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Abstract 11 

The micro-tomographic technique represents an important tool for the analysis of  the 12 

internal structure in short fibre reinforced polymers samples. For the investigation of 13 

damage mechanisms, detection of the micro-voids within the matrix can be facilitated 14 

by applying a tensile load in-situ during the scan. The investigations here described 15 

started from two micro-CT acquisitions, at different strain levels, of the same 16 

PA6.6GF10 sample. An original procedure for micro-voids identification is proposed, 17 

based on the statistical elaboration of the matrix grey-tones range. In order to validate 18 

the suggested procedure beyond visual inspection, an independent method based on an 19 

optimization approach, which puts to use the two available micro-tomographic sets, was 20 

developed and applied. The effect of the tensile load, which can induce a progression of 21 

the damage within the specimen, was investigated and the relations among strain, fibre 22 

distribution and micro-voids volumetric fraction were studied. Our findings point out 23 

that the mechanisms of damage progression, even under static loading as in this case, 24 

appear to be more complex than those related to the fibre-density induced stress 25 

concentrations alone and require further investigation. 26 
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1. INTRODUCTION 5 

It is well known that the mechanical properties of short fibre reinforced polymers 6 

(SFRP), like stiffness and static or fatigue strength, strongly depend on fibre length and 7 

distribution, [1-8].  8 

A quantitative evaluation of the micro-structure and of its effects on damage 9 

propagation is therefore required to develop accurate models to be used in the design of 10 

short fibre reinforced polymers.  11 

Synchrotron radiation micro-computed tomography (micro-CT) is a high spatial 12 

resolution, non-destructive technique. It has been successfully used to characterize 13 

different types of defects like delamination, matrix cracking, and to detect micro-voids 14 

formation. It represents a promising tool for studying the processes of deformation and  15 

of failure of materials characterized by a complex micro-structure, where different 16 

damage mechanisms, not completely understood yet, act at different scales [9–28].  17 

The presence of micro-voids inside polymer based materials can be detected if a tensile 18 

load is applied during the acquisitions, usually by means of a test-rig designed to be 19 

transparent to the X-rays in the region of the acquisition. In this paper, three typical 20 

aspects of this technique are discussed: (i) an original method based on the statistical 21 

elaboration of the matrix grey-tone distribution is proposed for micro-voids 22 

identification; (ii) the segmentation technique is validated by means of an independent 23 

method implementing an optimization approach and (iii) the effect of the applied load, 24 

which can possibly damage the sample and alter the micro-voids distribution during the 25 

micro-CT acquisitions, is investigated. 26 
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2. EXPERIMENTAL PROCEDURE 1 

2.1. Sample 2 

A PA6.6GF10 specimen of standard ASTM D1822 geometry, 9.6 mm
2
 section, not 3 

been previously loaded, was considered in this work, Fig.1a.  4 

2.2 Image acquisition  5 

The micro-tomographic technique starts from the acquisition of a large number of 6 

radiographic projections of the sample, which is placed on a rotary table and positioned 7 

at different angular positions with respect to the radiation source. In this work, 2400 8 

projections for each tomographic scan were acquired over 360 ° at the SYRMEP 9 

beamline of Elettra, the synchrotron radiation facility in Trieste, with a white beam and 10 

at a source-detector distance of 10 cm.  11 

The cross-sections (slices) of the sample structure were reconstructed from the angular 12 

projections by means of the STPv4.04 software, developed in house at Elettra. A 3D 13 

representation of the internal structure of the short fibres within reinforced polyamide 14 

samples can then be obtained by stacking the slices and can be used as a starting point 15 

for morphological and structural investigations [29-36]. 16 

The images used in this work have a 2.2 micron resolution. At this resolution, the 17 

volume of data collected by examining even small portions of the sample is very large. 18 

For each tomographic scan, the slices were reconstructed in 32 bits (45 MB each slice), 19 

converted to 8 bits, rotated so that the sample axes were aligned with those of the 20 

reconstructed images and cut to fit the sample dimensions, as in [37].  21 

Even if the examined sample had not been loaded before, micro-voids were present 22 

within injection-molded specimen, due to air trapped during the manufacturing process 23 

and formation of volatiles during cure. As discussed in [37], since the polymer matrix 24 

tends to close around the defects, a tensile test-rig must be used to highlight the micro-25 

voids in the micro-CT images. In this work, two different micro-CT scans of the 26 
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specimen were obtained in correspondence to the application of two low intensity strain 1 

levels, ε1 and ε2, respectively: 2 

- Tomo_1, ε1= 0.0013, elongation between the clamps ∆L1= 0.063 mm; 3 

- Tomo_2, ε2 = 0.0056, elongation between the clamps ∆L65= 0.271 mm. 4 

Fig. 1b shows the experimental stress-strain diagram, obtained from specimens of the 5 

same batch on a  servo-hydraulic Instron 8801-A2 machine with a 100kN load cell 6 

directly recording the movements of the mobile grip at a crosshead speed of 1mm/s and 7 

ambient conditions of 20°C, 60% humidity [38]. . The strain levels imposed during the 8 

two tomographic scans Tomo_1 and Tomo_2 are also reported on the diagram. 9 

A rectangular prism in the central part of the specimen (Fig.2a) was considered for the 10 

analyses. The dimensions of the reconstructed volume in Tomo_1 are 2.7720 x 2.7720 x 11 

3.4320 mm (corresponding to 1286 x 1286 pixel x 1560 slices), Fig. 2b. Analysis of the 12 

sample morphology was also performed at a smaller scale by examining 4 sub-sets of 13 

390 slices (0.854 mm), shown in Fig. 2c.  14 

In order to be able to compare the two tomographic scans (Tomo_1 and Tomo_2) of the 15 

same sample, an accurate identification of the homologous volumes required some 16 

degree of attention and was performed manually by exploiting the presence of clearly 17 

recognizable fibre aggregations, similarly to [33]. The relative position of the slices in 18 

the two reconstructions was checked every 50 slices (0.1100 mm). The homologous 19 

volume in Tomo_2 has the same square base of the volume identified in Tomo_1 (the 20 

deformations in the xy plane were not examined) and has a slightly higher number of 21 

slices in the z-direction: 1286 x 1286 pixels x 1568 slices corresponding to 2.7720 x 22 

2.7720 x 3.4496 mm, due to the different elongation imposed on the specimen during 23 

the scans. The four Tomo_2 sub-sets were identified in the same way, and different 24 

elongations were registered in the different sub-sets.   25 

3. IMAGE ANALYSES 26 
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The 8-bit images range of grey-tones is 0-255. The grey tones histogram of a 1 

tomographic image results from radiation absorption in the different parts of the sample 2 

and from possible phase contrast effects, which in this work we tried to avoid by 3 

limiting the sample-detector distance during the scans. In our images, the glass fibre is 4 

the highest absorbing phase and appears of light tone, micro-voids are virtually 5 

transparent to the radiation and appear dark, while the polyamide matrix, of 6 

intermediate absorption properties, occupies the central part of the histogram. Given the 7 

low fibre content and the limited amount of damage, the matrix phase occupies the most 8 

relevant part of both histograms, shown in Fig.3 9 

The segmentation process consists in setting the threshold values that are most 10 

appropriate for an unambiguous identification of the phases within the sample, in this 11 

case fibre, matrix and micro-voids. In this work, original methods were developed for 12 

the matrix/micro-voids segmentation and its validation. 13 

3.1. Identification of fibre 14 

Since the glass fibre fraction charging the sample is known, the fibre threshold can be 15 

obtained by requiring that the fibre volumetric fraction (FV/TV) in the reconstructed 16 

volume matches the fibre volumetric fraction imposed by the manufacturing process, as 17 

suggested in [3]. In this work, a fiber fraction of 10% by weight corresponds to a 4.68% 18 

volume fraction and to a threshold value of 106 and 108 for the Tomo_1 and the 19 

Tomo_2 tomographic set respectively, so that the grey-tone values from 106 to 255 and 20 

from 108 to 255 identify fiber in the two tomograms. 21 

3.2. Identification of matrix and micro-voids 22 

Specific methods and robust algorithms for micro-voids segmentation in micro-23 

tomographic images are required in the study of damage propagation mechanisms. The 24 

original technique adopted in this work for the evaluation of the micro-voids threshold 25 
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is of general value and starts from the identification of the matrix grey-tones range and 1 

their statistical elaboration. 2 

The reconstructed volumes Tomo_1 and Tomo_2 were divided and examined in 16 3 

stacks of 100 slices. A volume clearly made only of matrix, with no fibre and no micro-4 

voids, was selected in each one of the stacks. Each one of these matrix-only volumes 5 

was 56x56 pixel in the xy plane and consisted of 5 slices (Fig.4) so that a total number 6 

of 15,680 matrix-only voxels were available for each tomographic set. The mean (µ) 7 

and the standard deviation (σ) of the matrix grey-tone distribution were computed for 8 

each tomographic set, as reported in Table 1. The lower threshold value for the matrix 9 

phase was selected at µ−3.5σ, which in both sets corresponded to the first grey-tone 10 

value with a minimum of 100 counts or more out of the 15,680 available. 11 

It can be argued that, given the low percentage of fibre charge in this sample, the 12 

selection of the matrix-only volumes was a relatively easy task. Nevertheless, the 13 

method is of general value and can be easily extended for the analysis of samples that 14 

are denser in fibre, for example by micro-CT scanning a small reference volume of 15 

uncharged matrix together with the specimen.  16 

A visual inspection, an example of which is shown in Fig. 5a, can provide a first 17 

confirmation of the adopted threshold value. In Fig. 5b, the structures of fiber and 18 

micro-voids are highlighted in a longitudinal section of the reconstructed sample, 19 

depicting a situation in agreement with the model proposed by Horst and Spoormaker 20 

[39], with a preferred localization of micro-voids at the fibre ends. 21 

An original independent method, based on an optimization approach, was further 22 

adopted to confirm these threshold values, as discussed in section 5.  23 

3.3 Morphological analyses 24 
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Numerous methods have been proposed in literature in order to describe the 1 

morphological properties of a two-phase material. The Mean Intercept Length, MIL, is a 2 

global method that has been successfully applied to describe the fibre orientation in 3 

SFRP  from micro-CT scans [29-36]. The MIL is computed by superimposing a grid of 4 

parallel lines in several 3D directions to the image of the reconstructed volume and by 5 

dividing the length of the grid by the number of transitions in a same phase [40]. The 6 

3D locus of the MIL measurements can be approximated by an ellipsoid and therefore 7 

be described by a tensor. The eigenvectors correspond to the principal directions of the 8 

anisotropic structure and the normalized eigenvalues, Hi, quantify the phase 9 

organization along the principal directions. An Index pf Anisotropy can be defined: 10 

IA = 1 - MIN (Hi) / MAX (Hi) (1) 11 

where IA = 0 for perfect isotropy and IA = 1 at the other extreme. 12 

The morphological analyses were carried out in Quant3D [41]. 13 

4 RESULTS 14 

4.1 Reconstructed specimen volume 15 

The strain increment imposed in the examined portion of the specimen between 16 

Tomo_1 and Tomo_2 was 0.005, as computed from the number N of slices needed to 17 

represent the two homologous volumes: 18 

                              � =
�����

��
=

��	
	_����	
	_


��	
	_

                  (1) 19 

where Li and Lf  represent the length of the sample in the Tomo_1 and Tomo2 20 

conditions respectively. 21 

At the applied strain, the volume fraction of voids (VV/TV) increased from 5.065% in 22 

Tomo_1  to 5.108% in Tomo_2. 23 

The MIL rose diagrams of the fibre distributions in the reconstructed volumes of 24 

Tomo_1 and Tomo_2 is shown in Fig.6. The plots clearly indicate that the fibre 25 
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orientations are primarily directed along the specimen longitudinal axis and that the 1 

structure is transversely isotropic (the fibre orientation distribution is symmetric about 2 

the principal direction). The fibre MIL Index of Anisotropy remains unchanged 3 

(IA=0.57) between Tomo_1 and Tomo_2, demonstrating that the strain increase applied 4 

between the two acquisitions does not alter the fibre distribution in the specimen.  5 

As already mentioned, the volume fraction of micro-voids increases with the applied 6 

strain, but this is not the only effect, since the micro-voids tend to elongate in the 7 

loading direction, as evidenced by the shape of the MIL rose diagram, as shown in 8 

Fig.7, and by the values of the Anisotropy Index in Tomo_1, IA = 0.63, and Tomo_2, 9 

IA = 0.65. 10 

4.2 Reconstructed sub-sets 11 

In Fig.8, the fibre volumetric fraction in the four reconstructed sub-set (shown in Fig.2c) 12 

is reported for the two tomographic sets. It can be noted that the FV/TV local value does 13 

not change between the homologous sub-sets, thus confirming that the examined 14 

volumes are homologous.  15 

Strain in the 4 sub-sets, computed with (1), ranged from a lowest value of 0.0025 to a 16 

highest value of 0.0076, as shown in Fig. 9. 17 

Also the local micro-voids volumetric fraction (VV/TV) was recognized to vary among 18 

the 4 sub-sets of each tomographic set, as shown in Fig. 10. It can be noted that the 19 

maximum strain and the peak volumetric fractions of fibre and micro-voids were all 20 

registered in the same sub-set. 21 

As the applied strain increases between Tomo_1 and Tomo_2, the volume fraction of 22 

voids (VV/TV) increases with similar trends in each examined subset, Fig.10. The 23 

correlation coefficient between the subsets volume fraction of voids in Tomo_1 and in 24 

Tomo_2  is high, R² = 0.888. At a local level, the micro-voids and the fibre volumetric 25 

fractions in Tomo_1 appear to be strongly correlated, R² = 0.924. The correlation 26 
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between the micro-voids and the fibre volumetric fraction in Tomo_2 is less 1 

pronounced, R² = 0.710.  These results indicate that the initial micro-voids formation is 2 

more likely to occur in areas of local higher fiber density, coherently to what observed 3 

on a qualitative level in [25]. 4 

5. VALIDATION OF THE MATRIX/MICRO-VOIDS THRESHOLD VALUE 5 

Starting with the two available micro-tomographic sets, it was possible to develop an 6 

independent method for the validation of the threshold value for matrix and micro-voids 7 

segmentation.  8 

First of all, it must be considered that small variations in the beam parameters, which 9 

are always possible between two different acquisitions, are reflected in this work by a 10 

systematic difference of 2 grey-tones between all the corresponding thresholds found 11 

for Tomo_1 and Tomo_2 sets, see Table 1. The validation procedure applied in this 12 

work is based on an optimization approach and requires a single threshold value for the 13 

two tomographic sets. The tonal range of Tomo_2 was therefore shifted of two values in 14 

order to conform with that of Tomo_1. In this work, 17 pairs of homologous slices, 15 

evenly distributed along the reconstructed specimen volume, were considered. The tonal 16 

range shift had a negligible effect on the micro-voids distribution, since only a total of 17 

20 pixels out of 28.114.532 were lost in the 17 slices. With this expedient, when a slice 18 

in Tomo_1 is subtracted from the homologous one in Tomo_2 the difference between 19 

the two images represents the micro-voids deformations, caused by the sample 20 

elongation between the two scans (and the possible artifacts).  21 

A second, straightforward, consideration is that any modification of the threshold value 22 

has a contrasting result on the volume fractions of matrix and of voids respectively, i.e. 23 

if the threshold value is lowered, the volume fraction of matrix increases and the 24 

volume fraction of voids decreases. These aspects can be considered in an optimization 25 
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framework, and the problem of separating the micro-voids from the matrix can be seen 1 

as the search for the best compromise. 2 

A large number of multi-objective evolutionary algorithms have been proposed and 3 

successfully applied [42–48]. Without going into the details of the mathematical and 4 

implementation issues of the optimization strategy, it may suffice to cite that the 5 

MOGA, Multi-Objective Genetic Algorithm including selection, crossover and 6 

mutation, implemented in the modeFRONTIER [49] multi-objective tool, was adopted.  7 

For the 17 homologous images, the histograms of Tomo_1, Tomo_2 and of the images 8 

differences were used in input, and the conflicting, objective functions, or target goals, 9 

were the contemporary maximization of the cumulative distributions of the grey-tones  10 

corresponding to the matrix in Tomo_1 (Ob1) and in Tomo_2 (Ob2) and to the micro-11 

voids in the image differences (Ob3), as shown in the workflow outlined in Fig. 11. 12 

Equal weights were imposed on the objective functions. The number of generations was 13 

set to 1000, the probability of cross-over to 0.5, the probability of selection to 0.05 and 14 

the probability of mutation to 0.05. The final result of the simulation is described by the 15 

Pareto front, which represents the locus of points that tend to maximize the variables. In 16 

this area, an improvement in one objective necessarily leads to a deterioration of the 17 

other objectives. The optimal solution is usually chosen on the knee of the Pareto front. 18 

The solution corresponding to the adopted threshold value is highlighted in Fig. 12, 19 

confirming the effectiveness of the method described in Section 3. 20 

6. DISCUSSION AND CONCLUSIONS 21 

This paper examines some typical features of the application of the micro-tomographic 22 

technique for the analysis of damage mechanisms in SFRP samples. 23 

Two micro-CT scans of the same sample were acquired at different strain levels and the 24 

elongations within the samples were computed from the number of slices needed to 25 

represent the two homologous volumes in the two reconstructions. As expected with the 26 
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chosen specimen geometry and the local variations in fibre distribution, strain 1 

distribution was not uniform along the Z axis. Micro-CT and Digital Volume 2 

Correlation have recently been used to characterize the complex mechanical behavior of 3 

heterogeneous and fibrous materials [51, 52]. . This Our use of the reinforce fibres as 4 

markers can be regarded as a first step towards the development of Digital Volume 5 

Correlation (DVC) applications or specific 3D methods to estimate the displacements 6 

and the strain field within the reconstructed volume of SFRP specimens, allowing new 7 

insights on their behavior. 8 

A general procedure for micro-voids identification in micro-CT analyses was proposed, 9 

based on the identification and statistical elaboration of the matrix grey-tones range. 10 

In order to validate the suggested procedure beyond visual inspection, an independent 11 

method based on an optimization approach, which puts to use the two available micro-12 

tomographic sets, was developed.  13 

Although it was recognized that clusters of fibres, resulting in an increased fibre 14 

volumetric fraction at the local level, strongly facilitate the formation of micro-voids, 15 

our findings point out that the mechanisms of damage progression, even under static 16 

loading as in this case, appear to be more complex than those related to the fibre-density 17 

induced stress concentrations alone and require further investigation. 18 

Moreover, it was recognized that, although the fibre distribution for two small strain 19 

values, located in the elastic range, is not altered by the load change,  not only the 20 

micro-voids volume fraction is increased, but also the micro-voids shape and 21 

distribution are influenced. This observation leads to an important methodological 22 

consequence. At present, the use of a test-rig to apply a tensile load during the 23 

acquisitions appears to be essential for the detection of the micro-voids with the 24 

tomographic technique. However, our findings show that the results obtained with this 25 

procedure, for example in terms of micro-voids volumetric fraction, cannot be 26 

Page 11 of 30 Strain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

considered as absolute values, but can only be used to compare specimens of the same 1 

type and subjected to the same load. 2 

Overall, even though the relationships observed between the distributions of micro-3 

voids, fibres and strain cannot be considered sufficient to express any general 4 

conclusion on the behavior of short fibre reinforced composites and far more extended 5 

analyses are under way, the results here discussed represent a step towards a more 6 

extensive exploitation of the potential offered by the micro-tomographic analyses in the 7 

study of the damage mechanisms of SFRP. 8 
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TABLES 

Table 1: Mean and standard deviation of the matrix phase in the selected matrix-only volumes and 

thresholds for the phase identification in the two tomographic sets. 

 

µ                     µ                     µ                     µ                     

(matrix-only) 

σ                     σ                     σ                     σ                     

(matrix-only)    

Micro-voids 

thresholds 

Matrix 

thresholds 

Fiber 

thresholds 

Tomo_1 87.5 3 0-76 77-105 106-255 

Tomo_2 89.5 3 0-78 79-107 108-255 
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Figure 1: (a) Geometry of the standard ASTM D1822 specimen, and (b) stress-strain diagram from 4 
specimens of the same batch. The strain levels imposed during the two tomographic acquisitions Tomo_1 

and Tomo_2 are also reported.  

175x69mm (300 x 300 DPI)  

 

 

Page 19 of 30 Strain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

(Figure 2: (a) Selection of the acquired volume in the central part of the specimen, (b) longitudinal view of 
the reconstructed specimen volume in Tomo_1, 1286 x 1286 pixel x 1560 slices, (c) identification of the 4 

examined sub-sets of 390 slices.  

82x35mm (300 x 300 DPI)  
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Figure 3: Histograms of the tomographic scans.  
95x41mm (300 x 300 DPI)  
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Figure 4: An example of matrix-only volume selection in the homologous regions of 5 successive slices, 
Tomo_1.  

175x27mm (300 x 300 DPI)  
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Figure 5: (a) Detail of the slice 999, Tomo_1 (above) and grey-tone plot along the yellow line, with 
indication of the threshold values (below); (b) zoom of a segmented longitudinal section, slices 799 to 1298, 

Tomo_1, where the fibres are depicted in white, the matrix is shown grey and the micro-voids are 

highlighted in red.  
82x41mm (300 x 300 DPI)  
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Figure 6: MIL rose diagrams of the fibre distributions in the reconstructed volumes of Tomo_1  and Tomo_2. 
82x45mm (300 x 300 DPI)  
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Figure 7: MIL rose diagrams of the micro-voids distributions in the reconstructed volumes of Tomo_1 and 
Tomo_2.  

82x47mm (300 x 300 DPI)  
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Figure 8: Local distribution of the fibre volumetric fraction (FV/TV) in the reconstructed sub-sets.  
82x57mm (300 x 300 DPI)  
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Figure 9: Local distribution of strain (ε) in the reconstructed sub-sets.  

82x52mm (300 x 300 DPI)  
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Figure 10: Local distribution of the micro-voids volumetric fraction (VV/TV) in the reconstructed sub-sets.  
82x56mm (300 x 300 DPI)  
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Figure 11: ModeFRONTIER workflow. The target goals are the contemporary maximization of the cumulative 
distributions of the grey-tones corresponding to the matrix in Tomo_1 (Ob1) and in Tomo_2 (Ob2) and to 

the micro-voids in the image differences (Ob3).  
82x64mm (300 x 300 DPI)  
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Figure 12: Pareto front resulting from the MOGA modeFRONTIER simulation. The solution adopted is 
highlighted.  

82x54mm (300 x 300 DPI)  
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