); also, if a vertex group fixes a point in H

d then it is

the maximal finite subgroup of E fixing this point.

Consider a non-closed edge e of (Γ,G), i.e. with two distinct vertices v1 and v2, with

edge group Ge and vertex groups G1 and G2 (which we consider as subgroups of E),

with Ge = G1 ∩ G2. Let P1 6= P2 be fixed points of G1 resp. G2 in H
d; then P1 and

P2 define a hyperbolic line L which is fixed pointwise by the edge group Ge = G1 ∩G2.

The line L intersects Sd−1 = ∂Bd in two points which are fixed by Ge; moreover no

subgroup of G1 larger than Ge can fix one of these two points since otherwise it would

fix pointwise the line L and hence P2, so it would be contained also in G2.

Now let e be a closed edge of (Γ,G), i.e. an edge with only one vertex v. There are two

inclusions of the edge group Ge into the vertex group Gv defining two subgroups Ge

and G′

e of Gv; denoting by t an HNN-generator corresponding to the edge e, we have

that t−1G′

et = Ge, and Ge = Gv∩ (t−1Gvt). Note that t has infinite order so it does not

fix any point in H
d. Let P be a fixed point of the finite subgroup Gv of E in H

d; then

t−1Gvt fixes the point t(P ) 6= P , and its subgroup Ge = t−1G′

et fixes the hyperbolic

line L defined by P and t(P ). As before, the hyperbolic line L intersects Sd−1 = ∂Bd

in two points which are fixed by Ge, and Ge is the maximal subgroup of Gv fixing these

two points.

Note also that, since Ge fixes a point in Sd−1, it is in fact isomorphic (conjugate) to a

subgroup of the orthogonal group SO(d− 1). Summarizing, we have:

Lemma 2. Let Gv ⊂ E be a vertex group of the graph of groups (Γ,G), and let

Ge ⊂ Gv be an adjacent edge group. Then Gv has a global fixed point in H
d, and Ge

has a global fixed point in Sd−1 = ∂Bd which is not fixed by any other element of Gv.

In particular, every vertex group is isomorphic to a subgroup of the orthogonal group

SO(d), and every edge group is isomorphic to a subgroup of SO(d− 1).

We need also the following lemma which is contained in [Z4, proof of Theorem 1]; since

its proof is short, we present it for the convenience of the reader. Let χ = χ(Γ,G) denote

the Euler characteristic of (Γ,G); note that −χ > 0 since g > 1, and that for any graph

of groups in normal form one has −χ ≥ 0 unless it consists of a single vertex.
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Lemma 3. Let e be an edge of Γ. Denote by n the order of G and by a the order of

the edge group Ge. Then
n

a
≤ 6(g − 1).

Proof. Suppose first that e is a closed edge. If e is the only edge of (Γ,G) then

−χ ≥
1

a
−

1

2a
=

1

a
, g − 1 = −χn ≥

n

2a
,

n

a
≤ 2(g − 1).

If e is closed and not the only edge then

−χ ≥
1

a
, g − 1 = −χn ≥

n

a
,

n

a
≤ g − 1.

Suppose that e is not closed. If e is the only edge of (Γ,G) then both vertices of e are

isolated and

−χ ≥
1

a
−

1

2a
−

1

3a
=

1

6a
, g − 1 = −χ n ≥

n

6a
,

n

a
≤ 6(g − 1).

If e is not closed, not the only edge and has exactly one isolated vertex then

−χ ≥
1

a
−

1

2a
=

1

2a
, g − 1 = −χ n ≥

n

2a
,

n

a
≤ 2(g − 1).

Finally, if e is not closed, not the only edge and has no isolated vertex then

−χ ≥
1

a
, g − 1 = −χ n ≥

n

a
,

n

a
≤ g − 1.

Concluding, in all cases the inequality of Lemma 3 holds, completing the proof of the

lemma.

After these preparations, we can now start with the actual:

Proof of Theorem 1. Let e be any edge of the finite graph of finite groups (Γ,G) given

by the G-action. By Lemma 2, Ge has a global fixed point in Sd−1 = ∂Bd and is

isomorphic to a subgroup of the orthogonal group SO(d − 1). By the classical Jordan

bound for subgroups of GL(d − 1,C), the edge group Ge has an abelian subgroup A1

whose index in Ge is bounded by a constant c depending only on the dimension. We

will find a polynomial upper bound in g for the order a1 of the abelian group A1; this

will imply then a polynomial bound of the same degree also for the order a ≤ c a1 of

Ge, and finally for the order n of G since, by Lemma 3,

n ≤ 6(g − 1) a ≤ c 6(g − 1) a1.
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Let E1 be the subgroup of E generated by Sg and A1 (which is again an effective

extension of Sg, with factor group A1). Then also E1 is the fundamental group of a

finite graph of finite groups in normal form which we denote again by (Γ,G). Since the

finite group A1 has a fixed point in H
d, up to conjugation it is the vertex groups Gv

of some vertex v of (Γ,G), and its fixed point set in Sd−1 is a sphere Sd1 of dimension

d1 ≥ 0 (since Ge has a global fixed point in Sd−1). Since (Γ,G) has no trivial edges

and E1 has no non-trivial finite normal subgroups by Lemma 1, some edge adjacent to

v has an edge group A2 of order a2 < a1 (i.e., properly contained in A1). By Lemma 3,

a1 ≤ 6(g − 1) a2.

By Lemma 2, the edge group A2 has a fixed point in Sd−1 = ∂Bd which is not fixed by

any other element of the vertex group A1, hence the fixed point set of A2 in Sd−1 is a

sphere Sd2 of dimension d2 > d1.

We iterate the construction and consider the subgroup E2 of E1 generated by Sg and

A2, obtaining an edge group A3 for E2 which fixes a sphere Sd3 of dimension d3 > d2
in Sd−1, of order

a2 ≤ 6(g − 1) a3.

Hence, after at most d− 1 steps, we end up with a trivial edge group fixing all of Sd−1.

Collecting, we obtain the polynomial bound

n ≤ c 6d(g − 1)d

of degree d in g for the order of G.

In order to obtain a polynomial bound of the degree given in Theorem 1 we argue as

follows. Suppose that the fixed point set of the normal subgroup A2 of A1 is a sphere

Sd1+1 of dimension d2 = d1+1; note that Sd1+1 is invariant under the action of A1. Let

A′

1 denote the subgroup of index one or two of A1 which acts orientation-preservingly

on Sd1+1. Then A′

1 fixes Sd1+1 pointwise since otherwise the fixed point set of A′

1 would

be a sphere of codimension at least two in Sd1+1; this is not possible since already A1

has fixed point set Sd1 of dimension d1. Continuing now with A′

1 in the place of A1,

we can assume that the dimensions di increase by at least two in each step. Hence the

number of steps is at most d/2 if d is even, and (d+ 1)/2 if d is odd, and this gives the

degree of the polynomial upper bound as stated in Theorem 1.

This completes the proof of the first part of Theorem 1; the second part on the optimality

of the degree d/2 for even g and the lower bound (d − 1)/2 for odd g will follow from

the examples of finite group actions on handlebodies constructed in the next section.

Proof of the Corollary. The proof proceeds along the lines of the proof of Theorem 1,

with the following difference. In the proof of Theorem 1 we consider the sequence of
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abelian subgroups A1, A2, . . . of G; after finitely many steps, this ended with the trivial

group, using the effectiveness of the corresponding extensions E1, E2, . . . of Sg. Without

effectiveness, the sequence A1, A2, . . . of G ends with an abelian group Am which is a

normal subgroup of the corresponding extension Em; in particular, Am acts trivially on

Sg and is a subgroup of G0. The index of Am in G is bounded by a polynomial as in the

proof of Theorem 1, hence also the index of G0 in G is bounded by such a polynomial.

The group G0 lifts to an isomorphic normal subgroup of the extension E of Sg which

we denote also by G0. The finite group G0 has a fixed point in H
d; we can assume that

it fixed the origin O ∈ Bd and hence is isomorphic to a subgroup of SO(d). Since G0

is normal in E, it is contained (up to conjugation) in each edge group of the graph of

groups (Γ,G). By Lemma 2, G0 has a global fixed point also in Sd−1 = ∂Bd, hence it

fixes pointwise a great sphere of dimension at least zero in Sd−1, and a linear subspace B

of dimension at least one in Bd. Since G0 commutes elementwise with Sg, the Schottky

group Sg acts on B. Since the action of Sg is properly discontinuous and g > 1, B has

dimension at least two. Now G0 acts also on the orthogonal complement of B in O ∈ Bd,

a linear subspace of codimension at least two, so G0 is isomorphic to a subgroup of the

orthogonal group SO(d− 2).

Finally, by the classical Jordan bound for linear groups, the subgroup G0 of SO(d− 2)

contains a normal abelian subgroup whose index is bounded by a constant depending

only on the dimension d. By taking the intersection of this normal abelian subgroup with

all isomorphic normal subgroups of G0 we obtain a characteristic abelian subgroup A of

G0 whose index in G0 is also bounded by a constant depending only on the dimension

d. Hence the indices of A and G0 in G are bounded by polynomials in g of the same

degree.

This completes the proof of the Corollary.

3. Examples. We construct isometric actions of finite groups G on handlebodies

which realize the lower bounds for the degrees of the polynomial bounds in Theorem 1;

specifically, we prove the following:

Proposition. For a fixed k ≥ 2 and all m ≥ 2, the finite group G = (Zm)k admits an

action, faithful on the fundamental group, on a handlebody V d
g of genus g = mk − k

and dimension d = 2k and 2k + 1; in particular, the order n = mk of G is given by the

polynomial

n = (g + k)k/kk = (1 + g/k)k

of degree k = d/2 in g if d is even, and k = (d− 1)/2 if d is odd.

Proof. For k > 1, let G = C1 × . . . × Ck
∼= (Zm)k, of order n = mk, be the product of

k cyclic groups Ci
∼= Zm of order m. Choose an orthogonal action of G on the closed

ball B2k ⊂ R
2k of dimension d = 2k as follows. Decomposing R

2k = P1 × . . . × Pk as
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the product of k orthogonal planes Pi, each Ci acts on Pi faithfully by rotations and

trivially on the k − 1 orthogonal planes.

Define a finite graph of finite groups (Γ,G) as follows. The graph Γ is a star-shaped

graph with one central vertex v with vertex group Gv = G = C1 × . . . × Ck and k

non-closed edges e1, . . . , ek each having v as a vertex, with edge groups

Ge1 = C2 × . . .× Ck , Ge2 = C1 × C3 × . . .× Ck , . . . , Gek = C1 × . . .× Ck−1

(i.e., exactly Ci is missing in Gei). Hence Γ has k + 1 vertices, by definition all with

vertex group G = C1 × . . .× Ck, and the Euler characteristic of (Γ,G) is

χ = (k + 1)
1

mk
− k

1

mk−1
.

There is an obvious projection of the fundamental group E = π1(Γ,G) of the graph

of groups (Γ,G) onto G; its kernel is a free group Fg of some rank g, and we have an

extension

1 → Fg →֒ E → G → 1

which by construction of (Γ,G) is effective (has no nontrivial finite normal subgroups,

see Lemma 1). The rank g is given by

g − 1 = (−χ)n = (−χ)mk = mk − (k + 1), g = mk − k,

hence

n = mk = (g + k)k/kk

which is a polynomial of degree k = d/2 in g and gives the maximal possibility for the

degree in Theorem 1 for even dimensions d.

We realize E = π1(Γ,G) as a group of Möbius transformations of Bd, d = 2k, such that

its subgroup Fg corresponds to a Schottky group Sg. Then the quotient (Bd−Λ(Sg))/Sg

is a handlebody V d
g of genus g, and E projects to an action of the factor group E/Sg

∼= G

on V d
g which is faithful on the fundamental group. In particular, the degree d/2 in

Theorem 1 is best possible for even dimensions d = 2k.

The realization of E = π1(Γ,G) as a group of Möbius transformations of Bd proceeds

inductively by standard combination methods (similar as in [Z2, section 3]). Starting

with the orthogonal group G described above, we realize first the free product with

amalgamation

Gv ∗Ge1
Gv1 = G ∗Ge

G1

where e = e1 denotes the first edge of Γ, with vertices v and v1 and vertex groups

G = Gv and G1 = Gv1
∼= G. By construction, the fixed point set of the subgroup Ge

of G is a 2-ball B1 in Bd defining a hyperbolic plane in H
d which will be denoted also
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by B1. Let L1 be a hyperbolic half-line in B1 starting from its center 0 and ending

in a point R1 in Sd−1 = ∂Bd. Let V1 be a neighbourhood of R1 in Bd bounded by a

hyperbolic hyperplane H1 in H
d orthogonal to L1; choose V1 sufficiently small such that

f(V ) is disjoint form V for all f ∈ G−Ge (note that Ge fixes L1 pointwise but that no

larger subgroup of G fixes L1 by construction of G). The reflection τ1 in the hyperbolic

hyperplane H1 commutes elementwise with Ge ⊂ G and, considering G1 = τ1Gτ−1

1 ,

we have that G ∩ G1 = Ge. Similar as for Schottky groups it is now easy to see that

the group of Möbius transformations generated by G and G1 is isomorphic to the free

product with amalgamation G ∗Ge
G1, and that every torsionfree subgroup of finite

index is in fact a Schottky group (cf. [Z2] and the combination theorems in [M]).

We iterate the construction and adjoin Ge2 . Let L2 be a hyperbolic half-line starting in

the center 0 and ending in a point R2 of Sd−1 = ∂Bd such that R2 does not lie in G(V1).

Let V2 be a small neighbourhood of R2 in Bd, bounded by a hyperbolic hyperplane H2

orthogonal to L2 which does not intersect G(V1). With G2 = τ2Gτ−1

2 where τ2 denotes

the reflection in H2, this realizes the free product with amalgamation

Gv2 ∗Ge2
Gv ∗Ge1

Gv1

as a group of Möbius transformations. Continuing in this way, after k steps E is realized

as a group of Möbius transformations, with Fg corresponding to a Schottky group Sg.

Finally, in odd dimensions d = 2k + 1, we extend the orthogonal action of G on B2k

described above to an orthogonal action on B2k+1 (trivial on the last coordinate) and

then proceed as before. We get a polynomial of degree k = (d−1)/2 in g for the order n

of G whereas Theorem 1 gives a polynomial bound of degree (d+1)/2. As noted in the

introduction, the optimal degree in dimension d = 3 is in fact 1, but for odd dimensions

d > 3 it remains open.

This completes the proof of the Proposition, and also of Theorem 1.

The examples given in the Proposition are for finite abelian groups G. By suitably

modifying the construction, one obtains also examples for finite cyclic groups as follows.

Let d = 2k be a fixed even dimension, and let p > k be any prime. For i = 1, . . . , k,

the k integers qi = p+ i k!, , are pairwise coprime: in fact, if a prime p′ divides qi then

p′ > k; if p′ divides also qj , for some j > i, then p′ divides qj − qi = (j − i) k! which is

a contradiction. Then G = Zq1 × . . . × Zqk is a cyclic group of order n = q1 . . . qk. In

analogy with the proof of the Proposition, let (Γ,G) be a star-shaped graph of groups

with k+1 vertices all with vertex group G, and with k edges where in each edge group

is missing exactly one of the factors Zqi of G, with

χ = χ(Γ,G) =
k + 1

n
−

q1
n

− . . .−
qk
n
.
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There is an obvious surjection of π1(Γ,G) onto G, its kernel is a free group of rank g

with

g − 1 = (−χ)n = −(k + 1) + q1 + . . .+ qk,

g = −k + kp+ (1 + . . .+ k) k!,

p = (g + ck)/k),

for a constant ck depending only on k. Now

|G| = n = q1 . . . qk ≥ pk ≥ (g + ck)
k/kk,

so the order of G is bounded from below by a polynomial of degree k = d/2 in g.

Finally, the geometric realizations of G and E = π1(Γ,G) are exactly as in the proof of

the Proposition.
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Università degli Studi di Trieste

34127 Trieste, Italy

E-mail: mecchia@dmi.units.it, zimmer@units.it

13


