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Introduction

Computer vision and image processing have become active areas of basic and
applied mathematical research, due to their impact in the development of new
technologies and to the related interesting theoretical problems. The vastness of
applications requires a multi-disciplinary study; a selection of involved mathemat-
ical areas includes, in particular, calculus of variations, optimization and partial
differential equations, probability and statistics, topology and differential topology,
differential and discrete geometry, affine geometry, harmonic analysis, inverse
problems and numerical analysis; see for instance [2, 9, 18, 19, 26, 28, 37, 57, 62,
63, 68, 70, 75, 89]. The areas of application in ordinary life are numerous and we
could mention: medical imaging (image reconstruction, interpretation and aid to
diagnostics), video processing and analysis, stereo vision, 3D reconstruction and
shape recognition from image sequences, and the restoration and interpretation of
satellite images; we refer the reader to [69] and references therein.1 These subjects
are mostly directed by applications, but they require solid grounded theories,
appropriate for instance to ensure robustness of the related algorithms.

The aim of this book is to investigate one of the central problems of computer
vision,2 namely the topological and algorithmical reconstruction of a three-
dimensional scene E � R

3, composed of various smooth bounded solid objects
(the connected components of E) starting from information on a generic orthogonal
plane projection3 of E . As explained in detail in Chap. 1, the original motivation
that led us to this study came from the calculus of variations, in the effort of finding
an action functional F (introduced in [12]) defined on plane graphs and whose
minimization should give information on the depth ordering of the various objects
composing the scene. Postponing the technical discussion on the variational aspects

1See also [17, 29, 51, 77, 78, 81].
2See for instance [30–32, 38, 39, 41–44, 55, 56, 65, 66, 76, 82, 83] and references therein.
3 In this book we shall not consider the case when two or more simultaneous projections are
involved; the case of shapes evolving in time is, instead, related to ambient isotopic deformations
of the objects, an issue which will be treated in various chapters.

xi
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Fig. 1 Two partially
overlapping objects: neither
of them is in front of the other

Fig. 2 A knotted torus

of the model to Chaps. 1 and 11, it is worth recalling that the functional F has
been introduced with the purpose of removing a difficulty in a previous model by
Nitzberg and Mumford [65, 66] related to self-occlusions: in particular, in Figs. 1
and 2, we draw two interesting and typical examples of self-occlusions, which
can be analysed using the functional F . We also remark that, as observed in [12],
admissible configurations for F , which can be arguably minimizers under a certain
range of parameters, may give, as a result, the illusory contours4 of the famous
Kanizsa triangle [54], as discussed in Sect. 1.5; see, more specifically, Figs. 1.6, 1.7,
and 1.8.

In order to carry out our analysis on the topological and algorithmical aspects
of the reconstruction problem of a three-dimensional shape E , let us briefly explain
what is the information we need on one of its stable plane projections. Denote by
† the boundary @E of E; for a given generic projection direction, let us consider
the so-called visible apparent contour vis.G†/ � R

2 of †, an oriented plane graph
which is the natural sketch of † that one usually draws by hand in order to represent
the scene. For instance, for the solid shape in Fig. 3, the bold curves in Fig. 5
represent the visible apparent contour. In order to have a better picture of the various
graphs involved, it is often useful to imagine the shape to be semi-transparent, as in
Fig. 4. Due to the genericity assumption on the projection direction, it turns out that

4We shall treat contours without corners; as we shall explain in Chap. 1, a slight smoothing of the
original Kanizsa image does not change the qualitative properties of the example, and does not
alter the presence of illusory contours.
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Fig. 3 The
three-dimensional scene E

producing the apparent
contour of Fig. 5. Image taken
from [14]

Fig. 4 The same
three-dimensional scene as in
Fig. 3, but made
semi-transparent. Image taken
from [14]

Fig. 5 The bold graph
represents the visible part of
the apparent contour of the
three-dimensional scene in
Fig. 3; the whole graph
represents its apparent
contour. Image taken
from [14]

the singular points of vis.G†/, if any, are only of two types: terminal points and
T-junctions. The example of Fig. 5 shows three terminal points and one T-junction.
It is not difficult to realize that vis.G†/ is a subset (usually, but not always, a proper
subset) of another oriented graph G†, the so-called apparent contour of †5; see
Fig. 5 again. The graph G† has two types of singular points only: cusps, arising as
local completions of terminal points of vis.G†/, and X-junctions (called crossings),
local completions of T-junctions. Accordingly, the apparent contour of Fig. 5 has
four cusps and one X-junction. It is useful to observe that G† has here a geometric
meaning: it is the plane projection of a finite set of smooth pairwise disjoint closed
curves lying on † (and called critical set, or also singular set), obtained as the
set of all points of † where the tangent plane contains the projection direction.
Now, the crucial three-dimensional information carried by G† is contained in a
labelling [25, 53, 87, 88], which is a number d†.a/ 2 N attached to any arc a, and
representing the number of sheets of † in front of the part of the singular curve
projecting on that arc. Accordingly, vis.G†/ is the closure of the set fd† D 0g.
For instance, in Figs. 1 and 2, we have d† D 2 on the dotted arcs, and d† D 0

on the visible arcs. The labelled apparent contour, namely the pair .G†; d†/,
is the starting point for the definition of the action functional F , leading to the
minimization principle described in Chaps. 1 and 11. We mention here that another

5Sometimes, we shall call G† apparent contour of E .
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symbol, denoted by f†, appears in the domain of F : for x … G† in the projection
plane, the value f†.x/ represents the total number of intersections between † and
a light ray emanating from x (see Fig. 1.1 (right)). Such a locally constant function,
which can be easily recovered as a doubled winding number with respect to G†, is
useful for various reasons, one of them being that it simplifies the presentation of
the model.

Several theoretical and practical questions arise in a natural way, and show
beautiful and unexpected relations between calculus of variations [62], singularity
theory [4–6, 20, 86], Morse theory [10] and knot theory [73]. Moreover, we stress
that the techniques we use when dealing with most of such issues fit naturally in an
algorithmic setting: as we shall see, it is one of our primary goals to analyse this
algorithmic part, with implementations, experiments and computed examples.

We shall be interested in investigating:

(i) the completion problem, namely: the characterization of those plane graphs
which are visible part of a labelled contour graph;

(ii) an algorithmic construction of a completion, to be implemented as a computer
program;

(iii) the characterization of those labelled plane graphs which are apparent
contours of some smooth stable three-dimensional scene;

(iv) an algorithmic reconstruction of the topology of a three-dimensional smooth
shape starting from a labelled apparent contour, and its implementation on a
computer;

(v) a list of topological invariants of three-dimensional shapes, which can be
directly computed starting from the apparent contour, and that can be
implemented on a computer;

(vi) the recognition of two labelled apparent contours which are apparent contours
of two ambient isotopic shapes, using a finite sequence of elementary moves,
taken from a complete finite set. In other words, what are the moves on the
labelled apparent contours that relate two embedded surfaces, deformable into
each other by a smooth path of embeddings?

(vii) a computer program aiming to implement the elementary moves on apparent
contours, and, more in general, capable to manage labelled (or unlabelled)
apparent contours from a structural/topological point of view;

(viii) the problem of elimination of cusps, namely: how to use the elementary
moves in order to modify a labelled apparent contour into another one
without cusps, representing a three-dimensional shape, ambient isotopic to
the original one;

(ix) the generalization of some of the above problems, in particular the algorith-
mic parts, to more general situations, concerning for instance abstract closed
(not necessarily orientable) surfaces;

(x) a variational study of the functional F , such as an investigation of the
properties of sequences of labelled apparent contours having a uniform bound
on the action.
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Problem (i), which is global in nature, addresses necessary and sufficient
conditions on an oriented plane graph K with nonexterior terminal points and T-
junctions, in order to be the visible part of what we shall call a complete labelled
contour graph .G; d/, having cusps and X-junctions. Here the function d , defined
on the arcs of G, is a labelling, and must fulfill the same consistency properties6

shared by the function d†. We can roughly rewrite (i) with the statement

given K 9 .G; d/ such that G � K and K D fd D 0g: (1)

Following [14], in Chap. 4 we give a constructive solution to this problem (see
Theorem 4.3.1, that we call the completion theorem), based on a suitable Morse
description of K and G. We note here that the aim of the completion theorem is
not to provide the “simplest” completion of K , whatever simplest could mean7; the
scope of the result is to show that the conditions8 imposed on K are sharp, and
allow us to construct at least one completion. The problem of returning, as output
of the completion, a “simple” graph G is related to points (v) and (vi), and will be
addressed below. An improvement of the results of [14] is given by Corollary 4.5.1,
based on the introduction of the background; this represents a further degree of
freedom, which allows us to fix a priori the regions of G where f D 0. Here the
function f is defined on R

2 n G; it can be obtained as a doubled winding number
with respect to G, and has to satisfy various consistency relations with the labelling
d . Examples 4.6.2 and 4.6.4 clarify the interest in the use of Corollary 4.5.1, in
connection with the reconstruction of the apparent contour of a standard torus; see
also the example illustrated in Sect. 9.1 with the use of the visible program. We
remark that the completion of a visible contour is inherently nonunique, even when
forcing a priori the background (the region where f D 0); this is clarified with the
example displayed in Fig. 9.10.

The Morse description, explained in Sect. 2.5, is a convenient way to encode
all topological information of a graph, and fits well for practical purposes. This is
clearly seen when dealing with problem (ii): the software code described in Chap. 9,
in particular the visible program, is an actual implementation of the constructive
proof given in the completion theorem. The input of the program is a Morse
description of a drawing of a visible contour, see for instance Figs. 9.1, 9.9 and 9.11.
The output, provided the graph is completable (namely, it satisfies the necessary
and sufficient conditions of the completion theorem) is a complete labelled contour
graph, still identified using a textual Morse description, and next graphically
reconstructed as a drawing, using the visualization program showcontour. The
visible program also recognizes those graphs K which are not completable
(called “impossible graphs”), such as those described in Figs. 9.12 and 9.13.

6See Definition 4.2.5.
7For instance, a graph with a minimal number of vertices, or without cusps.
8See Definition 4.1.8 and Figs. 3.15 and 3.16.
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The algorithmic reconstruction of the completion theorem (and of the visible
program) strongly depends on the Morse description of the visible contour: different
Morse descriptions of the same visible contour will in general lead to different
structurally non-equivalent 3D shape reconstructions. Conversely, different (but
structurally equivalent) visible contours described by the same Morse description
will clearly lead to the same reconstruction.

The usefulness of the existence of a consistent labelling d on an oriented
complete graph G is that it characterizes the apparent contours of smooth stable 3D
shapes. Following closely the proof of [12] (see also [58, 87, 88]), in Theorem 5.1.1
(called the reconstruction theorem) we show how to reconstruct a smooth, not
necessarily connected, 3D shape E starting from the labelled graph .G; d/; namely,
how to find a smooth closed surface † WD @E such that

G D G†; d D d†: (2)

The notion of stability9 employed in this theorem (Definition 2.1.2) goes back to
the pioneering works of Whitney [86] and Thom [79], (see also Arnold [3] and
Wall [84]) on singularity theory; stability turns out to be a crucial concept, and its
generalizations and ramifications are of central importance in the whole book. Just
to mention a few consequences of this assumption,10 it guarantees that all graphs that
we consider have a finite number of nodes, that the self-intersections (X-junctions
and T-junctions) are double and transverse, and that the cusps are ordinary cusps.
Remarkably, stable maps from a closed two- or three-dimensional manifold to a two-
or three-dimensional manifold are dense, and their singularities have been classified
(see for instance [40] and references therein): these results are the cornerstone for
the completeness result illustrated in Chap. 6 and, as a consequence, for a large part
of the algorithms described in Chap. 10.

The cut-and-paste proof of the reconstruction theorem is topological in character
and constructive. Deferring the technical details to Chap. 5, a couple of related
comments are in order. The reconstructed @E is unique, up to transformations which
do not change the order and the number of intersections of the manifold with the
light rays emanating from the projection plane (and therefore do not modify the
corresponding labelled apparent contour): this sort of uniqueness result is proven
in Theorem 5.1.4. The proof of the reconstruction theorem furnishes an embedded
smooth manifold @E , but not the “roundest” way to embed it in the ambient space
R

3; investigation of this latter problem is beyond the scope of the present book.
Summarizing the discussion concerning points (i)–(iii), we conclude that, start-

ing from a visible contour graph K , we can construct a complete labelled contour
graph .G; d/ satisfying (1), which, in turn, provides a three-dimensional scene

9See, e.g., [40] and references therein.
10We assume that the boundary of the scene E is in general position with respect to the projection:
using the concept of stability, this means that the restriction to @E of the projection is stable, see
Sect. 3.2 for the details.
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E satisfying (2) and fulfilling the natural sort of uniqueness for such kind of
problems. The completion and the cut-and-paste procedure are automatized in
a computer program. Moreover, problem (iv) is one of the issues considered
in Chap. 10, which aims to be a self-contained user’s guide to an original and
rather complex computer program for the reconstruction of three-dimensional
shapes, based on an analysis of apparent contours. The reconstruction problem is
completely solved from an algorithmic point of view; the program appcontour
reconstructs the topological structure of @E , in particular information such as
the number of connected components of @E and the Euler–Poincaré charac-
teristic of each of them can be obtained, together with information about the
relative position in space allowing to distinguish, e.g., between two concentric
spheres (E is a hollow sphere) and two mutually external spheres (E is a
pair of solid spheres), with the commands “contour countcc”, “contour
extractcc”, “contour characteristic”, “contour ccordering”,
“contour ccparent” (see Sect. 10.10.1).

When proving results such as the reconstruction theorem, or also when analysing
topological invariants of apparent contours, one realizes that a basic idea is to
consider the more general concept of apparent contour of a map from a manifold
into another manifold.11 This is a classical topic in differential topology: see for
instance [50, 60, 79, 86]. In particular, given a two-dimensional smooth closed
(abstract) manifold M and a smooth stable map ' W M ! R

2, the apparent contour
appcon.'/ of ' is the subset of R

2 where the function counting the number of
preimages of ' has a jump. It can be equivalently defined as the image in R

2 of
the critical set (or singular set) of ' in M , where the rank of the differential of ' is
not maximal. The previously discussed labelled apparent contour of an embedded
surface is a special case: in particular, the reconstruction theorem can be restated in
terms of factorization of maps, as follows. Let .G; d/ be a complete labelled contour
graph. Then

G D appcon.'/ D G† and d D d†;

where ' is a map from a smooth closed two-manifold M to the plane, † WD e.M /

for a smooth embedding e of M into R
2 � R, and ' factorizes as

' D � ı e; (3)

where � is an orthogonal projection � W R2 � R ! R
2, with † in general position

with respect to � . Indeed, the core of the proof of the reconstruction theorem
consists in producing the manifold M as a quotient, and next in embedding it in R

3;
the same theoretical procedure is next implemented in the appcontour program,
as a starting point of the computation of the first fundamental group, as we shall see.

11As we shall see, this abstract viewpoint is essential also in Chap. 6.
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According to this more general viewpoint, in Chap. 2 we recall a few well-known
facts from singularity theory12 (see, e.g., [7, 8, 40] and references therein), for a
stable map ' from a closed smooth manifold X to a manifold Y , and give some
examples. It is worth recalling here that knot theory is the study of stable maps from
the circle S

1 to R
3. The choices

X D M; Y D R
2 or R3

(in particular dim.X / D 2) can be applied to the study of apparent contours of
closed not necessarily embeddable (or even not immersible) manifolds in R

3; we
quickly touch these issues (point (ix) of the above list) in Sect. 10.17, with the Boy
surface (a standard immersion of the real projective plane), the Klein bottle, and
examples from the literature such as the Haefliger sphere, the Millet projection of
the real projective plane and the Milnor sphere. These examples lead to consider the
interesting problem of apparent contours possibly without labelling, a subject that
we do not want to further deepen in the present book.

Concerning point (v), in Chap. 7, we study some invariants of an apparent
contour for a map ' W M ! R

2. In the first part of the chapter (Sects. 7.1–
7.3), we analyse invariants under diffeomorphisms of the target space R

2. Besides
the number of cusps and of crossings of the apparent contour appcon.'/, a third
invariant has been considered in [67], and called Bennequin-type invariant, denoted
by BL.appcon.'//. This invariant, based on the Bennequin’s construction for
Legendrian knots [16, 52], does not have an immediate interpretation.13 Following
[13], in Theorem 7.3.1, we show that such an invariant can be obtained solely
looking at the apparent contour, without resorting to a Legendrian lift (see, in
particular, Definition 7.1.2): indeed, it turns out that the invariant can be computed
only taking into account the nodes, the cusps, the extremal points with respect
to some height function and the orientation of the apparent contour. Here, again,
Morse descriptions of appcon.'/ play a central role. In this way the computation
can be implemented into a computer program, and this is done by the program
appcontour, command “contour info”. In the last part of the chapter
(Sect. 7.4), we suppose that the map ' factorizes through an embedding in R

3 and
an orthogonal projection as in (3). Then, we analyse some invariants of the apparent
contour under diffeomorphisms of R

3. The computation [12] of the total Euler–
Poincaré characteristic �.†/ of the surface @E of the corresponding solid shape is
given in Theorem 7.4.1, in terms only of the apparent contour G†: interestingly, and

12such as the notion of stratification [45], see Sect. 6.2.
13It is defined as an appropriate linking number of the Legendrian lift of appcon.'/ in the
projectivized cotangent bundle P T �

R
2, and its computation for a given apparent contour is not

trivial. More precisely, BL.appcon.'// is defined by taking the sum of the self-linking numbers
of the liftings of the components of appcon.'/ and the linking numbers between the liftings of
two different components. The self-linking number is itself defined by also taking into account the
twisting of a strip constructed by shifting points of the lifted curve by a small amount in the normal
direction to the contact plane; we refer to [67] for the precise definition.
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a posteriori not surprisingly, the formula for �.†/ is independent of the labelling d†

on G†; see the discussion in Sect. 7.4.
The chapter concludes with a number of remarks concerning the first fundamen-

tal group of E and R
3 n E . In particular, we discuss the Alexander polynomial

(focusing mainly on Fox differential calculus [35, 36]) and some invariants of
fundamental groups, applied to surfaces with genus two; see Sects. 7.6–7.9. These
issues, as well as the actual computation of �.†/, are implemented in Chap. 10 (see
Sects. 10.7 and 10.9).

Now, let us discuss the (huge) problems listed in points (vi) and (vii) and their
consequences (for instance, the solution to point (viii)). To this aim, it is useful
to start by recalling the well-known result [1, 21, 64, 71] of Reidemeister in knot
theory, asserting that two link diagrams14 represent ambient isotopic links if and
only if they can be related by a finite number of local Reidemeister moves or
their inverses. We are interested in a similar question for two-dimensional smooth
closed manifolds M embedded in R

3. Following [15],15 in Chap. 6 we prove
that two generic embeddings of a closed surface M in R

3 are ambient isotopic
if and only if their apparent contours can be connected using only a finite set
of elementary moves (also called rules, or Reidemeister-type moves) on labelled
apparent contours and a finite number of smooth planar isotopies. We refer to
Sect. 6.3 for an informal presentation of this result, which is proven in Sect. 6.5, and
addressed as the completeness theorem. It turns out that there are six basic moves16

on an apparent contour (see Fig. 6.2 for a graphical representation) originated from
a general deformation of the corresponding embedded surface; they can be used
in exactly the same way as the Reidemeister moves on link diagrams. The essence
of the result is that this set of moves is complete. This means that two embedded

14The diagram of a knot, or more generally of a link, is an orthogonal projection of the image of
the link onto some generic plane, with the addition of the knowledge of which strand goes over at
each crossing. Stability implies that transversal crossings are the only possible singularities of the
diagram.
15The proof has some similarities with the one described in [24] for the embedding of surfaces in
R

4.
16Namely, K (from the Russian word kasanie D tangency), L (lips), B (beak-to-beak), C (cusp-
fold), S (swallow’s tail) and T (triple point). This list of moves is essentially the same found
in the literature for the related subject of maps from two-manifolds into R

2 (see, e.g., [67]),
even if the addition of the labelling entails a different classification of the list of moves. Similar
classifications appear in various contexts, in particular in Thom’s catastrophe theory [80] and in
Cerf’s theory [27], and in the paper [61] of Mond; see also the papers [59, 72, 85]. Concerning
a complete set of Reidemeister moves relating two equivalent knotted surfaces in R

4, we refer to
the set of moves found by Roseman [74], to the papers of Carter and Saito [22, 23] where generic
embedded surfaces in R

4 are considered, projected in R
3 (diagram) and projected further in R

2,
and to the papers [46–49] of Goryunov. We refer to [7, 8, 11, 24, 25] for further information. The
results illustrated in Chap. 6 treat the case of embeddings, which are usually not considered in the
literature. Considering paths of embeddings concretely means that one has to take into account the
behaviour of the labelling at the “critical times” corresponding to the intersection with the strata of
the so-called discriminant hypersurface.
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surfaces in general position with respect to the projection, that can be deformed
into each other, have apparent contours that can be connected using solely a finite
sequence of such moves (and a finite number of planar isotopies). A relevant part of
Chap. 10 consists in the implementation of the above-mentioned moves, which are
essential for the results related to Chaps. 4, 7 and 9; see Sects. 10.1 and 10.2. Among
the various interesting features of the program appcontour, the implementation
of the moves allows, in several situations, to “simplify” the apparent contour, thus
making possible to recognize the topology of the actual three-dimensional shape
to which it corresponds (via the reconstruction theorem). It is however worth
recalling that, in the simpler case of knots, there is at the moment no algorithm
(and no invariant) which is capable to recognize equivalent knots. The knot group
(fundamental group of the complement in R

3), a powerful invariant that can be
computed by appcontour via a presentation, is capable of distinguishing the
unknot; however, it is not a manageable invariant and the problem is shifted to that
of recognizing equivalent presentations of the same finitely presented group.17

A typical situation is when considering a completion of a visible contour graph
provided by the completion theorem; if the completion is so complicated that the
corresponding three-dimensional shape is not recognizable, we can resort to the
appcontour program in order to try to simplify it: in several cases, this makes
possible to figure out the scene (see for instance Example 4.6.4).

One interesting application of the completeness theorem is given in Chap. 8,
where we give a solution to point (viii): in Theorem 8.3.2, we show that, up
to R

3-ambient isotopies, any smooth closed surface embedded in R
3 has an

apparent contour without cusps.18 The proof of this result is based on the judicious
application of various combinations of the elementary moves and their inverses.
This result is, in some case, another example showing a possible way to simplify an
apparent contour. Notice carefully, however, that this is not always the case: indeed,
there are situations in which the elimination of all cusps is obtained at the expenses
of increasing the number of crossings.

The book concludes with Chap. 11 where, following [12], we analyse some
variational properties of the action functional F discussed at the beginning (and
described in Chap. 1). In order to minimize F it is useful to deepen the study of
its lower semicontinuous envelope, and this amounts in taking limits of sequences
of labelled apparent contours with a uniform bound on the action. In this passage
to the limit, many nice properties of labelled apparent contours (consequences of
the stability assumptions) are lost. In particular, in Sect. 11.3.2 we produce some

17There are a number of software codes for the study of knots and their invariants and for the
manipulation of three-manifolds, such as SnapPea, SnapPy, Orb, and Knotscape; we refer to the
link http://www.math.uiuc.edu/~nmd/computop/index.html for further information. See also [33,
34].
18Probably the more common example is represented by the apparent contour of a torus with four
cusps and two crossings, which can be modified into two concentric circles.

http://www.math.uiuc.edu/~nmd/computop/index.html


References xxi

examples which illustrate the difficulties in identifying a notion of limit labelling
defined on a limit graph.

Finally, the reference list of this book is far from being complete; we apologize
for this incompleteness.
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