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STAT3 is a key element in many oncogenic pathways and, like other transcription factors, is an 

attractive target for development of novel anticancer drugs. However, interfering with STAT3 

functions has been a difficult task and very few small molecule inhibitors have made their way to 

the clinic. Recently, OPB-31121, a compound currently in clinical trials, has been reported to affect 

STAT3 signaling although its mechanism of action has not been unequivocally demonstrated. In 

this study we used computational experimental approaches to define the molecular target and the 

mode of interaction of OPB-31121 with STAT3. To validate our approach, similar studies were 

performed with known STAT3 inhibitors (STAT3i). Docking and molecular dynamics simulation 

(MDS) showed that OPB-31121 interacted with a distinct pocket in the SH2 domain of STAT3. 

Interestingly, there was no overlap with the sites of binding of other known STAT3i. 

Computational predictions were confirmed by in vitro binding assays, competition experiments 

and site-directed mutagenesis of critical residues in the OPB-31121 binding pocket. Binding assays 

demonstrated the remarkably high affinity of OPB-31121 for STAT3 with Kd (10 nM) 2-3 orders 

lower than other STAT3i. Notably, a similar ranking of the compounds was observed in terms of 

inhibition of STAT3 phosphorylation, cell viability and clonogenicity. These results indicate that 

the high affinity and efficacy of OPB-31121 might be related to its unique features and mode of 

interaction with STAT3. These unique characteristics make OPB-31121 an promising candidate 

for further clinical development and an interesting lead for designing new STAT3i. 

 

Keywords: STAT3; transcription factors; small molecule inhibitors; anticancer drugs; cancer 

therapy; molecular modeling; inhibition mechanism; functional study 
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1. INTRODUCTION 

Signal Transducers and Activators of Transcription (STATs) are a family of latent cytoplasmic 

proteins that once activated regulate many aspects of cell growth, survival and differentiation 

(Levy and Darnell, 2002; Yu et al., 2009). STAT proteins act as signal transducers and 

transcription factors with the ability to transmit signals from the cell membrane to the nucleus 

without the involvement of second messengers (Levy and Darnell, 2002; Yu et al., 2009). The 

STAT family includes seven members (STAT1, 2, 3, 4, 5a, 5b, and 6) that share extensive 

structural homology (Yu et al., 2009). The main structural motifs of STAT proteins are the 

N-terminal domain (NTD), coiled-coil domain (CCD), DNA-binding domain (DBD), Src 

Homology 2 domain (SH2) and C-terminal domain (CTD). The NTD and CCD are required for 

nuclear translocation and protein-protein interaction, respectively (Levy and Darnell, 2002; Lim 

and Cao, 2006). The DBD is necessary for the recognition of specific DNA sequence elements and 

binding to gene promoters. The SH2 domain is the most conserved domain of the family and is 

required for formation of STAT3 dimers (Lim and Cao, 2006). Phosphorylation of a specific 

tyrosine residue in the CTD of STAT proteins allows the interaction of the SH2 domains of 

monomers and formation of active dimers (Lim and Cao, 2006; Zhong et al., 1994). In the case of 

STAT3, phosphorylation of tyrosine 705 (pY705) is the key event to promote dimerization. 

Binding of cytokines and growth factors to the respective receptors and consequent activation of 

the receptor-associated tyrosine kinases, like Janus Kinases (JAK), induce pY705 (Yu et al., 2009). 

This event is critical to promote dimerization and nuclear translocation of STAT3 and activation of 

STAT3 transcriptional functions (Yu et al., 2009). Non-receptor-associated kinases, such as Src, 

also catalyze Y705 phosphorylation and activate STAT3 signaling. In addition to Y705, STAT3 is 

phosphorylated at serine 727 (pS727) by serine protein kinases (Zhang et al., 1995). pS727 has 

been described to enhance the transcriptional activity of STAT3 (Wen et al., 1995). However, 
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recently pS727 has been reported to control mitochondrial localization of STAT3 and 

mitochondrial functions (Gough et al., 2009; Wegrzyn et al., 2009). Other post-translational 

modifications, like acetylation and methylation, are relevant for STAT3 functions in normal and 

pathological conditions (Kim et al., 2013a; Lee et al., 2012; Yuan et al., 2005).  

Alterations in the STAT3 signaling pathway are associated with different human diseases (O'Shea 

and Plenge, 2012). STAT3 is over-expressed and activated in many human cancers and promotes 

cell proliferation, survival, tumor angiogenesis and immune-evasion (Sansone and Bromberg, 

2012; Yu et al., 2009). Activation of the JAK/STAT3 signaling pathway has been shown to 

contribute to tumor initiation and progression in various cancer models (Yu et al., 2014; Yu et al., 

2009). Recently, activation of STAT3 has been associated with promotion and maintenance of 

cancer stem-like cell (CSC) properties, tumorigenicity and metastatic capability in many human 

cancers, including prostate cancer (Kroon et al., 2013; Marotta et al., 2011; Schroeder et al., 2014; 

Yu et al., 2014). Consistently, in many cancers activation of STAT3 is associated with advanced, 

metastatic disease and clinical progression (Sansone and Bromberg, 2012; Yu et al., 2009). The 

JAK/STAT3 pathway contributes also to reduced response to treatment promoting survival and 

development of resistance after treatment with various kinase inhibitors or androgen deprivation 

therapy (Lee et al., 2014; Schroeder et al., 2014; Sos et al., 2014). We have shown recently that 

activation of the JAK/STAT3 pathway contributes the establishment of immune-tolerance and 

chemoresistance in a prostate cancer mouse model through the secretion of immunosuppressive 

cytokines in the tumor microenvironment (Toso et al., 2014).  

Over-activity of STAT3 in human cancers is frequently the result of deregulation of upstream 

pathways leading to activation of cytokine and growth factor receptor associated tyrosine kinases, 

like JAK family kinases (Grivennikov and Karin, 2008; Sansone and Bromberg, 2012; Yu et al., 

2014). However, alternative pathways of STAT3 activation exist (Yu et al., 2014). 
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Unphosphorylated and S727 phosphorylated STAT3 control transcriptional and 

non-transcriptional functions of STAT3 (Meier and Larner, 2014; Timofeeva et al., 2012). 

Interestingly, in prostate cancer STAT3 has been reported to induce cell transformation and tumor 

development in the absence of pY705 (Qin et al., 2008). The oncogenic effect of STAT3 in this 

system depended on pS727 and transcriptional dependent and independent functions of STAT3 

(Qin et al., 2008). Acetylation and methylation are also crucial for the role of STAT3 in the 

acquisition of cancer stem cell-like phenotype and tumorigenic progression (Kim et al., 2013a; Su 

et al., 2011).    

Because of its central role in multiple oncogenic pathways, STAT3 is an attractive target for 

development of anticancer drugs and great effort has been devoted over the last decade to the 

discovery of selective inhibitors (Debnath et al., 2012; Yu et al., 2009). Inhibitors of STAT3 are 

classified as direct and indirect inhibitors (Benekli et al., 2009; Debnath et al., 2012). Indirect 

inhibitors are those that interfere with cytokine and growth factor receptors or the associated 

kinases that activate STAT3 by phosphorylation. Conversely, direct inhibitors interact with the 

STAT3 protein. Direct STAT3i are expected to block multiple STAT3 functions, like dimerization, 

nuclear translocation and DNA binding (Debnath et al., 2012). Direct inhibitors can be further 

divided according to their target domain, e.g. the NTD, DBD or SH2 domain. Due to its critical 

involvement in STAT3 activation, the SH2 domain is the most attractive target for STAT3i 

(Debnath et al., 2012). Indeed, SH2-targeting compounds constitute the largest class of direct 

STAT3i.  

Many studies have demonstrated that genetic knockout, knockdown and small molecule inhibitors 

of STAT3 prevent tumor development and growth in preclinical models (Chan et al., 2004; 

Kortylewski et al., 2005). However, despite the preclinical evidence that STAT3 would be an ideal 

target for cancer therapy, effective strategies to inhibit STAT3 in the clinic are still lacking. This is 
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largely due to the intrinsic difficulty of targeting directly a transcription factor like STAT3 and the 

diversity of the upstream activating pathways. Consequently, few direct STAT3i have shown 

relevant activity in preclinical models in vivo and have been tested in clinical trials (Debnath et al., 

2012). OPB-31121 has been recently reported to interfere with STAT3 signaling, although the 

underlying mechanism has not been clarified yet (Hayakawa et al., 2013; Kim et al., 2013b). 

OPB-31121 exhibits potent anticancer activity in vitro and in tumor xenografts (Hayakawa et al., 

2013; Kim et al., 2013b) and is currently investigated in a number of clinical trials 

(https://clinicaltrials.gov). Understanding how OPB-31121 interacts with STAT3 and the basis of 

its potent anticancer effect would be highly relevant for further development of this and other 

STAT3i. In this study, we combined in silico and in vitro experiments to investigate how 

OPB-31121 and other small molecule inhibitors interact with STAT3 and the functional 

consequences of these drug-target interactions. Importantly, our study reveals a unique mode of 

interaction of OPB-31121 with the STAT3 SH2 domain not shared by any of the other STAT3i 

tested. These unique features might be at the basis of the compound efficacy and make OPB-31121 

an interesting lead for further clinical development and design of new direct STAT3i. 

 

2. MATERIALS AND METHODS 

2.1. Computational studies 

The crystal structures of STAT3 protein was obtained from the available pdb file 1BG1in the 

Protein Data Bank repository (Becker et al., 1998). All compounds structures were designed and 

optimized using Discovery Studio (DS, v. 2.5, Accelrys Inc., San Diego, CA, USA) (Laurini et al., 

2011). All docking experiments were performed with Autodock 4.3 (Morris et al., 2009), with 

Autodock Tools 1.4.6 on a win64 platform following a consolidated procedure (Giliberti et al., 

2010). The binding free energy, ∆Gbind, between each drug and the protein was estimated resorting 
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to the MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approach. According 

to this well-validated methodology (Laurini et al., 2012), the binding free energy was obtained as 

the sum of the interaction energy between the receptor and the ligand (∆EMM), the solvation free 

energy (∆Gsol), and the conformational entropy contribution (−T∆S), averaged over a series of 

snapshots from the corresponding MDS trajectories. The free energy of binding ∆Gbind and the 

concentration of ligand that inhibits the protein activity by 50% (i.e., IC50) are related by the 

following fundamental equation: ∆Gbind = -RT ln 1/IC50, where R is the gas constant and T is the 

temperature. Thus, once ∆Gbind for a given protein/inhibitor couple is estimated by MM-PBSA 

simulations, the relative IC50 value is also known by virtue of this relationship. The role of the key 

residues identified by PRBFED was further studied by performing computational alanine scanning 

(CAS) experiments (Guo et al., 2012). Accordingly, the absolute binding free energy of each 

mutant protein, in which one of the key residue was replaced with alanine, was calculated with the 

MM/PBSA method and corresponded to the difference in the binding free energy between the 

wild-type (wt) and its alanine mutant (mut) counterpart. 

 

2.2. Cell lines, plasmids, chemicals and antibodies 

Human prostate cancer DU-145 and LNCaP cell lines were purchased from American Type 

Culture Collection and maintained in RPMI supplemented with 10% (FBS) (PAA, Brunschwig, 

Basel, CH). STAT3 SH2 domain (amino acid residues 586-685) was subcloned into pGEX-2T 

vector (GE Healthcare Europe GmbH) from pET28a-STAT3-SH2 domain (GenScript USA Inc) 

using BamHI and EcoRI restriction sites. Mutant constructs were generated using GENEART® 

Site-Directed Mutagenesis System (Life Technologies). OPB-31121 (Otsuka Pharmaceutical, 

Tokyo, Japan), STA-21, and Stattic (ENZO LIFE SCIENCES AG, Lausen, CH), S31.201 and 

Cryptotanshinone (Merck KGaA, VWR, Dietikon, CH) were dissolved in DMSO. IL-6 (10 ng/ml, 
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R&D Systems Europe Ltd., Abingdon, UK), ampicillin (50 µg/ml, Eurobio) and IPTG 

(isopropyl-β-D-thiogalactopyranoside, 1 mM, Promega, Dübendorf, CH) were dissolved in sterile 

water. Antibodies against STAT3, pSTAT3 Tyr705, pSTAT3 Ser727, were purchased from Cell 

Signaling Technology (BIOCONCEPT, Allschwil, CH), and GAPDH from Millipore (Zug, CH). 

 

2.3. Western blotting 

Cells were washed once in PBS and lysed in lysis buffer (25 mM Tris-HCl pH=7.4, 50 mM KCl, 5 

mM EDTA, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS) supplemented with protease and 

phophatase inhibitors cocktail (Roche Diagnostics (Schweiz) AG, Rotkreuz, CH), sodium 

orthovanadate (Na3VO4, Acros Organics) and phenylmethanesulfonylfluoride (PMSF, 

Sigma-Aldrich). After 20 min of incubation on ice samples were centrifuged for 15 min at 4°C and 

proteins were quantified using BCA Protein Assay Kit (Pierce, Perbio Science Switzerland SA, 

Lausanne, CH). Proteins were loaded 10-12% Sprint Next Gel (Amresco, Bioconcept, Allschwil 

CH) and analyzed by immunoblotting. Membranes were blocked for 1 h with 0.2% of I-Block (Life 

Technologies) and then probed overnight at 4°C with primary antibodies and for 1 h with 

horseradish peroxidase (HRP)-conjugated secondary antibodies. Western Bright ECL detection 

system (WITEC AG, Littau, CH) was used for detection. 

 

2.4. Cell viability 

DU145 and LNCaP cells were plated in 96-well plates in phenol red-free RPMI supplemented with 

10% serum. After 24 h cells were treated with the indicated STAT3 inhibitors. Cell viability was 

determined using MTT assay after 72 h (Genini et al., 2012). All assays were performed in 

triplicate and repeated in at least three independent experiments. 
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2.5. Colony forming assay 

Cells were plated in triplicate in 6-well plates. Drugs were added to the medium at increasing 

concentrations. After 10 days cells were fixed and stained with 1% crystal violet in 20% ethanol. 

Colonies were counted with an automated colony counter Alphaimager 3400 (Napoli et al., 2009). 

Results are represented as mean ± SD from 3 independent experiments. 

 

2.6. Expression and purification of GST-STAT3 SH2 domain 

Escherichia coli strain BL21(DE3) (Life Technologies) transformed with the 

pGEX-2T-GST-STAT3_SH2 domain plasmids (WT, S636A, and V637A mutants) or 

pGEX-2T-GST (100 ng of DNA) was grown at 37°C in LB medium containingampicillin (50 

µg/ml) to an OD 600 of 0.6–0.7. Cells were then induced with 1 mM IPTG for 4 h at 37°C and 

subsequently harvested by centrifugation at 4000xg. The bacterial pellet was resuspended in cold 

PBS containing protease inhibitors plus 1 mg/ml of lysozyme (Sigma-Aldrich) and sonicated (30 

seconds of pulsing/30 seconds of pause for 6 times). Triton X-100 (Sigma-Aldrich) was then added 

at afinal concentration of 1% and the lysate was centrifuged for 20 minutes at 4°C. Supernatant was 

filtered (0.45 µm), diluted 1:1 with cold PBS and purified by affinity chromatography using 

GSTrap HP column (GE Healthcare). Fusion proteins were eluted with 10 mM of glutathione, 

reduced, desalted in PBS and concentrated to 1 mg/ml. 

 

2.7. Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) experiments of STAT3i binding to the STAT3 SH2 domain 

were conducted with a Nano ITC Technology (TA Instruments) at 25°C. After temperature 

equilibration, GST-SH2 wt, GST-SH2S636A or GS-SH2V637A mutant protein solutions (10 µM) 
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were titrated with each inhibitor (100 µM in 1% v/v DMSO) by adding 1 µL of injectant to the 

protein solution at intervals of 4 minutes. The titration of a GST-SH2 domain in PBS solution 

containing 1% DMSO v/v with the same inhibitor solutions was used as blank test and to determine 

the heat of dilution of ligand. This reference experiment, carried out in the same way as the titration 

with protein sample, was subtracted from the sample data. The corrected binding isotherms were 

fitted to yield the values of the binding constant (Kd), the stoichiometry (n), and the binding 

enthalpy (∆H) of each STAT3 SH2 domain/inhibitor binding event. Once the Kd for each 

inhibitor/protein was determined, the corresponding free energy of binding ∆Gbind and the IC50 

values were obtained via the above mentioned relationship: ∆Gbind = -RT ln Kd = -RT ln 1/IC50. 

 

2.8. Circular dichroism 

CD spectra from GSH-SH2 domain WT, GST-SH2S636A or GST-SH2V637A mutants  

(0.1 mg ml−1 in 10 mM NaPO4, pH 7.4) were recorded on a Chirascan spectropolarimeter 

(Applied Photophysics) over the wavelength range from 195 to 260 nm at a band width of 1 nm, 

step size of 0.5 nm and 1s per step. The spectra in the far-ultraviolet region required an average of 

five scans and were subtracted from blank spectra performed with GST in buffer.   

 

3. RESULTS 

3.1. In silico analysis of the binding of OPB-31121 to STAT3 

We used various computational approaches to examine in silico the binding of OPB-31121 

(Hayakawa et al., 2013; Kim et al., 2013b) to STAT3 (Fig. 1A). For comparison in our analyses we 

considered other selected STAT3i, like STA-21 (Song et al., 2005), Stattic (Schust et al., 2006), 

S3I.201 (Siddiquee et al., 2007) and Cryptotanshinone (Shin et al., 2009), for which there was 
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some previous evidence of binding to the STAT3 SH2 domain. OPB-31121 was docked onto the 

SH2 domain and then the relevant drug/protein affinities were scored by molecular dynamics 

simulation (MDS) (Fig. 1B). The same approach was used for the other compounds (Fig. S1). 

Tables 1 and S1 show the values of the calculated IC50, free energy of binding ∆Gbind and the 

enthalpic and entropic components predicted for the interaction of each compound with the SH2 

domain obtained from the in silico analyses. The calculated IC50 value for OPB-31121 was in the 

low nanomolar range (IC50,∼18 nM). Notably, this value was about 2-3 orders of magnitude lower 

than the IC50 estimated for the other STAT3i, which ranged from 1.4 to 27.2 µM. 

To understand the basis of the remarkable high affinity of OPB-31121 for STAT3 we performed a 

per-residue deconvolution analysis of the free energy of binding (Fig. 1C). The resulting 

interaction spectrum showed that the residues mostly involved in OPB-31121 binding clustered in 

two regions. Region 1 included residues from Q635 to E638 and region 2 included residues from 

T714 to T717. Other four residues (i.e., W623, K626, I659, and V667) were found to be engaged in 

major stabilizing interactions with OPB-31121. The same procedure was applied to the other 

STAT3i leading to the definition of the STAT3 interaction spectra for each of these compounds 

(Fig. S1E-H). Interestingly, the interaction spectra were compound-specific with very little, if any, 

overlap between them. The interaction region defined for OPB-31121 was clearly distinct from 

those of the other STAT3i. A visual representation of these results is given in Fig. 1D, where each 

drug/STAT3 interaction surface is represented in a different color. Thus, our in silico data indicated 

that OPB-31121 bound with remarkably high affinity to the STAT3 SH2 domain and that the 

binding occurred in a distinct pocket and with different residue specificity compared to other 

STAT3i. 
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3.2 In vitro assessment of the binding of OPB-31121 to the STAT3 SH2 domain 

The binding of OPB-31121 to the SH2 domain of STAT3 was investigated in vitro using 

isothermal titration calorimetry (ITC). Consistent with in silico data, ITC demonstrated high 

affinity binding of OPB-31121 to recombinant GST-tagged STAT3 SH2 domain yielding an 

experimental Kd of 10 nM (Fig. 2A). For comparison we assessed binding of the other STAT3i 

using ITC in the same experimental conditions. S3I.201 bound to the SH2 domain with 

substantially lower affinity compared to OPB-31121 (Kd = 8 µM) (Fig. 2B). All other STAT3i 

showed similarly low affinity binding with experimental Kd in the micromolar range (Fig. S2). 

Notably, these data were in good agreement with the estimated IC50 values determined by MDS 

(Table 1). ITC binding experiments were conducted also with GST protein alone to rule out 

non-specific binding. None of tested compounds showed any interaction with GST (Fig. S3). 

Hence, the in vitro binding assays supported the computational chemistry prediction of high 

affinity binding of OPB-31121 to the STAT3 SH2 domain.  

In addition to higher binding affinity, the in silico analyses predicted also substantially distinct 

binding sites for OPB-31121 and the other STAT3i. In order to test the reliability of this prediction 

we performed competition binding experiments with OPB-31121 and S3I.201. The recombinant 

GST-tagged STAT3 SH2 domain was incubated first with a saturating concentration of S3I.201 

and then titrated with increasing concentrations of OPB-31121 (Fig. 2C). As predicted by the in 

silico data, OPB-31121 binding was not affected by the pre-incubation with S3I.201 showing 

similar Kd as in the absence of S3I.201. These data confirmed the presence of independent, 

non-overlapping binding pockets in the STAT3 SH2 domain for OPB-31121 and other known 

STAT3i. 
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3.3 In silico alanine scanning and in vitro site-directed mutagenesis analysis of the 

OPB-31121 binding site 

To further validate the predicted binding site for OPB-31121 in the STAT3 SH2 domain, we 

selected two residues (S636 and V637) in the drug-target interaction region defined by binding 

energy deconvolution analysis. The role of these two residues was first tested in silico by alanine 

scanning mutagenesis (Fig. 3A-B). Turning either the S636 or V637 residue into alanine affected 

the positioning of OPB-31121 in the binding pocket and greatly reduced the binding affinity 

resulting in a dramatic increase in the estimated IC50 values to 5 µM and 1.1 µM for S636A and 

V637A, respectively (Table 2). As proof of the specificity, we applied the same approach to 

S3I.201. Consistent with the predicted difference in the site of interaction, neither the S636A nor 

V637A mutation affected significantly the binding mode and the estimated binding affinity of 

S3I.201 (Fig. 3C-D and Table 2).  

In parallel with the in silico studies, we performed in vitro site-directed mutagenesis for the same 

residues on the GST-tagged STAT3 SH2 domain and assessed binding by ITC. Correct folding of 

the mutated SH2 domain was determined by comparing circular dichroism (CD) spectra of the 

wild-type and mutant protein (Fig. S4). Both wild type and mutant SH2 domains displayed the 

typical SH2 spectra indicating that the mutations did not affect the native conformation of the 

protein. The S636A and V637A mutations abrogated binding of OPB-31121 in ITC experiments, 

sustaining the validity of the computational model (Fig. 3E-F). Interestingly, the binding of the 

reference compound S3I.201 to the STAT3 SH2 domain was not affected by either mutation, 

showing binding affinities similar to that for the wild-type domain (Fig. 3G-H).  

 

3.4 Inhibition of Y705 and S727 STAT3 phosphorylation by OPB-31121 
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Next, we assessed the ability of OPB-31121 to interfere with STAT3 phosphorylation at the Y705 

and S727 residues in cancer cells. Direct STAT3i would be expected to inhibit the binding of 

multiple kinases to STAT3 and likely prevent phosphorylation of both Y705 and S727. In these 

assays, we used two prostate cancer cell lines that exhibited constitutive (DU145) and IL-6 

inducible (LNCaP) Y705 phosphorylation, respectively. Cells were treated with increasing 

concentrations of OPB-31121 for 16 h. IL-6 was added to LNCaP cells during the last 30 min of the 

incubation to induce pY705. OPB-31121 at concentrations ≥ 5 nM strongly inhibited pY705 in 

both cell lines (Fig. 4A-B). We next determined the kinetics of pY705 inhibition using a dose of 10 

nM of OPB-31121. Significant reduction of STAT3 pY705 was achieved within 4-8 h of 

incubation in both cell lines (Fig.4C-D). We assessed in parallel the effect of OPB-31121 on 

pS727, which in both DU145 and LNCaP cells is constitutively phosphorylated. Interestingly, 

OPB-31121 reduced pS727 with dose dependence and kinetics similar to those observed for pY705 

inhibition in both cell lines (Fig. 4A-D).  

We performed similar experiments with the other STAT3i. All the compounds inhibited pY705 

(Fig. 5A). However, even for the most potent of these compounds (cryptotanshinone) doses ≥ 5 µM 

were needed to significantly affect pY705. S3I.201, STA-21 and Stattic were active at doses ≥ 20 

µM to inhibit pY705 to a comparable level. Notably, these differences in potency reflected closely 

the differences in the binding affinity between OPB-31121 and the other STAT3i. Interestingly, 

when we examined the kinetics of inhibition of pY705 and pS727 by cryptotanshinone and S3I.201 

a reduction of pY705 was seen within 4 h (Fig. S5A-B). However, significant inhibition of pS727 

required longer incubation time (8-16 h). Collectively, these experiments showed that OPB-31121, 

like other STAT3i, reduced both pY705 and pS727. OPB-31121 acted at low doses and within few 

hours of incubation on both pY705 and pS727. Furthermore, the activity of OPB-31121 was not 
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influenced by the preexisting phosphorylation status of STAT3 and similar effects were seen in 

cells with constitutive and inducible phosphorylation at Y705. Notably, in these cellular assays 

OPB-31121 was about 100 to 1000 fold more potent than the other STAT3i tested here, in line with 

the high in vitro binding affinity of this compound for STAT3.  

 

3.5 Antiproliferative activity of OPB-31121 in prostate cancer cells 

OPB-31121 has been recently reported to have anticancer activity in various preclinical cancer 

models (Hayakawa et al., 2013; Kim et al., 2013b). However, the drug has never been tested in 

prostate cancer cells. STAT3 activation and increased Y705 and S727 phosphorylation are 

frequent in human prostate cancer both at the early (androgen-dependent) and late 

(castration-resistant) stages of the disease and are generally associated with poor clinical outcome 

(Culig et al., 2005; Dhir et al., 2002; Mora et al., 2002). Thus, in prostate cancer the availability of 

compounds that could effectively block pY705 and pS727 and STAT3 signaling through the 

corresponding downstream pathways could be highly advantageous. Hence, we assessed the 

effects of OPB-31121 on proliferation of LNCaP and DU145 cells, which are common models of 

androgen-dependent and castration-resistant prostate cancer, respectively. OPB-31121 inhibited 

LNCaP and DU145 cell proliferation very effectively with IC50 values in nanomolar range (18 and 

25 nM) (Fig. 6A). Colony formation was also strongly inhibited by OPB-31121 at doses of 10-50 

nM (Fig. 6B). For comparison we tested the effects of the other STAT3i in both cell lines. All the 

compounds affected cell proliferation, but the doses required to achieve significant effects were 

significantly higher than those of OPB-31121 (Fig. 6A). Higher doses of these STAT3i were also 

required in the clonogenic assays (Fig. 6B). Thus, in line with the higher binding affinity, 

OPB-31121 was substantially more potent in suppressing cell proliferation and colony formation 

compared to other STAT3i.  
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4. DISCUSSION 

STAT3 is a latent cytoplasmic transcription factor whose activity is controlled by various 

post-translational modifications (Yu et al., 2014; Yu et al., 2009). Phosphorylation at Y705 

enhance nuclear localization and transcriptional activity of STAT3, while pS727 has been reported 

to control localization and activity of STAT3 in mitochondria (Levy and Darnell, 2002; Yu et al., 

2014; Yu et al., 2009). STAT3 has an important role in human cancers sustaining neoplastic 

transformation and promoting tumor progression (Yu et al., 2009). Therefore, there is high interest 

in developing STAT3i for cancer therapy (Debnath et al., 2012). OPB-31121 has been recently 

reported to inhibit STAT3 signaling and has relevant anticancer activity in preclinical models in 

vitro and in vivo (Hayakawa et al., 2013; Kim et al., 2013b). Based on its activity in preclinical 

models clinical trials have been initiated with OPB-31121 and are currently ongoing (Hayakawa et 

al., 2013; Kim et al., 2013b). Despite its proven efficacy of OPB-31121 in preclinical models, 

questions remain about its intracellular target and mechanism of action. In this study, we combined 

computational and experimental approaches to define the mode of interaction of OPB-31121 with 

STAT3. For comparison, we performed similar studies with a series of structurally distinct 

STAT3i. To our knowledge, a detailed study of how different small molecules interact with the 

SH2 domain of STAT3 and how their binding mode impact on the biological activity of the 

compounds is missing. Indeed, even slight differences in the interaction site and binding affinity 

might be highly relevant in terms of biological activity and potency of the compounds. 

Interestingly, we found that OPB-31121 has a remarkably high affinity for STAT3 and unique 

mode of interaction with the SH2 domain compared to other STAT3i.  

We used computational docking and MDS to examine the potential binding site of OPB-31121 in 

the SH2 domain of STAT3. The residues in the SH2 domain lining the putative site of binding were 
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identified and those affording the major stabilizing contribution to the binding were investigated by 

free energy deconvolution and in silico alanine scanning mutagenesis. The same computational 

procedures were applied to the other STAT3i with the purpose of a direct comparison of the 

binding modes and sites of interaction. Importantly, these computational predictions were 

validated by in vitro binding assays using ITC and recombinant STAT3 SH2 domain. Both series 

of experiments concurred to show that OPB-31121 binds to STAT3 in the SH2 domain with very 

low Kd. Indeed, both the computationally and experimentally estimated Kd values for OPB-31121 

were 2-3 orders of magnitude lower than those of the other STAT3i tested in this study. Notably, a 

similar ranking of the compounds was obtained in the cell-based assays based on their efficacy on 

STAT3 phosphorylation and cell proliferation. All the data confirmed the substantially higher 

potency of OPB-31121 compared to the other STAT3i. 

In greater details, our in silico analysis identified two distinct binding pockets for small molecule 

inhibitors in the SH2 domain of STAT3: the first is occupied by OPB-31121 and the second pocket 

is common to all other inhibitors tested (Fig.1D). The crystal structure of the STAT3-SH2 domain 

revealed the existence of one hydrophilic and two hydrophobic sub-pockets (Becker et al., 1998). 

Most STAT3i are predicted to bind either to the hydrophilic site, lined by the side chains of the 

K591, R609, S611, and S613 residues, or to a partially hydrophobic region composed by the K592, 

R595, I597, and I634 residues (Fletcher et al., 2008). Our computational analyses confirmed that 

all four STAT3i considered here (i.e., cryptotanshinone, STA-21, Stattic, and S3I-201) fit in these 

two sub-pockets (Fig. 1D and Fig. S1). In contrast, OPB-31121 was found to bind to a distinct 

region that included the third, hydrophobic sub-pocket (Fig. 1B-C). OPB-31121 interacted also 

with a consistently larger number of residues in the SH2 domain compared to the other compounds; 

this in turn contributed to the higher affinity of OPB-31121 for STAT3, as indicated by the 

extremely favorable comparison of estimated IC50 (Table 1) and Kd values (Fig. 2A).  
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The ITC experiments concurred to support the in silico model of the interaction of OPB-31121 and 

the other STAT3i with the STAT3 SH2 domain. Competition experiments and site-directed 

mutagenesis showed the specificity of the interaction site of OPB-31121 in the SH2 domain (Fig. 

2-3). The presence of a distinct sub-pocket and the high binding affinity of OPB-31121 explain in 

part the high efficacy of the compound in inhibiting STAT3 phosphorylation in cells. Furthermore, 

in the case of OPB-31121 inhibition of pY705 and pS727 occurred at similar doses and within the 

same time scale (∼4h) (Fig. 4). This was not the case with other STAT3i, like cryptotanshinone and 

S3I.201, for which the inhibition of pS727 was delayed with respect to pY705 inhibition (Fig. S5). 

Thus, occupying a wider and distinct area in the SH2 domain, OPB-31121 could impair more 

effectively the interaction of STAT3 with kinases and other proteins and prevent simultaneously 

and with higher efficiency phosphorylation of these critical residues than other STAT3i. 

Collectively, our results demonstrate that OPB-31121 binds to the SH2 domain and interferes 

directly with STAT3 activation and signaling. Higher binding affinity is likely to lead to higher 

potency in cellular assays and in vivo, although the compound’s propensity to be internalized in 

cells and metabolized could influence its efficacy in biological systems.  

Interfering with JAK/STAT3 signaling has been proposed as a valid option for treatment of 

prostate cancer (Hedvat et al., 2009; Kroon et al., 2013; Schroeder et al., 2014). However, blocking 

pY705 alone may not be sufficient. pS727 is frequently increased in human prostate tumors and 

has been shown to be sufficient to drive prostate tumorigenesis and progression even 

independently of pY705 (Qin et al., 2008). Furthermore, in preclinical models of prostate cancer 

inactivation of pS727 is sufficient to substantially reduce tumorigenicity (Qin et al., 2008). In line 

with the prominent activation of STAT3 signaling in prostate cancer (Culig et al., 2005; Dhir et al., 

2002; Mora et al., 2002), we tested the activity of OPB-31121 in two prostate cancer cell lines, 
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LNCaP and DU145, representative of androgen-dependent and castration-resistant tumors, 

respectively. We found that OPB-31121 was a potent inhibitor of proliferation and clonogenicity in 

both cell models (Fig. 6). Interestingly, the antiproliferative effect of OPB-31121 was independent 

of the pY705 status and apparently related to the ability of the compounds to block effectively and 

concomitantly both pY705 and pS727. This raises the possibility that the efficacy of OPB-31121 

may not depend exclusively on Y705 activation status and that additional factors should be taken in 

consideration. Together, these findings suggest also that the use of direct STAT3i like OPB-31121 

might be expanded to tumors that do not harbor constitutive pY705 and additional biomarkers 

(e.g., total and pS727 STAT3 protein level) should be considered to identify potentially sensitive 

tumor types.  
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Table 1. Predicted free energy of binding (∆∆∆∆Gbind) and IC50 values for OPB-31121, 

Cryptotanshinone, STA-21, S3I.201, and Stattic in complex with STAT3. 

 OPB-31121 STA-21 Stattic Crypto S3I.201 

∆Gbind (kcal/mol) -10.54 ± 0.77 -6.47 ± 0.88 -6.99 ± 0.79 -8.01 ± 0.61 -6.23 ± 0.89 

IC50 (µM)a 0.0187 17.900 7.400 1.400 27.200 

a
∆Gbind and IC50 of ligand are related by the following fundamental equation: ∆Gbind = -RT ln 1/IC50, where R 

is the gas constant and T is the temperature. Once ∆Gbind for a given protein/ligand couple is estimated by 

MM-PBSA simulations, the relative IC50 value is determined by virtue of this relationship. 
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Table 2. Predicted free energy of binding (∆∆∆∆Gbind), binding energy difference (∆∆∆∆∆∆∆∆Gbind = 

∆∆∆∆Gbind(wild type) – ∆∆∆∆Gbind(mutant), and IC50 values for OPB-31121 and S3I.201 with S636A 

and V637A STAT3 mutants. 

 S636A V637A 

 OPB-31121 S3I.201 OPB-31121 S3I.201 

∆Gbind (kcal/mol) -7.23 ± 0.64 -6.15 ± 0.67 -8.11 ± 0.69 -6.26 ± 0.78 

∆∆Gbind (kcal/mol) -3.31 -0.08 -2.43 +0.03 

IC50 (µM) 5 31.2 1.1 25.9 
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FIGURE LEGENDS 

Figure 1. In silico binding of OPB-31121 to STAT3. (A) Three-dimensional structure of the 

STAT3 protein. The different domains of STAT3 are indicated in different colors indicated both in 

the structure and diagram. (B) Details of the binding site of OPB-31121 in the STAT3 SH2 domain 

obtained from equilibrated MDS snapshots. The protein backbone is portrayed as a transparent sky 

blue ribbon; the main residues involved in drug interactions are shown as labeled colored sticks. 

OPB-31121 is portrayed as atom-colored sticks-and-balls. (C) Interaction spectrum for STAT3 in 

complex with OPB-31121. Only residues for which ∆Gbind is ≥ 0.75 kcal/mol are shown. (D) 

Binding pockets of different inhibitors on the STAT3 SH2 domain highlighted by their respective 

van der Waals surfaces. Dark gray, SH2 domain; blue, OPB-31121; yellow, STA-21; red, 

cryptotanshinone; green, S3I.201. Stattic is hidden by cryptotanshinone that binds to an 

overlapping site. 

 

Figure 2. In vitro binding of OPB-31221 to the STAT3 SH2 domain. (A) Isothermal titration 

calorimetry (ITC) data for the STAT3 SH2 domain/OPB-31121 system. (B) ITC data for the 

STAT3 SH2 domain/S3I.201 system. (C) ITC analysis of OPB-31121 interaction with the STAT3 

SH2 domain after pre-incubation with S3I.201. 

 

Figure 3. Mutational analysis of OPB-31121 binding site in the STAT3 SH2 domain. (A) 

Superposition of the binding site of wild type (light blue) and S636A STAT3 mutant (orange) in 

complex with OPB-31221. (B) Superposition of the binding site of wild type (light blue) and 

V637A STAT3 mutant (golden rod) in complex with OPB-31221. (C) Superposition of the binding 

site of wild type (aquamarine) and S636A STAT3 mutant (sandy brown) in complex with S3I.201. 
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(D) Superposition of the binding site of wild type (aquamarine) and V637A STAT3 mutant 

(salmon) in complex with S3I.201. In all panels drugs are depicted as colored sticks-and-balls, 

while main residues involved in the interactions are labeled and shown as colored sticks. Hydrogen 

atoms, water molecules, ions and counterions are omitted for clarity. (E) ITC data for S636A 

mutant STAT3 SH2 domain in complex with OPB-31121. (F) ITC data for V637A mutant STAT3 

SH2 domain in complex with OPB-31121; (G) ITC data for S636A mutant STAT3 SH2 domain in 

complex with S3I.201; (H) ITC data for V637A mutant STAT3 SH2 domain in complex with 

S3I.201. 

 

Figure 4. Inhibition of STAT3 phosphorylation at Y705 and S727 by OPB-31121. (A-B) STAT3 

phosphorylation in DU145 (A) and LNCaP (B) cells treated with the indicated concentrations of 

OPB-31121 for 16 h. (C-D) STAT3 phosphorylation in DU145 (C) and LNCaP (D) cells incubated 

with OPB-31121 (10 nM) and analyzed at the indicated times. IL-6 was added for 30 min at the end 

of the treatment with OPB-31121 to induce pY705. 

 

Figure 5. Inhibition of STAT3 phosphorylation at Y705 by STA-21, Stattic, Cryptotanshinone, 

and S3I.201 for 16 h in DU145 (A) and LNCaP (B) cells. 

 

Figure 6. Inhibition of cell proliferation and colony formation by STAT3 inhibitors. (A) Cell 

viability determined by MTT assay in DU145 and LNCaP cells incubated with the indicated 

compounds. Left, IC50 values for each compound in the two cell lines. (B) Anchorage-dependent 

clonal growth of DU145 and LNCaP cells treated with the indicated doses of OPB31121, STA-21, 

Stattic, cryptotanshinone, and S3I.201. *P < 0.01. 
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 STAT3 is an attractive target for development of novel anticancer drugs 

 OPB-31121 is a putatively STAT3 inhibitor currently in clinical trials 

 OPB-31121 binds with high affinity to the SH2 domain of STAT3 

 OPB-31121 binds at a novel site in the SH2 domain distinct from other inhibitors 
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Table S1. Enthalpic (Hbind) and entropic (-TSbind) components of the free energy of binding 

(Gbind) predicted for OPB-31121, STA-21, Stattic, Cryptotanshinone and S3I.201 in complex 

with STAT3.  

 OPB-31121 STA-21 Stattic Cryptotanshinone S3I.201 

Hbind, kcal/mol -27.07 ± 0.65 -18.80 ± 0.66 -17.11 ± 0.66 -8.01 ± 0.49 -19.30 ± 0.69 

-TSbind, 

kcal/mol 

16.53 ± 0.42 12.33 ± 0.58 10.12 ± 0.44 14.98 ± 0.36 13.07 ± 0.56 

Gbind, kcal/mol -10.54 ± 0.77 -6.47 ± 0.88 -6.99 ± 0.79 -8.01 ± 0.61 -6.23 ± 0.89 

 

  



Supplementary Figure Legends 

 

Figure S1. In silico binding of small molecule inhibitors to STAT3 SH2 domain. (A-D) Models of 

STA-21 (A), Stattic (B), Cryptotanshinone (C), and S3I.201 (D) bound to the SH2 domain of STAT3 

as obtained from equilibrated MD simulation snapshots. Inhibitors are portrayed as atom-colored balls-

and-sticks. Main residues of the protein involved in the interaction with the drugs are shown as colored 

sticks and labeled. Hydrogen atoms, water molecules, ions and counterions are omitted for clarity. (E-

H) Interaction spectra of STA-21 (E), Stattic (F), Cryptotanshinone (G), and S3I.201 (H) with the SH2 

domain of STAT3 as obtained from the per-residue deconvolution of the corresponding binding free 

energy.  

 

Figure S2. Isothermal titration calorimetry (ITC) data for the STAT3 SH2 domain with STA-21 (A),  

Stattic (B) and Cryptotanshinone (C). 

 

Figure S3. Isothermal titration calorimetry (ITC) data for the GST protein/OPB-31121 (A) and GST 

protein/S3I.201 (B) systems. 

 

Figure S4. Circular dichroism spectra for wild type (A), S636A (B) and V637A mutant (C) STAT3 

proteins. 

 

Figure S5. Inhibition of STAT3 phosphorylation at Y705 and S727 by cryptotanshinone (7 M) and 

S3I.201 (50 M) in DU-145 cells incubated for the indicated time.  

 


