

THRESHOLD IDENTIFICATION FOR MICRO-TOMOGRAPHIC DAMAGE CHARACTERIZATION IN A SHORT FIBRE REINFORCED POLYMER

Journal:	Strain
Manuscript ID:	STRAIN-1036.R2
Manuscript Type:	Full Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Cosmi, Francesca; University of Trieste, Department of Engineering and Architecture Ravalico, Camilla; University of Trieste, Department of Engineering and Architecture
Keywords:	Damage mechanics, Micro-tomography, Porosity, Micro-voids, Short-fibre composites

1	THRESHOLD IDENTIFICATION FOR MICRO-TOMOGRAPHIC DAMAGE
2	CHARACTERIZATION IN A SHORT FIBRE REINFORCED POLYMER
3	
4	Short running head: THRESHOLD IDENTIFICATION FOR MICRO-CT
5	DAMAGE CHARACTERIZATION IN A SFRP
6	F. Cosmi [*] , C. Ravalico
7	^a Università degli Studi di Trieste – Dipartimento di Ingegneria e Architettura,
8	Via A. Valerio 10, 34127 Trieste, e-mail: <u>cosmi@units.it</u>
9	*Corresponding author. Tel.: +39 0405583431; fax: +39 0405583812.
10	E-mail address: cosmi@units.it (F. Cosmi).
11	Abstract
12	The micro-tomographic technique represents an important tool for the analysis of -the
13	internal structure in short fibre reinforced polymers samples. For the investigation of
14	damage mechanisms, detection of the micro-voids within the matrix can be facilitated
15	by applying a tensile load in-situ during the scan. The investigations here described
16	started from two micro-CT acquisitions, at different strain levels, of the same
17	PA6.6GF10 sample. An original procedure for micro-voids identification is proposed,
18	based on the statistical elaboration of the matrix grey-tones range. In order to validate
19	the suggested procedure beyond visual inspection, an independent method based on an
20	optimization approach, which puts to use the two available micro-tomographic sets, was
21	developed and applied. The effect of the tensile load, which can induce a progression of
22	the damage within the specimen, was investigated and the relations among strain, fibre
23	distribution and micro-voids volumetric fraction were studied. Our findings point out
24	that the mechanisms of damage progression, even under static loading as in this case,
25	appear to be more complex than those related to the fibre-density induced stress
26	concentrations alone and require further investigation.

-
2
3
4
5
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
22
33
34
35
36
27
31
38
39
40
11
41
42
43
44
15
40
46
47
48
10
+3
50
51
52
53
55
54
55
56
57
50
SQ
59

60

2 Keywords: Damage mechanics, Micro-tomography, Micro-voids, Short-fibre

3 composites

1

4

5 1. INTRODUCTION

6 It is well known that the mechanical properties of short fibre reinforced polymers
7 (SFRP), like stiffness and static or fatigue strength, strongly depend on fibre length and
8 distribution, [1-8].

9 A quantitative evaluation of the micro-structure and of its effects on damage

propagation is therefore required to develop accurate models to be used in the design ofshort fibre reinforced polymers.

Synchrotron radiation micro-computed tomography (micro-CT) is a high spatial
resolution, non-destructive technique. It has been successfully used to characterize
different types of defects like delamination, matrix cracking, and to detect micro-voids
formation. It represents a promising tool for studying the processes of deformation and
of failure of materials characterized by a complex micro-structure, where different
damage mechanisms, not completely understood yet, act at different scales [9–28].
The presence of micro-voids inside polymer based materials can be detected if a tensile

19 load is applied during the acquisitions, usually by means of a test-rig designed to be

20 transparent to the X-rays in the region of the acquisition. In this paper, three typical

21 aspects of this technique are discussed: (i) an original method based on the statistical

22 elaboration of the matrix grey-tone distribution is proposed for micro-voids

identification; (ii) the segmentation technique is validated by means of an independent
method implementing an optimization approach and (iii) the effect of the applied load,
which can possibly damage the sample and alter the micro-voids distribution during the
micro-CT acquisitions, is investigated.

-

1			
2			
3			
4 5			
6 7	1	2. EXPERIMENTAL PROCEDURE	
8 9 10 11 12	2	2.1. Sample	
	3	A PA6.6GF10 specimen of standard ASTM D1822 geometry, 9.6 mm ² section, not	
	4	been previously loaded, was considered in this work, Fig.1a.	
14 15	5	2.2 Image acquisition	
16 17	6	The micro-tomographic technique starts from the acquisition of a large number of	
18	7	radiographic projections of the sample, which is placed on a rotary table and positioned	
20	8	at different angular positions with respect to the radiation source. In this work, 2400	
22	9	projections for each tomographic scan were acquired over 360 $^{\circ}$ at the SYRMEP	
23 24	10	beamline of Elettra, the synchrotron radiation facility in Trieste, with a white beam and	
25 26	11	at a source-detector distance of 10 cm.	
27	12	The cross-sections (slices) of the sample structure were reconstructed from the angular	
29 30	13	projections by means of the STPv4.04 software, developed in house at Elettra. A 3D	
31 32	14	representation of the internal structure of the short fibres within reinforced polyamide	
33 34	15	samples can then be obtained by stacking the slices and can be used as a starting point	
35 36	16	for morphological and structural investigations [29-36].	
37 38	17	The images used in this work have a 2.2 micron resolution. At this resolution, the	
39 40	18	volume of data collected by examining even small portions of the sample is very large.	
41 42	19	For each tomographic scan, the slices were reconstructed in 32 bits (45 MB each slice),	
43 44	20	converted to 8 bits, rotated so that the sample axes were aligned with those of the	
45 46	21	reconstructed images and cut to fit the sample dimensions, as in [37].	
47 48	22	Even if the examined sample had not been loaded before, micro-voids were present	
49 50	23	within injection-molded specimen, due to air trapped during the manufacturing process	
51 52	24	and formation of volatiles during cure. As discussed in [37], since the polymer matrix	
53 54	25	tends to close around the defects, a tensile test-rig must be used to highlight the micro-	
55 56	26	voids in the micro-CT images. In this work, two different micro-CT scans of the	
57 58		3	

1	specimen were obtained in correspondence to the application of two low intensity strain
2	levels, ε_1 and ε_2 , respectively:
3	- Tomo_1, ε_1 = 0.0013, elongation between the clamps ΔL_1 = 0.063 mm;
4	- Tomo_2, $\varepsilon_2 = 0.0056$, elongation between the clamps $\Delta L_{65} = 0.271$ mm.
5	Fig. 1b shows the experimental stress-strain diagram, obtained from specimens of the
6	same batch on a servo-hydraulic Instron 8801-A2 machine with a 100kN load cell
7	directly recording the movements of the mobile grip at a crosshead speed of 1mm/s and
8	ambient conditions of 20°C, 60% humidity [38] The strain levels imposed during the
9	two tomographic scans Tomo_1 and Tomo_2 are also reported on the diagram.
10	A rectangular prism in the central part of the specimen (Fig.2a) was considered for the
11	analyses. The dimensions of the reconstructed volume in Tomo_1 are 2.7720 x 2.7720 x
12	3.4320 mm (corresponding to 1286 x 1286 pixel x 1560 slices), Fig. 2b. Analysis of the
13	sample morphology was also performed at a smaller scale by examining 4 sub-sets of
14	390 slices (0.854 mm), shown in Fig. 2c.
15	In order to be able to compare the two tomographic scans (Tomo_1 and Tomo_2) of the
16	same sample, an accurate identification of the homologous volumes required some
17	degree of attention and was performed manually by exploiting the presence of clearly
18	recognizable fibre aggregations, similarly to [33]. The relative position of the slices in
19	the two reconstructions was checked every 50 slices (0.1100 mm). The homologous
20	volume in Tomo_2 has the same square base of the volume identified in Tomo_1 (the
21	deformations in the xy plane were not examined) and has a slightly higher number of
22	slices in the z-direction: 1286 x 1286 pixels x 1568 slices corresponding to 2.7720 x
23	2.7720 x 3.4496 mm, due to the different elongation imposed on the specimen during
24	the scans. The four Tomo_2 sub-sets were identified in the same way, and different
25	elongations were registered in the different sub-sets.
26	3. IMAGE ANALYSES

.

Strain

1	The 8-bit images range of grey-tones is 0-255. The grey tones histogram of a
2	tomographic image results from radiation absorption in the different parts of the sample
3	and from possible phase contrast effects, which in this work we tried to avoid by
4	limiting the sample-detector distance during the scans. In our images, the glass fibre is
5	the highest absorbing phase and appears of light tone, micro-voids are virtually
6	transparent to the radiation and appear dark, while the polyamide matrix, of
7	intermediate absorption properties, occupies the central part of the histogram. Given the
8	low fibre content and the limited amount of damage, the matrix phase occupies the most
9	relevant part of both histograms, shown in Fig.3
10	The segmentation process consists in setting the threshold values that are most
11	appropriate for an unambiguous identification of the phases within the sample, in this
12	case fibre, matrix and micro-voids. In this work, original methods were developed for
13	the matrix/micro-voids segmentation and its validation.
14	3.1. Identification of fibre
15	Since the glass fibre fraction charging the sample is known, the fibre threshold can be
16	obtained by requiring that the fibre volumetric fraction (FV/TV) in the reconstructed
17	volume matches the fibre volumetric fraction imposed by the manufacturing process, as
18	suggested in [3]. In this work, a fiber fraction of 10% by weight corresponds to a 4.68%
19	volume fraction and to a threshold value of 106 and 108 for the Tomo_1 and the
20	Tomo_2 tomographic set respectively, so that the grey-tone values from 106 to 255 and
21	from 108 to 255 identify fiber in the two tomograms.
22	3.2. Identification of matrix and micro-voids
23	Specific methods and robust algorithms for micro-voids segmentation in micro-
24	tomographic images are required in the study of damage propagation mechanisms. The
25	original technique adopted in this work for the evaluation of the micro-voids threshold
	5

2	
~~	
0	
4	
E	
Э	
6	
7	
1	
8	
9	
40	
10	
11	
10	
12	
13	
1/	
14	
15	
16	
47	
17	
18	
10	
13	
20	
21	
20	
22	
23	
21	
24	
25	
26	
20	
27	
28	
20	
29	
30	
21	
51	
32	
33	
00	
34	
35	
26	
30	
37	
38	
00	
39	
40	
11	
41	
42	
42 43	
42 43	
42 43 44	
42 43 44 45	
42 43 44 45 46	
42 43 44 45 46	
42 43 44 45 46 47	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48	
42 43 44 45 46 47 48 49	
42 43 44 45 46 47 48 49 50	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51	
42 43 44 45 46 47 48 49 50 51 52	
42 43 44 45 46 47 48 49 50 51 52 53	
42 43 44 45 46 47 48 49 50 51 52 53 5	
42 43 44 45 46 47 48 49 50 51 52 53 54	
42 43 44 45 46 47 48 49 50 51 52 53 55	
42 43 44 45 46 47 48 95 51 52 53 55 55	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 6	
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	
42 43 44 45 46 47 48 9 50 51 52 53 55 56 57 58	
42 43 44 45 46 47 48 95 51 52 53 45 56 57 85	
42 43 44 45 46 47 48 95 51 52 53 54 55 56 57 58 9	

1

is of general value and starts from the identification of the matrix grey-tones range and
 their statistical elaboration.

3	The reconstructed volumes Tomo_1 and Tomo_2 were divided and examined in 16
4	stacks of 100 slices. A volume clearly made only of matrix, with no fibre and no micro-
5	voids, was selected in each one of the stacks. Each one of these matrix-only volumes
6	was 56x56 pixel in the xy plane and consisted of 5 slices (Fig.4) so that a total number
7	of 15,680 matrix-only voxels were available for each tomographic set. The mean (μ)
8	and the standard deviation (σ) of the matrix grey-tone distribution were computed for
9	each tomographic set, as reported in Table 1. The lower threshold value for the matrix
10	phase was selected at μ -3.5 σ , which in both sets corresponded to the first grey-tone
11	value with a minimum of 100 counts or more out of the 15,680 available.
12	It can be argued that, given the low percentage of fibre charge in this sample, the
13	selection of the matrix-only volumes was a relatively easy task. Nevertheless, the
14	method is of general value and can be easily extended for the analysis of samples that
15	are denser in fibre, for example by micro-CT scanning a small reference volume of
16	uncharged matrix together with the specimen.
17	A visual inspection, an example of which is shown in Fig. 5a, can provide a first
18	confirmation of the adopted threshold value. In Fig. 5b, the structures of fiber and
19	micro-voids are highlighted in a longitudinal section of the reconstructed sample,
20	depicting a situation in agreement with the model proposed by Horst and Spoormaker
21	[39], with a preferred localization of micro-voids at the fibre ends.
22	An original independent method, based on an optimization approach, was further
23	adopted to confirm these threshold values, as discussed in section 5.
24	3.3 Morphological analyses

Strain

1	Numerous methods have been proposed in literature in order to describe the
2	morphological properties of a two-phase material. The Mean Intercept Length, MIL, is a
3	global method that has been successfully applied to describe the fibre orientation in
4	SFRP from micro-CT scans [29-36]. The MIL is computed by superimposing a grid of
5	parallel lines in several 3D directions to the image of the reconstructed volume and by
6	dividing the length of the grid by the number of transitions in a same phase [40]. The
7	3D locus of the MIL measurements can be approximated by an ellipsoid and therefore
8	be described by a tensor. The eigenvectors correspond to the principal directions of the
9	anisotropic structure and the normalized eigenvalues, Hi, quantify the phase
10	organization along the principal directions. An Index pf Anisotropy can be defined:
11	IA = 1 - MIN (Hi) / MAX (Hi) (1)
12	where $IA = 0$ for perfect isotropy and $IA = 1$ at the other extreme.
13	The morphological analyses were carried out in Quant3D [41].
14	4 RESULTS
15	4.1 Reconstructed specimen volume
16	The strain increment imposed in the examined portion of the specimen between
17	Tomo_1 and Tomo_2 was 0.005, as computed from the number N of slices needed to
18	represent the two homologous volumes:
19	$\varepsilon = \frac{L_f - L_i}{L_i} = \frac{N_{Tomo_2} - N_{Tomo_1}}{N_{Tomo_1}} \tag{1}$
20	where L_i and L_f represent the length of the sample in the Tomo_1 and Tomo2
21	conditions respectively.
22	At the applied strain, the volume fraction of voids (VV/TV) increased from 5.065% in
23	Tomo_1 to 5.108% in Tomo_2.
24	The MIL rose diagrams of the fibre distributions in the reconstructed volumes of
25	Tomo_1 and Tomo_2 is shown in Fig.6. The plots clearly indicate that the fibre

1	orientations are primarily directed along the specimen longitudinal axis and that the
2	structure is transversely isotropic (the fibre orientation distribution is symmetric about
3	the principal direction). The fibre MIL Index of Anisotropy remains unchanged
4	(IA=0.57) between Tomo_1 and Tomo_2, demonstrating that the strain increase applied
5	between the two acquisitions does not alter the fibre distribution in the specimen.
6	As already mentioned, the volume fraction of micro-voids increases with the applied
7	strain, but this is not the only effect, since the micro-voids tend to elongate in the
8	loading direction, as evidenced by the shape of the MIL rose diagram, as shown in
9	Fig.7, and by the values of the Anisotropy Index in $Tomo_1$, IA = 0.63, and $Tomo_2$,
10	IA = 0.65.
11	4.2 Reconstructed sub-sets
12	In Fig.8, the fibre volumetric fraction in the four reconstructed sub-set (shown in Fig.2c)
13	is reported for the two tomographic sets. It can be noted that the FV/TV local value does
14	not change between the homologous sub-sets, thus confirming that the examined
15	volumes are homologous.
16	Strain in the 4 sub-sets, computed with (1), ranged from a lowest value of 0.0025 to a
17	highest value of 0.0076, as shown in Fig. 9.
18	Also the local micro-voids volumetric fraction (VV/TV) was recognized to vary among
19	the 4 sub-sets of each tomographic set, as shown in Fig. 10. It can be noted that the
20	maximum strain and the peak volumetric fractions of fibre and micro-voids were all
21	registered in the same sub-set.
22	As the applied strain increases between Tomo_1 and Tomo_2, the volume fraction of
23	voids (VV/TV) increases with similar trends in each examined subset, Fig.10. The
24	correlation coefficient between the subsets volume fraction of voids in Tomo_1 and in
25	Tomo_2 is high, $R^2 = 0.888$. At a local level, the micro-voids and the fibre volumetric
26	fractions in Tomo_1 appear to be strongly correlated, $R^2 = 0.924$. The correlation

-

Strain

between the micro-voids and the fibre volumetric fraction in Tomo_2 is less
 pronounced, R² = 0.710. These results indicate that the initial micro-voids formation is
 more likely to occur in areas of local higher fiber density, coherently to what observed
 on a qualitative level in [25].

5 5. VALIDATION OF THE MATRIX/MICRO-VOIDS THRESHOLD VALUE

6 Starting with the two available micro-tomographic sets, it was possible to develop an
7 independent method for the validation of the threshold value for matrix and micro-voids
8 segmentation.

First of all, it must be considered that small variations in the beam parameters, which are always possible between two different acquisitions, are reflected in this work by a systematic difference of 2 grey-tones between all the corresponding thresholds found for Tomo_1 and Tomo_2 sets, see Table 1. The validation procedure applied in this work is based on an optimization approach and requires a single threshold value for the two tomographic sets. The tonal range of Tomo 2 was therefore shifted of two values in order to conform with that of Tomo 1. In this work, 17 pairs of homologous slices, evenly distributed along the reconstructed specimen volume, were considered. The tonal range shift had a negligible effect on the micro-voids distribution, since only a total of 20 pixels out of 28.114.532 were lost in the 17 slices. With this expedient, when a slice in Tomo 1 is subtracted from the homologous one in Tomo 2 the difference between the two images represents the micro-voids deformations, caused by the sample elongation between the two scans (and the possible artifacts). A second, straightforward, consideration is that any modification of the threshold value has a contrasting result on the volume fractions of matrix and of voids respectively, i.e. if the threshold value is lowered, the volume fraction of matrix increases and the

volume fraction of voids decreases. These aspects can be considered in an optimization

3
1
4 5
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
20 20
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
40 //7
41
40
49
50
51
52
53
54
55
50
50
5/
58
50

60

1 2

framework, and the problem of separating the micro-voids from the matrix can be seen
 as the search for the best compromise.

3 A large number of multi-objective evolutionary algorithms have been proposed and 4 successfully applied [42-48]. Without going into the details of the mathematical and implementation issues of the optimization strategy, it may suffice to cite that the 5 MOGA, Multi-Objective Genetic Algorithm including selection, crossover and 6 mutation, implemented in the modeFRONTIER [49] multi-objective tool, was adopted. 7 8 For the 17 homologous images, the histograms of Tomo 1, Tomo 2 and of the images differences were used in input, and the conflicting, objective functions, or target goals, 9 were the contemporary maximization of the cumulative distributions of the grey-tones 10 11 corresponding to the matrix in Tomo 1 (Ob1) and in Tomo 2 (Ob2) and to the micro-12 voids in the image differences (Ob3), as shown in the workflow outlined in Fig. 11. 13 Equal weights were imposed on the objective functions. The number of generations was set to 1000, the probability of cross-over to 0.5, the probability of selection to 0.05 and 14 the probability of mutation to 0.05. The final result of the simulation is described by the 15 Pareto front, which represents the locus of points that tend to maximize the variables. In 16 this area, an improvement in one objective necessarily leads to a deterioration of the 17 other objectives. The optimal solution is usually chosen on the knee of the Pareto front. 18 The solution corresponding to the adopted threshold value is highlighted in Fig. 12, 19 20 confirming the effectiveness of the method described in Section 3. 21 6. DISCUSSION AND CONCLUSIONS This paper examines some typical features of the application of the micro-tomographic 22

23 technique for the analysis of damage mechanisms in SFRP samples.

Two micro-CT scans of the same sample were acquired at different strain levels and the elongations within the samples were computed from the number of slices needed to

26 represent the two homologous volumes in the two reconstructions. As expected with the

1	
2	
3	
4	
- 5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
04 55	
55	
56	
57	
58	
59	
60	

1	chosen specimen geometry and the local variations in fibre distribution, strain					
2	distribution was not uniform along the Z axis. Micro-CT and Digital Volume					
3	Correlation have recently been used to characterize the complex mechanical behavior of					
4	heterogeneous and fibrous materials [51, 52] This Our use of the reinforce fibres as					
5	markers can be regarded as a first step towards the development of Digital Volume					
6	Correlation (DVC) applications or specific 3D methods to estimate the displacements					
7	and the strain field within the reconstructed volume of SFRP specimens, allowing new					
8	insights on their behavior.					
9	A general procedure for micro-voids identification in micro-CT analyses was proposed,					
10	based on the identification and statistical elaboration of the matrix grey-tones range.					
11	In order to validate the suggested procedure beyond visual inspection, an independent					
12	method based on an optimization approach, which puts to use the two available micro-					
13	tomographic sets, was developed.					
14	Although it was recognized that clusters of fibres, resulting in an increased fibre					
15	volumetric fraction at the local level, strongly facilitate the formation of micro-voids,					
16	our findings point out that the mechanisms of damage progression, even under static					
17	loading as in this case, appear to be more complex than those related to the fibre-density					
18	induced stress concentrations alone and require further investigation.					
19	Moreover, it was recognized that, although the fibre distribution for two small strain					
20	values, located in the elastic range, is not altered by the load change, not only the					
21	micro-voids volume fraction is increased, but also the micro-voids shape and					
22	distribution are influenced. This observation leads to an important methodological					
23	consequence. At present, the use of a test-rig to apply a tensile load during the					
24	acquisitions appears to be essential for the detection of the micro-voids with the					
25	tomographic technique. However, our findings show that the results obtained with this					
26	procedure, for example in terms of micro-voids volumetric fraction, cannot be					

1
י י
2
3
4
5
6
7
<i>'</i>
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
24
25
26
27
28
20
20
30
31
32
33
34
25
35
36
37
38
39
40
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
53
54
55
56
57
50
50
59
60

1	considered as absolute values, but can only be used to compare specimens of the same				
2	type and subjected to the same load.				
3	Overall, even though the relationships observed between the distributions of micro-				
4	voids, fibres and strain cannot be considered sufficient to express any general				
5	conclusion on the behavior of short fibre reinforced composites and far more extended				
6	analyses are under way, the results here discussed represent a step towards a more				
7	extensive exploitation of the potential offered by the micro-tomographic analyses in the				
8	study of the damage mechanisms of SFRP.				
9	ACKNOWLEDGEMENTS				
10	The Authors would like to thank prof. A. Bernasconi, Politecnico di Milano, who				
11	provided the sample examined in this study and prof. David Taylor, Trinity College				
12	Dublin, where the preliminary tensile characterization was carried out. The assistance of				
13	Diego Dreossi, SYRMEP beamline, Elettra (Trieste, Italy) during the micro-CT				
14	acquisitions is gratefully acknowledged.				
15	REFERENCES				
16	[1] B. Mouhmid B. et al.(2009) An experimental analysis of fracture mechanisms of				
17	short glass fibre reinforced polyamide 6,6. DOI: 10.1016/j.compscitech.2009.07.003,				
18	CSTE, 69, 2521–6.				
19	[2] Tiesong L., Dechang J., Meirong W., Peigang H., Defu L. (2009) Effects of				
20	fibre content on mechanical properties and fracture behaviour of short carbon fibre				
21	reinforced geopolymer matrix composites. DOI 10.1007/s12034-009-0011-2 Bull				
22	Mater Sci 32, 77–81.				
23	[3] Piment S. et al. (2010) Mechanical analysis and toughening mechanisms of a				
24	multiphase recycled CFRP DOI: 10.1016/j.compscitech.2010.06.017. CSTE 70:1713-				
25	25.				
26	[4] Schoßig M. et al. (2011) . ESEM investigations for assessment of damage				
27	kinetics of short glass fibre reinforced thermoplastics - results of in situ tensile tests				
28	coupled with Acoustic Emission Analysis. DOI: 10.1016/j.compscitech.2010.12.004				
29	CSTE 71, 257–65.				

59 60

2 3								
4								
5 6 7	1	[5] Sul J.H., Prusty B.G., Ray T. (2011) Prediction of low cycle fatigue life of short						
7 8	2	fibre composites at elevated temperatures using surrogate modelling. DOI:						
9	3	3 10.1016/j.compositesb.2011.04.047 Compos B Eng 42(6), 1453–60.						
10 11	4	[6] Klimkeit B. et al. (2011) Multiaxial fatigue life assessment for reinforced						
12	5	polymers. DOI: 10.1016/j.ijfatigue.2010.12.004 Int J Fatigue 33(6), 766-80.						
13 14	6	[7] Saayama T., Okabe T., Aoyagi Y., Masaaki M. (2013) Prediction of failure						
15	7	properties of injection-molded short glass fiber-reinforced polyamide 6,6. DOI:						
16	8	10.1016/j.compositesa.2013.05.00 Composites Part A 52, 45-54.						
17	9	[8] Notta-Cuvier D., Lauro F., Bennani B., Balieu R. (2014). Damage of short -fibre						
19	10	reinforced materials with anisotropy induced by complex fibres orientations. DOI:						
20 21	11	10.1016/j.mechmat.2013.09.011 Mechanics of Materials 68, 193-206.						
22	12	[9] Buffière J.Y. et al. (2010) In situ experiments with x ray tomography: an						
23 24	13	attractive tool for experimental mechanics DOI: 10.1007/s11340-010-9333-7. Exp						
25	14	Mech:50, 289–305.						
26 27	15	[10] Cosmi F. et al. (2005). The X-ray tomography technique for fatigue cracks						
28	16	reconstruction in Al 5083 specimen. Proc. Int Conf on Fracture and Damage Mechanics						
29	17	IV. Mallorca (Spain).						
30 31	18	[11] Wang et al. (2005) High-pressure x-ray tomography microscope: Synchrotron						
32	19	computed microtomography at high pressure and temperature DOI: 10 1063/1 1979477						
33 34	20	Rev. Sci. Instrum., 76.						
35	_0 21	[12] Rivers M. Sutton S. Newville M. (2004) "Imaging in Earth" Planetary and						
36 37		Environmental Science, Workshop on Emerging Scientific Opportunities using X-ray						
38 30	3 23 Imaging, August 29-31.							
40	24	[13] Salvo L. et al. (2003) X-ray micro-tomography an attractive characterisation						
41 42	25	technique in materials science. DOI: 10.1016/S0168-583X(02)01689-0 Nucl. Instr. and						
42 43	26	Meth. in Phys. Res. B, 200, 273–286.						
44	27	[14] Toda H. et al. (2006) Quantitative Assessment of Microstructure and its Effects						
45 46	28	on Compression Behavior of Aluminum Foams via High-Resolution Synchrotron X-						
47	29	Ray Tomography. DOI: 10.1007/s11661-006-1072-0 Metallurgical and materials						
48 49	30	Transactions A, 37(4), 1211-1219.						
50 51	31	[15] Bull D.J. et al. (2013) A comparison of multi-scale 3D X-ray tomographic						
52	32	inspection techniques for assessing carbon fibre composite impact damage. DOI:						
53 54	33	10.1016/j.compscitech.2012.12.0; CSTE 75, 55–61.						
55								
56 57		13						
58								

2 3							
4							
5 6	1	[16] Schilling P.J. et al. (2005) X-ray computed microtomography of internal damage					
7 8	2	in fibre reinforced polymer matrix composites. DOI:					
9	3	10.1016/j.compscitech.2005.05.014 CSTE 65, 2071–8.					
10 11	4	[17] Hodgkins A. et al. (2006) X-ray tomography observation of crack propagation in					
12	5	nuclear graphite. DOI: 10.1179/174328406X114126 Mater Sci Technol 22, 1045-51.					
13 14	6	[18] Breuni T.M., Kinney J.H., Stock S.R. (2006). MicroCT (microtomography)					
15	7	quantification of microstructure related to macroscopic behaviour: Part 2 – Damage in SiC–Al monofilament composites tested in monotonic tension and fatigue. DOI:					
16 17	8						
18	9	→ 10.1179/174328406X114153 Mater Sci Technol; 22, 1059–67.					
19	10	[19] Awaja F. et al. (2011) The investigation of inner structural damage of UV and					
20 21	11	heat degraded polymer composites using X-ray micro CT. DOI:					
22	12	10.1016/j.compositesa.2010.12.015 Compos. A 42, 408–18.					
23 24	13	[20] Tan K.T., Watanabe N., Iwahori Y. (2011). X-ray radiography and micro-					
25	14	computed tomography examination of damage characteristics in stitched composites					
26 27	15	subjected to impact loading. DOI: 10.1016/j.compositesb.2011.01.011 Compos. B 42,					
28	16	874–84.					
29 30	17	[21] Tsukrov I. et al. (2012) Finite element modeling to predict cure-induced					
31	18	microcracking in three dimensional woven composites. DOI: 10.1007/s10704-011-					
32 33	19	9659-x Int J Fract 172(2), 209–16.					
34	20	[22] Little J.E., Yuan X., Jones M.I. (2012). Characterisation of voids in fibre					
35 36	21	reinforced composite materials. DOI: 10.1016/j.ndteint.2011.11.011 NDT&E Int 46,					
37	22	122–7.					
38 39	23	[23] Crivelli D. et al. (2010) Microstructural damage assessment of pultruded					
40	24	materials by synchrotron light tomography. In: Proc. of 27th Danubia Adria					
41 42	25	Symposium. Wroclaw, Poland					
43	26	[24] Arif M.F., Saintier N., Meraghni F., Fitoussi J., Chemisky Y., Robert G. (2014).					
44 27 Multiscale fatigue damage characterization in short glass fiber reinforced							
46	28	polyamide-66. DOI: 10.1016/j.compositesb.2014.01.019 Composite Part B 61, 55-65.					
47 49	29	[25] Arif M.F., Meraghni F., Chemisky Y., Despringre N., Robert G. (2014). In situ					
40 49	30	damage mechanisms investigation of PA66/GF 30 composite: Effect of Relative					
50	31	humidity. DOI: 10.1016/j.compositesb.2013.11.001 Composite Part B 58, 487-495.					
52	32	[26] Hu X., Wang L., Xu F., Xiao T., Zhang Z. (2014). In situ observations of					
53	33	fractures in short carbon fiber/epoxy composites. DOI: 10.1016/j.carbon.2013.10.007					
54 55	34	Carbon 67 (10), 368-376.					
56 57		14					
57 58							
59							

1					
2					
3 ⊿					
4 5					
6 7	1	[27] Tang M., Gao B., Shi H(2013) Influence of voids on the matrix of C/C			
8	2	composite. Advances in the Astronautical Sciences 146 (5), 511-520.			
9	3	[28] Goidescu C., Welemane H., Garnier C., Fazzini M., Brault R., Peronnet E.,			
10	4	Mistou S. (2013). Damage investigation in CFRP composites using full-field			
12	5	measurement techniques: Combination of digital image stereo-correlation, infrared			
13 14	6	thermography and X-ray tomography. DOI: 10.1016/j.compositesb.2012.11.016			
15	7	Composites B 48 (5), 95-105.			
16 17	8	[29] Bernasconi A., Cosmi F., Dreossi D. (2008), Local anisotropy analysis of			
18	9	injection moulded fibre reinforced polymer composites. DOI:			
19 20	10	10.1016/j.compscitech.2008.05.022 CSTE 68, 2574-2581.			
21	11	[30] Bernasconi A., Cosmi F., Zappa E. (2010). Combined effect of notches and fibre			
22 23	12	orientation on fatigue behavior of short fiber reinforced polyamide. DOI:			
24	13	10.1111/j.1475-1305.2009.00667.x Strain 46, 435-45.			
25 26	14	[31] Cosmi F., Bernasconi A. (2010). Elasticity of short fibre reinforced polyamide:			
20 27	15	morphological and numerical analysis of fibre orientation effects. Materiálové			
28	16	ininierstvo, XVII, 6-10.			
29 30	17	[32] Cosmi F. (2011). A micro-mechanical model of the elastic properties of a short			
31 fibre reinforced polyamide. DOI: 10.1016/j.proeng.2011.04.353 Procedia engineering					
32 33	19	2135-2140.			
34	20	[33] Cosmi F., Bernasconi A., Sodini N. (2011). Phase contrast micro-tomography			
35 36	21	and morphological analysis of a short carbon fibre reinforced polyamide. DOI:			
37	22	10.1016/j.compscitech.2010.09.016 CSTE 71, 23-30.			
38 39	23	[34] Cosmi F. (2011). Local Anisotropy and Elastic Properties in a Short Glass Fibre			
40	24	Reinforced Polymer Composite. DOI: 10.1111/j.1475-1305.2009.00670.x Strain, 47,			
41 42	25	215-221.			
43	26	[35] Bernasconi A., Cosmi F (2011). Analysis of the dependence of the tensile			
44 45	27	behavior of a short fibre reinforced polyamide upon fibre volume fraction, length and			
46	28	orientation. DOI: 10.1016/j.proeng.2011.04.352 Procedia engineering 2129-2134.			
47 48	29	[36] Bernasconi A., Cosmi F., Hine P.J (2012) Analysis of fibre orientation			
49	30	distribution in short fibre reinforced polymers: a comparison between optical and			
50 51	31	tomographic methods. DOI: 10.1016/j.compscitech.2012.08.018 CSTE 72, 2002-2008			
52	32	[37] Cosmi F., Bernasconi A. (2013). Micro-CT investigation on fatigue damage			
53 54	33	evolution in short fibre reinforced polymers. DOI: 10.1016/j.compscitech.2013.02.008			
55	34	CSTE 79, 70-76.			
56 57		15			
58					
59 60					

5							
6	1	[38] Bernasconi A., Cosmi F., Taylor D. (2014). Analysis of the fatigue properties of					
7 8	2	different specimens of A 10% by weight short glass fibre reinforced polyamide 6.6,					
9	3	POTE DOI: 10.1016/j.polymertesting.2014.08.017.					
10 11	4	[39] Horst J.J., Spoormaker J.L(1997) Fatigue fracture mechanisms and					
12	5	fractography of short-glass-fiber-reinforced polyamide 6. Journal of Materials Science					
13 14	6	32, 3641-3651.					
15	7	[40] Odgaard A. (1997). Three-dimensional methods for quantification of cancellous					
16 17	8	bone architecture. DOI: 10.1016/S8756-3282(97)00007-0 Bone 4, 315-28.					
18	9	[41] Ketcham R.A., Ryan T.M. (2004). Quantification and visualization of anisotropy					
19 20	10	in trabecular bone. DOI: 10.1111/j.1365-2818.2004.01277.x J Microsc. 213, 158-71.					
20 21	11	[42] Coello C.A., Van Veldhuizen D. A., Lamont G. B. (2007), Evolutionary					
22	12	algorithms for solving multiobjective problems, Springer Verlag, New York, USA 2nd					
23 24	13	edition.					
25	14	[43] Deb K. (2001). Multi-objective optimization using evolutionary algorithms,					
26 27	15	John-Wiley, Chichester					
28	16	[44] Fonseca C.M., Fleming P. J (1993). Genetic algorithm for multiobjective					
29 30	17	otpimization: formulation, discussion and generalization. In Proceedings of the Fifth					
31 32 33	18	International Conference on Genetic algorithm (Ed. S. Forrest), Morgan Kauffamn, San					
	19	Mateo, CA 416–423.					
34	20	[45] Horn J., Nafploitis N., Goldberg D. E. (1994) A Niched Pareto genetic					
35 36 37	21	algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference					
	22	on Evolutionary computation (Ed. Z. Michalewicz), IEEE Press, Piscataway, NJ, 98–					
38 39	23	105.					
40	24	[46] Srinivas N., Deb K. (1995) Multiobjective function optimization using non					
41 42	25	dominated sorting genetic algorithm. IEEE Trans. Evol. Comput., , 2(3), 221–248.					
43	26	[47] Rosic B., Rasuo B (2008), Application of multi-objective genetic algorithm to					
44 45	27	optimum design problems. In Proceedings of the First Symposium in MS Design,					
46	28	Bertinoro, Italy 17–18.					
47	29	[48] Cosmi F., Muscia R. (1999). Ottimizzazione multiobiettivo di cambi di velocità					
40 49	30	per uso automobilistico: porgettazione preliminare del gruppo ingranaggi					
50	31	sincronizzatori- alberi. In Proceedings of the XXVIII AIAS Conference, Vicenza, Italy					
51 52	32	445–458 (Italian).					
53	33	[49] http://www.esteco.com/modefrontier accessed July 31, 2014					
э4 55							

1 2 3			
4 5 6 1 7 8 2	[50] Cowin S.C. (1985). The relationship between the elasticity tensor and the fabric tensor. Mech Mater. 4, 137–47.		
9 3	[51] R. Brault et al. (2013), In-situ Analysis of Laminated Composite Materials by X-		Formatted: Font: (Default) Times New
10 11 ⁴	ray Micro-Computed Tomography and Digital Volume Correlation. Experimental		Formatted: Normal
12 5	Mechanics 53, 1143–1151.	```	Formatted: Font: (Default) Times New Roman, 12 pt. Highlight
13 14 ⁶	[52] H. Tran et al. (2013). 3D mechanical analysis of low-density wood-based		Formatted: Font: (Default) Times New
15 7 16	fiberboards by X-ray microcomputed tomography and Digital Volume Correlation.	Ň	Formatted: Font: (Default) Times New
17 8 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60			Koman, 12 pt, riigniignt

TABLES

Table 1: Mean and standard deviation of the matrix phase in the selected matrix-only volumes and thresholds for the phase identification in the two tomographic sets.

	μ	σ	Micro-voids	Matrix	Fiber
	(matrix-only)	(matrix-only)	thresholds	thresholds	thresholds
Tomo_1	87.5	3	0-76	77-105	106-255
Tomo_2	89.5	3	0-78	79-107	108-255

(Figure 2: (a) Selection of the acquired volume in the central part of the specimen, (b) longitudinal view of the reconstructed specimen volume in Tomo_1, 1286 x 1286 pixel x 1560 slices, (c) identification of the 4 examined sub-sets of 390 slices. 82x35mm (300 x 300 DPI)

Page 21 of 30

Figure 4: An example of matrix-only volume selection in the homologous regions of 5 successive slices,

Tomo_1.

175x27mm (300 x 300 DPI)

Figure 5: (a) Detail of the slice 999, Tomo_1 (above) and grey-tone plot along the yellow line, with indication of the threshold values (below); (b) zoom of a segmented longitudinal section, slices 799 to 1298, Tomo_1, where the fibres are depicted in white, the matrix is shown grey and the micro-voids are highlighted in red.

82x41mm (300 x 300 DPI)

Figure 6: MIL rose diagrams of the fibre distributions in the reconstructed volumes of Tomo_1 and Tomo_2. 82x45mm (300 x 300 DPI)

Strain

Figure 7: MIL rose diagrams of the micro-voids distributions in the reconstructed volumes of Tomo_1 and Tomo_2. 82x47mm (300 x 300 DPI)

Figure 8: Local distribution of the fibre volumetric fraction (FV/TV) in the reconstructed sub-sets. 82x57mm (300 x 300 DPI)

Figure 9: Local distribution of strain (ϵ) in the reconstructed sub-sets. 82x52mm (300 x 300 DPI)

Figure 10: Local distribution of the micro-voids volumetric fraction (VV/TV) in the reconstructed sub-sets. 82x56mm (300 x 300 DPI)

Strain

Figure 11: ModeFRONTIER workflow. The target goals are the contemporary maximization of the cumulative distributions of the grey-tones corresponding to the matrix in Tomo_1 (Ob1) and in Tomo_2 (Ob2) and to the micro-voids in the image differences (Ob3). 82x64mm (300 x 300 DPI)

Figure 12: Pareto front resulting from the MOGA modeFRONTIER simulation. The solution adopted is highlighted. 82x54mm (300 x 300 DPI)