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Abstract

This paper develops a nonlinear observer-based approach for distributed fault detection of a class of interconnected input-
output nonlinear systems, which is robust to modeling uncertainty and measurement noise. First, a nonlinear observer design
is used to generate the residual signals required for fault detection. Then, a distributed fault detection scheme and the
corresponding adaptive thresholds are designed based on the observer characteristics and, at the same time, filtering is used
in order to attenuate the effect of measurement noise, which facilitates less conservative thresholds and enhanced robustness.
Finally, a fault detectability condition characterizing quantitatively the class of detectable faults is derived.
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1 Introduction

Many of the vital services of everyday life depend on
highly complex and interconnected engineering systems,
where potential faults could lead to performance degra-
dation, or even trigger a chain of failing subsystems,
which may cause major catastrophes. The safe and reli-
able operation of such systems through the early detec-
tion of a “small” fault before it becomes a serious failure
is a crucial component of the overall system performance
and sustainability.

Over the last two decades the fault detection and iso-
lation (FDI) problem has been examined intensively. In
most real world applications the presence of modeling
uncertainty and measurement noise may influence sig-
nificantly the performance of fault detection schemes.
In addition, recent advances in distributed sensing and
communications motivated the investigation of not only
centralized fault diagnosis approaches but also the de-
velopment of hierarchical, decentralized and distributed
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schemes, most of which assume the availability of all
state variables [6,12,14,15]. In many cases, a distributed
FDI framework is not an option but a necessity, since
many factors contribute to this formulation such as the
large scale nature of the system to be monitored, its spa-
tial distribution, the inability to access certain parts of
the system from a remote monitoring component and
therefore local diagnosis should be performed.

In the case of input-output nonlinear systems, several
papers dealing with the fault diagnosis problem have ap-
peared but, as in the full-state measurement case, the
vast majority of them address the problem in a central-
ized framework [4,21,23,24]. Lately, special attention has
been given to decentralized and distributed fault detec-
tion approaches [3,12,13,19,22]. One of the key method-
ologies for fault diagnosis of input-output systems is the
observer-based approach. As pointed out in [7], the ob-
servers used in fault diagnosis are primarily output ob-
servers which simply reconstruct the measurable part of
the state variables, rather than state observers which are
required for control purposes. The use of state observers
for nonlinear systems has not been used extensively for
the FDI problem, even though analytical results regard-
ing the stability of the nonlinear observers and design
procedures have been established [2, 9, 17, 18, 25]. The
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main issue with the observer approach is that the design
of observers for nonlinear systems with asymptotically
stable error dynamics is not an easy task even when the
nonlinearities are fully known. As a result, the research
in fault diagnosis for nonlinear systems utilizing state
observers is more limited [1, 8, 10, 22].

In this paper, we propose a nonlinear observer-based ap-
proach for distributed fault detection of a class of in-
terconnected input-output nonlinear systems, which is
robust to modeling uncertainty and measurement noise.
The use of nonlinear observer design allows for a par-
ticular class of input-output systems to be considered.
Specifically, in order to deal with the fault detection
task, a nonlinear observer is designed for each subsys-
tem that guarantees that the state estimation error, for
the nominal nonlinear system, converges to zero. Then,
the designed observer is combined with filtering for at-
tenuating measurement noise and is used in a novel way
for the derivation of suitable adaptive thresholds for the
filtered state estimation error of the uncertain system,
which guarantee no false alarms. Therefore, the fault de-
tection scheme is inherently tied with the nonlinear ob-
server design. In addition, a general class of filters is in-
tegrated in the design for the purpose of attenuating the
measurement noise and hence it facilitates the design of
tight, adaptive detection thresholds. This filtering ap-
proach for nonlinear fault diagnosis was first developed
in [12] where the case of full-state measurement was con-
sidered and a rigorous investigation of the filtering im-
pact (according to the poles’ location and filters’ order)
on the detection time was presented. In this work, we ex-
tend significantly the approach given in [12] by relaxing
the assumption of the availability of all the state mea-
surements (through the design of a nonlinear observer)
whilst maintaining the use of filters for dampening the
uncertainty effects. Due to the lack of full-state mea-
surement, the analytical treatment of the filtering design
in this paper is different than the one in [12]. The nov-
elty in the filtering approach in this work stems from its
treatment as a linear state transformation, which allows
a more general class of filters to be considered. It must
be pointed out, that this paper extends significantly the
work by the same authors in [13], where a simplified
problem formulation for the input-output case is inves-
tigated in which the nonlinear observer design is not
needed for fault detection purposes, since the nonlinear-
ity term in [13] contains only terms that can be mea-
sured with some uncertainty. The nonlinear observer de-
sign was also not required in [6,12] since full state mea-
surement was considered. Finally, the distributed fault
detection scheme is based on local fault filtering schemes
with each one assigned to monitor one subsystem and
provide a decision regarding its health.

The paper is organized as follows: in Section 2, the prob-
lem formulation for distributed fault detection of a class
of input-output nonlinear dynamical systems with mod-
eling uncertainty and measurement noise is presented
and in Section 3, details regarding the nonlinear ob-

server design are given. In Section 4, the design of the
distributed fault detection scheme based on Lyapunov
analysis combined with a filtering approach is presented
in detail and, in Section 5, a fault detectability condition
is derived. In Section 6, a simulation example illustrates
the concepts presented and finally, Section 7 provides
some concluding remarks.

2 Problem Formulation

Consider a large-scale distributed nonlinear dynamic
system, which is comprised of N subsystems ΣI ,
I ∈ {1, ..., N}, described by:

ΣI :



















ẋI(t) = AIxI(t) + fI
(

xI(t), C̄I x̄I(t), uI(t)
)

+ηI
(

xI(t), x̄I(t), uI(t), t
)

+βI(t− T0)φI
(

x(t), uI(t)
)

(1)

yI(t) = CIxI(t) + ξI(t), (2)
where xI ∈ R

nI , uI ∈ R
mI and yI ∈ R

pI are the state,
input and measured output vectors of the I-th subsys-

tem respectively and x ,
[

x⊤1 , x
⊤
2 , . . . , x

⊤
N

]⊤ ∈ R
n is the

state vector of the overall system. The vectors x̄I ∈ R
n̄I

and C̄I x̄I ∈ R
p̄I denote the state variables and the corre-

sponding output variables, respectively, of neighboring
subsystems that affect the I-th subsystem. Specifically,
the interconnection variables C̄I x̄I are a subset of noise-
less output variables of neighboring subsystems and, this
special form is required for the design of the nonlinear
observer. The matrix AI ∈ R

nI × R
nI and the function

fI : RpI × R
p̄I × R

mI 7→ R
nI characterize the known

nominal function dynamics of the I-th subsystem and,
are derived from the linearization at the origin of the
I-th nominal nonlinear subsystem. Note that the func-
tion fI , which contains only terms strictly higher than
a linear function with respect to xI [18], contains also
the known part of the interconnection function between
the I-th and its neighboring subsystems, and moreover,
note that the influence of the interconnected subsystems
is known with some uncertainty (measurement noise).
The matrix CI ∈ R

pI × R
nI is the known nominal out-

put matrix of the I-th subsystem. The vector function
ηI : RnI ×R

n̄I ×R
mI ×R

+ 7→ R
nI denotes the modeling

uncertainty associated with the nominal dynamics and
ξI ∈ DξI ⊂ R

pI (DξI is a known compact set) represents
the measurement noise. The term βI(t − T0)φI(x, uI)
characterizes the time-varying fault function dynamics
affecting the I-th subsystem. More specifically, the term
φI : R

n × R
mI 7→ R

nI represents the unknown fault
function and the term βI(t − T0) : R 7→ R

+ models the
time evolution of the fault, where T0 is the unknown
time of the fault occurrence. Note that the fault func-
tion φI may depend on the global state variable vector x
and not only on the local state vector xI . From a practi-
cal perspective, this allows for propagative fault effects
to be transferred across neighboring subsystems (as it is
the case in real networks such as electric power systems,
transportation systems, etc). In this work, no particu-
lar modeling is considered for the time profile βI(t−T0)
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which can be used to model both abrupt and incipient
faults. Instead, we simply consider it to be zero prior to
the fault occurrence, i.e. βI(t− T0) = 0, for all t < T0.

In this paper, we do not deal explicitly with the control
problem. Therefore, it is assumed that there exist feed-
back controllers for selecting uI such that some desired
control objectives are achieved.

The notation ‖ · ‖ used in this paper denotes the Eu-
clidean 2-norm for vectors and, the matrix norm induced
by the 2-norm for matrices. The following assumptions
are used throughout the paper:

Assumption 1. For each subsystem ΣI , I ∈ {1, ..., N},
the pair (AI , CI) is observable.

Assumption 2. For each subsystem ΣI , I ∈ {1, ..., N}
the local state variables xI(t) and the local inputs uI(t)
remain bounded before and after the occurrence of a fault
(well-posedness).

Assumption 3. The modeling uncertainty ηI in each
subsystem is an unstructured and possibly unknown non-
linear function of xI , x̄I , uI and t but whose norm is
bounded by a known positive function η̄I :

‖ηI(xI , x̄I , uI , t)‖ ≤ η̄I(yI , ȳI , uI), (3)

for all t ≥ 0 and for all (xI , x̄I , uI) ∈ DI , where ȳI ∈
DȳI

⊂ R
p̄I is the measurable noisy counterpart of C̄I x̄I ,

i.e. ȳI = C̄I x̄I + ξ̄I , ξ̄I ∈ Dξ̄I
⊂ R

p̄I and η̄I(yI , ȳI , uI) ≥
0 is a known bounding function in some region of interest
DI = DxI

×Dx̄I
×DuI

⊂ R
nI ×R

n̄I ×R
mI . The regions

Dξ̄I
, DȳI

and DI are known compact sets.

Assumption 1 is required for the design of a nonlin-
ear observer to allow estimation of the unmeasurable
state variables, while Assumption 2 is needed for well-
posedness, since we do not consider the fault accommo-
dation problem in this paper. Assumption 3 character-
izes the class of modeling uncertainties being considered.

Assumption 4. The function fI(xI , ȳI , uI) satisfies the
generalized Lipschitz condition:

‖fI(z1, ȳI , uI)− fI(z2, ȳI , uI)‖ ≤ ‖GfI (z1 − z2)‖, (4)

for z1, z2 ∈ DxI
, ȳI ∈ DȳI

, uI ∈ DuI
where GfI ∈

R
nI×nI is a known constant matrix.

The condition stated in Assumption 4 is less conservative
than the standard Lipschitz condition which uses a Lip-
schitz constant γfI > 0 instead of the matrix GfI [16].
Note that the standard Lipschitz condition can also be
used by replacing GfI with γfI I in what follows.

In general, the distributed fault detection scheme is com-
posed ofN local filtered fault detection modules ΩI , one
for each subsystem ΣI . Each local fault detection mod-
ule ΩI requires the input and output measurements of
the subsystem ΣI that is monitoring and also the mea-
surements of all interconnecting subsystems ΣJ that are
influencing ΣI . Note that these latter measurements are
communicated by neighboring fault detection modules
ΩJ , and not by the subsystems ΣJ . Therefore, there is
the need of communication between the fault detection
modules depending on their interconnections. Note that,

the interconnection variables C̄I x̄I are measurable with
some uncertainty as ȳI = C̄I x̄I+ ξ̄I . Hence, the fault de-
tection modules exchange these measurements and are
used by the nonlinear observer for the state estimation
and for the generation of the residual and threshold sig-
nals. Therefore, the distributed nature of the scheme
stems from the fact that there is communication be-
tween the fault detection modules. An example of the
distributed fault detection scheme is shown in Figure 1.

y uy u y u

y y

C x C x

Fig. 1. Distributed fault detection scheme for the case of 3
subsystems Σ1 - Σ3, where Σ1 affects Σ2 and Σ2 affects Σ3.

To dampen the effects of measurement uncertainties

ξI(t), each measured variable y
(k)
I (t) (k-th component

of yI) is filtered by Hp(s), where Hp(s) is a p-th order,
strictly proper, asymptotically stable transfer function

Hp(s) =
dp−1s

p−1 + dp−2s
p−2 + . . .+ d0

sp + cp−1sp−1 + . . .+ c1s+ c0
. (5)

The filterHp(s) is asymptotically stable and hence BIBO
stable. Therefore, for bounded measurement noise ξI(t),

the filtered measurement noise ǫξI (t) , Hp(s) [ξI(t)]
(filtering each component of ξI(t)) is bounded, i.e.
‖ǫξI (t)‖ ≤ ǭξI (t), ∀t ≥ 0, where ǭξI (t) is assumed to
be a known bounding function. Note that, a different
filter Hp(s) can be used by each fault detection mod-
ule ΩI , but in this work, without loss of generality, we
consider the same filter for simplicity.

The local fault detection module ΩI is made of the lo-
cal nonlinear observer, the local residual signal and the
corresponding detection threshold. The local nonlinear
observer is given by

˙̂xI(t) =AI x̂I(t) + fI
(

x̂I(t), ȳI(t), uI(t)
)

+ LI

(

yI(t)− ŷI(t)
)

(6)

ŷI(t) =CI x̂I(t), (7)

where LI ∈ R
nI×pI is the observer gain matrix (to be

designed) with x̂I(0) = 0 for simplicity. The local resid-
ual vector signal rI(t) is generated according to

rI(t) , Hp(s)
[

yI(t)− ŷI(t)
]

. (8)

The decision regarding the detection of a fault is made
when ‖rI(t)‖ ≥ r̄I(t) in any local fault detection module
ΩI , where r̄I(t) is the detection threshold (to be speci-
fied later on). To summarize, for each subsystem ΣI the
proposed fault filtered scheme ΩI relies on designing a
nonlinear observer gain matrix LI (Section 3), selecting
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a filter with transfer function Hp(s) of the form of (5)
and obtaining a computable adaptive detection thresh-
old r̄I(t) (Section 4).

3 Nonlinear Observer Design

In this section, we deal with the problem of the design of
the local nonlinear observer so that the state estimation
error for the nominal part of the nonlinear subsystem
ΣI under healthy mode of operation converges to zero
exponentially fast.

First, we rewrite the dynamics of ΣI given in (1) as:

ẋI(t) =AIxI(t) + fI
(

xI(t), ȳI(t), uI(t)
)

+∆fI(t)

+ ηI
(

xI(t), x̄I(t), uI(t), t)

+ βI(t− T0)φI
(

x(t), uI(t)
)

(9)

where

∆fI(t) , fI
(

xI(t), C̄I x̄I(t), uI(t)
)

− fI
(

xI(t), ȳI(t), uI(t)
)

.

It is worth noting that in (9), the functions ∆fI , ηI and
φI are in general unknown. By excluding these functions,
we define the known nominal system as follows:

ẋI,N (t) = AIxI,N (t) + fI
(

xI,N (t), ȳI(t), uI(t)
)

(10)

yI,N(t) = CIxI,N (t). (11)

The nonlinear observer given in (6), (7) is constructed
based on the dynamics described by (10), (11). By using

(10) and (6), the nominal state estimation error x̃I,N ,

xI,N−x̂I (based on the nominal system so that yI = yI,N
in (6)) satisfies the nominal error dynamics

˙̃xI,N (t) =AI,0x̃I,N (t) + fI
(

xI,N (t), ȳI(t), uI(t)
)

− fI
(

x̂I(t), ȳI(t), uI(t)
)

. (12)

where AI,0 , AI − LICI . The proposed fault detection
scheme (to be presented in Section 4) relies on designing
a nonlinear observer such that the nominal error dynam-
ics satisfy

V̇I(x̃I,N ) < −µIVI(x̃I,N )

for some given µI > 0, where the Lyapunov function
candidate VI(x̃I,N ) = x̃⊤I,NPI x̃I,N with PI > 0 and PI ∈
R

nI×nI is considered. It must be pointed out though,
that any nonlinear observer of the form (6), (7) satisfying
the aforementioned condition can be used for the fault
detection task. Below, we propose such an observer by
modifying the one described in [16] by adapting it to our
problem formulation and by adding one extra degree of
freedom (µI), which is required for the fault detection
task. For brevity, the proof of the following Lemma 1 is
omitted, since it follows along the lines of [16].

Lemma 1. Consider the nominal nonlinear system de-
scribed in (10), (11) which satisfies the generalized Lip-
schitz condition (4). Then, there exists a nonlinear ob-
server as described in (6), (7) such that the state estima-
tion error x̃I,N is quadratically stabilized if and only if

there exist µI ≥ 0, ǫI > 0 and δI ∈ R such that the fol-
lowing Riccati inequality has a symmetric, positive defi-
nite solution PI :

Ā⊤
I PI + PIĀI + ǫIG

⊤
fI
GfI +

PIPI

ǫI
− δ2IC

⊤
I CI < 0

(13)

where ĀI , AI + 1
2µII. The observer gain matrix can

then be chosen as LI =
δ2I
2 P

−1
I C⊤

I .

According to this design, the nominal error satisfies
V̇I(x̃I,N ) < −µIVI(x̃I,N ) for some given µI ≥ 0 and
hence it converges to zero. For fault detection purposes
it is required that µI > 0; after some mathematical ma-
nipulations the nominal state estimation error satisfies:

‖x̃I,N (t)‖ < αIe
−µI

2
t‖xI,N (0)‖ (14)

where αI ,

√

λmax(PI )
λmin(PI )

. Note that x̃I,N (0) = xI,N (0)

because x̂I(0) is considered zero for simplicity. The re-
quirement µI > 0 is needed to guarantee the exponen-
tial convergence to zero of the nominal state estimation
error and, to allow for the filters’ stability in the detec-
tion threshold (to be designed). Additionally, the extra
degree of freedom µI gives greater flexibility in solving
(13), in the sense that various solutions can be obtained
by varying its value.

4 Distributed Fault Detection

In this section, we exploit the nonlinear observer prop-
erties derived in the previous section for the task of fault
detection. The observer design is based on the known
nominal system dynamics, not taking into account the
unknown components; i.e., the uncertainty term ηI , the
function discrepancy ∆fI(t) and the measurement noise
ξI , which affect the performance of the observer. In par-
ticular, the measurement noise term may create signif-
icant challenges in fault diagnosis since it is difficult to
strike a balance between conservative detection thresh-
olds and avoiding the presence of false alarms.

In the sequel we will use the following Lemmas.

Lemma 2. [5]. The impulse response hp(t) of a strictly
proper and asymptotically stable transfer function Hp(s)
decays exponentially; i.e., |hp(t)| ≤ κe−υt for some κ >
0, υ > 0, for all t > 0.

Lemma 3. [20]. For any z1, z2 ∈ R
n and any positive

definite matrix P ∈ R
n×n the following inequality holds:

2z⊤I z2 ≤ z⊤1 Pz1 + z⊤2 P
−1z2.

Lemma 4. [11]. Let w(t), V (t) : [0,∞) 7→ R. Then, for

any finite α, if V̇ (t) ≤ −αV (t) + w(t) for all t ≥ t0 ≥ 0
then

V (t) ≤ e
−α(t−t0)V (t0) +

∫

t

t0

e
−α(t−τ)

w(τ ) dτ, ∀t ≥ t0 ≥ 0.
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In the following, zf(t) , Hp(s)
[

z(t)
]

denotes the
filtered version of any signal z(t) which is passed
through a filter with transfer function Hp(s). Let hp(t)
be the impulse response associated with Hp(s); i.e.

hp(t) , L−1 [Hp(s)]. Then zf (t) can be written as

zf(t) =
∫ t

0 hp(τ)z(t− τ) dτ . By taking the derivative of
zf(t) and using the Leibniz integral rule, we obtain

żf (t) = Hp(s) [ż(t)] + hp(t)z(0). (15)

By using (12) and (15) with z = x̃I,N , the filtered nom-
inal estimation error x̃I,N,f satisfies:

˙̃xI,N,f(t) = Hp(s)
[

˙̃xI,N (t)
]

+ hp(t)x̃I,N (0)

= AI,0x̃I,N,f(t) +Hp(s)
[

fI
(

xI,N (t), ȳI(t), uI(t)
)

− fI
(

x̂I(t), ȳI(t), uI(t)
)]

+ hp(t)xI,N (0). (16)

It is worth noting that the term xI,N (0)hp(t) in (16)
converges to zero because of Lemma 2.

In the following analysis we prove that the filtered nom-
inal state estimation error x̃I,N,f converges to zero with
exponential speed. This will be used as the basis for
the derivation of an adaptive detection threshold for the
filtered state estimation error x̃I,f (t) = Hp(s)[x̃I(t)],

where x̃I , xI − x̂I . By using Lemma 2 and (14), the
norm of x̃I,N,f(t) satisfies:

‖x̃I,N,f(t)‖ = ‖Hp(s)
[

x̃I,N (t)
]

‖

≤
∫ t

0

|hp(τ)|‖x̃I,N (t− τ)‖ dτ (17)

<

∫ t

0

κe−υταIe
−µI

2
(t−τ)‖xI,N (0)‖dτ. (18)

By solving the integral we obtain:

‖x̃I,N,f(t)‖ <







αIκ‖xI,N(0)‖te−
µI
2

t if υ = µI

2 ,

αIκ‖xI,N(0)‖ e−υt−e
−

µI
2

t

µI
2

−υ
if υ 6= µI

2 .

Note that limt→∞ ‖x̃I,N,f(t)‖ = 0 for any µI , υ > 0 and
in fact the filtered nominal state estimation error x̃I,N,f

converges to zero exponentially fast; i.e. there exists a
sufficiently small ρI > 0 such that

‖x̃I,N,f(t)‖ < αIe
− ρI

2
t‖xI,N(0)‖. (19)

In other words, since the nominal state estimation error
dynamics x̃I,N converge to zero exponentially fast with
a convergence speed of µI

2 (see (14)), the filtered nomi-
nal state estimation error x̃I,N,f still converges to zero
exponentially fast and we need to find a sufficient con-
vergence rate ρI

2 , something that is dealt with later. In
addition, note that since the filtered nominal state es-
timation error x̃I,N,f decays exponentially, it satisfies a

differential inequality of the form

V̇I(x̃I,N,f) < −ρIVI(x̃I,N,f ) (20)

with initial condition x̃I,N,f(0) = xI,N (0). This is similar
to the case of the nominal state estimation error x̃I,N
which satisfies V̇I(x̃I,N ) < −µIVI(x̃I,N ) and (14).

Therefore, by combining (17), (14) and (19), a sufficient
condition for (20) to be satisfied for all t > t∗ is:

∫ t

0

|hp(τ)|e−
µI
2
(t−τ) dτ < e−

ρI
2
t ∀t > t∗. (21)

Thus, ρI must be selected so that (21) is satisfied. The
time t∗ ≥ 0 is selected by the designer and constitutes a
time instant for which the detection results in the time
interval [0, t∗] are ignored and its purpose is to allow
greater flexibility in choosing ρI . As it is clearly indicated
by (21), the selection of a suitable value for ρI depends
on the filters’ impulse response hp(t) and the nonlinear
observer design (due to µI).

In order to select ρI , we first select a time t∗ ≥ 0.
Then, for a given filter (hence hp(t)) and a given nonlin-
ear observer design that satisfies the required condition
V̇I(x̃I,N ) < −µIVI(x̃I,N ) (hence given µI), we verify for
various values of ρI that (21) holds for all t > t∗ through
numerical methods by trying to solve (21) as equality
and verifying that no solution exists; i.e. the two sides
of (21) do not cross for t > t∗. Actually, the left part of
(21) can be bounded by an exponentially decaying func-
tion due to the asymptotic stability of the filter (i.e. see
Lemma 2) and hence, there always exists a sufficiently
small exponential decay speed ρI . Having (21) satisfied
for all t > t∗ rather than t > 0 provides greater flexibil-
ity in choosing ρI since the left and right side of (21) are
allowed to cross at time t∗ and hence (20) is satisfied for
all t > t∗. This comes at the mere cost of having to ini-
tiate the fault detection scheme at time zero but ignor-
ing the detection results in the time interval [0, t∗] since
false alarms may occur during this time (because (20)
might not hold for t ≤ t∗). In any case, no false alarms
are guaranteed and the only downside of using t∗ is the
possibility of delayed fault detection at a time after t∗

in the case that a fault occurs before t∗.

Note that, by using VI(x̃I,N,f) = x̃⊤I,N,fPI x̃I,N,f , its
time derivative along the trajectories of the filtered nom-
inal error dynamics (16) satisfies:

V̇I(x̃I,N,f) = 2x̃⊤I,N,fPI

[

Hp(s)
[

fI
(

xI,N (t), ȳI(t), uI(t)
)

− fI
(

x̂I(t), ȳI(t), uI(t)
)]

+ hp(t)xI,N (0)

]

+ x̃⊤I,N,f

[

A⊤
I,0PI + PIAI,0

]

x̃I,N,f (22)

< −ρIVI(x̃I,N,f ),

where the last inequality was derived by using (20).
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Now, let’s consider the uncertain nonlinear system (9),
(2) with the designed nonlinear observer given in (6),
(7). In the absence of a fault, the error x̃I satisfies:

˙̃xI(t) =AI,0x̃I(t) + ∆̃fI(t) + ∆fI(t)

+ ηI
(

xI(t), x̄I(t), uI(t), t
)

− LIξI(t), (23)

where ∆̃fI(t) , fI
(

xI(t), ȳI(t), uI(t)
)

− fI
(

x̂I(t), ȳI(t), uI(t)
)

. By using (23) and (15) with
z = x̃I , the filtered state estimation error x̃I,f satisfies:

˙̃xI,f (t) = Hp(s)
[

˙̃xI(t)
]

+ hp(t)x̃I (0)

= AI,0x̃I,f (t) + ∆̃fI,f (t) + hp(t)xI(0) + χI(t) (24)

where χI(t) , Hp(s) [ηI(xI , x̄I , uI , t)] + ǫ∆I
(t) −

LIǫξI (t), ǫ∆I
(t) , Hp(s) [∆fI(t)]. Therefore, the time

derivative of VI(x̃I,f ) along the trajectories of the fil-
tered error dynamics (24) satisfies:

V̇I(x̃I,f ) = 2x̃⊤I,fPI

(

∆̃fI,f(t) + hp(t)xI(0)
)

+ x̃⊤I,f
[

A⊤
I,0PI + PIAI,0

]

x̃I,f + 2x̃⊤I,fPIχI(t). (25)

Note that, the first two terms in (25) are as in (22) and
hence, (25) can be re-written as

V̇I(x̃I,f ) < −ρIVI(x̃I,f ) + 2x̃⊤I,fPIχI(t) (26)

with initial condition x̃I,f (0) = xI(0).

For the derivation of the detection threshold, we will use
the following assumption.

Assumption 5. The norm of the filtered function mis-
match term ǫ∆I

(t) is bounded by a computable positive
function ǭ∆I

(t); i.e., ‖ǫ∆I
(t)‖ ≤ ǭ∆I

(t), ∀t ≥ 0.

Assumption 5 is based on the observation that filtering
dampens the error effect of measurement noise present
in the function mismatch term ∆fI(t). A suitable se-
lection of the bound ǭ∆I

can be made through the use
of simulations by filtering the function mismatch term
∆fI(t) using the known nominal function dynamics and
the available noise characteristics.

Now, consider the term χI(t) which satisfies:

‖χI(t)‖ = ‖Hp(s) [ηI(xI , ȳI , uI , t)] + ǫ∆I
(t)− LIǫξI (t)‖

≤
∫ t

0

|hp(t− τ)|‖ηI(xI(τ), ȳI(τ), uI(τ), τ)‖ dτ

+ ǭ∆I
(t) + ‖LI‖ǭξI (t). (27)

Based on (27), the designed bounding function χ̄I(t)
such that ‖χI(t)‖ ≤ χ̄I(t) is given by:

χ̄I(t) ,H̄p(s) [η̄I(yI(t), ȳI(t), uI(t))] + ‖LI‖ǭξI (t)
+ ǭ∆I

(t), (28)

where H̄p(s) is a transfer function (with impulse re-
sponse h̄p(t)) given by H̄p(s) = κ

s+υ
(determined us-

ing Lemma 2). Note that if hp(t) is non-negative, i.e.
hp(t) ≥ 0, for all t ≥ 0, then the calculation of H̄p(s)
can be omitted since |hp(t− τ)| = hp(t− τ) (see (27)).

In the following, we proceed to “decouple” the last term
of (26). Using Lemma 3, for any positive scalar γI we can
write the sign-indefinite term 2x̃⊤I,fPIχI(t) in (26) using

z1 =
√
γI x̃I,f , z2 = 1√

γI
PIχI(t) and P = PI as follows:

2x̃⊤I,fPIχI(t) ≤γI x̃⊤I,fPI x̃I,f + γ−1
I χ⊤

I (t)PIχI(t)

≤γIVI(x̃I,f ) + γ−1
I λmax(PI)χ̄

2
I(t). (29)

Therefore, (26) can be written as

V̇I(x̃I,f ) + (ρI − γI)VI(x̃I,f ) < γ−1
I λmax(PI)χ̄

2
I(t).

(30)

Therefore, by using Lemma 4, (30) becomes

VI(x̃I,f ) <e
−(ρI−γI)tVI(x̃I,f (0))

+

∫ t

0

e−(ρI−γI)(t−τ)γ−1
I λmax(PI)χ̄

2
I(τ) dτ.

By utilizing linear filtering techniques, the previous in-
equality can be written as

VI(x̃I,f ) <e
−(ρI−γI)tVI(x̃I,f (0))

+
1

s+ (ρI − γI)

[

γ−1
I λmax(PI)χ̄

2
I(t)

]

.

Hence, by using λmin(PI)‖x̃I,f‖2 ≤ VI(x̃I,f ) ≤
λmax(PI)‖x̃I,f‖2 we obtain an adaptive bound x̃max

I,f (t)

such that ‖x̃I,f (t)‖ < x̃max
I,f (t) and is given by

x̃max
I,f (t) ,αI

(

e−(ρI−γI)tx̄2I,d +
γ−1
I

s+ (ρI − γI)

[

χ̄2
I(t)

]

)
1

2

,

(31)

where x̄I,d is a bounding estimate of xI(0) such that
‖xI(0)‖ ≤ x̄I,d and γI is selected so that 0 < γI < ρI so
that the filter is stable.

Using (2) and (7), the residual (8) satisfies

‖rI(t)‖ = ‖Hp(s)
[

CI x̃I(t) + ξI(t)‖
]

≤ ‖CI‖‖x̃I,f(t)‖ + ‖ǫξI (t)‖.

Finally, by using the bound on ‖x̃I,f(t)‖, the detection
threshold r̄I(t) so that ‖rI(t)‖ < r̄I(t) is given by:

r̄I(t) , ‖CI‖x̃max
I,f (t) + ǭξI . (32)

The following theorem summarizes the findings.

6



Theorem1. Consider the nominal nonlinear system de-
scribed in (10), (11) satisfying the generalized Lipschitz
assumption (4) and the nonlinear observer described in
(6), (7) that is designed such that the nominal state es-
timation error x̃I,N is quadratically stabilized satisfy-

ing V̇I(x̃I,N ) < −µIVI(x̃I,N ) for some µI > 0, where
VI(x̃I,N ) = x̃⊤I,NPI x̃I,N , PI > 0 and PI ∈ R

nI×nI .

Then, for the uncertain nonlinear system given in (1),
(2) the residual rI(t) in (8) which is implemented using
a filterHp(s) of the form given in (5), satisfies ‖rI(t)‖ <
r̄I(t), ∀t ∈ [t∗, T0), where r̄I(t) is the detection threshold
given by (32) and (31), χ̄I(t) is given by (28), ρI and t∗

are selected so that (21) is satisfied and γI (in (31)) is a
scalar selected such that 0 < γI < ρI .

Remark 1. In the particular nonlinear observer ap-
proach (see Lemma 1) the constants ǫI , δI , µI appear.
Note that, the parameters ǫI , δI affect only the nonlin-
ear observer design and can be chosen arbitrarily as long
as (13) can be solved whereas the choice of µI is more
important because it affects both the nonlinear observer
design and the fault detection scheme. Qualitatively, we
would like µI to have a sufficiently large value to allow
for more flexibility in choosing ρI later through (21).
The fault detection scheme also depends on the choice
of the parameters ρI and γI . Qualitatively, it is prefer-
able that ρI is chosen sufficiently large so that γI can be
chosen more freely according to 0 < γI < ρI in order to
guarantee filter stability (in (31)). Although the choice
of µI is fixed according to the nonlinear observer design,
one can find a range of values for the parameters ρI and
γI so that these two can be changed online.

Remark 2. In the proposed scheme, the filters are used
primarily to mitigate the effects of noise and their use
allows less conservative detection thresholds to be ob-
tained. Following a similar procedure as before, it can
be shown that in the case where no filtering is used,
and hence the residual in this case is simply rI(t) =
yI(t) − ŷI(t), a suitable detection threshold is given by

r̄I(t) , ‖CI‖x̃max
I (t) + ξI,b, where

x̃max
I (t) , αI

(

e−(µI−θI)tx̄2I,d +
θ−1
I

s+ (µI − θI)

[

v̄2I (t)
]

)
1

2

is the bound on ‖x̃I(t)‖ prior to the fault occurrence,

the scalar θI is selected so that 0 < θI < µI , v̄I(t) ,

η̄I(yI , ȳI , uI , t) + ∆f I + ‖LI‖ξI,b, ‖ξI(t)‖ ≤ ξI,b and

∆f I , sup
(xI ,x̄I ,uI)∈DI

ξ̄I∈Dξ̄I

‖fI
(

xI(t), C̄I x̄I(t), uI(t)
)

− fI
(

xI(t), C̄I x̄I(t) + ξ̄I(t), uI(t)
)

‖.

Note that, the detection threshold in this case of no fil-
tering contains terms regarding the bounds of the mea-
surement noise ξI (which is multiplied by ‖LI‖) and of
the function discrepancy term ∆fI . Therefore, the de-
tection threshold is more conservative and, as a result,

more missed faults (false negatives) may occur in com-
parison to the case in which filtering is used.

Remark 3. Note that, a different bound on the filtered
state estimation error x̃I,f (instead of (31)) is given by
H̄p(s) [x̃

max
I (t)] (where x̃max

I (t) is given in Remark 2).
However, this bound does not exploit the filtering bene-
fits for dampening the measurement noise and its effects
in order to obtain tight detection thresholds. The treat-
ment of the filtering in this work as a linear state trans-
formation counteracts this problem, but at the same
time creates some additional challenges, that are suc-
cessfully tackled, such as to how to properly select ρI
and “correlate” the exponential convergence to zero of
x̃I,N,f with the boundedness of x̃I,f (see (26)).

5 Fault detectability

So far, the design and analysis was based on devising
suitable thresholds r̄I(t) such that in the absence of any
fault we have ‖rI(t)‖ < r̄I(t). In the following, a fault
detectability condition of the aforementioned fault de-
tection scheme is presented, which provides a quantita-
tive characterization of a class of detectable faults. The
following result can be easily derived.

Theorem 2. Consider the nonlinear system (1), (2)
with the distributed fault detection scheme described in
(5), (6), (7), (8) and the detection threshold (32). A fault
in the I-th subsystem occurring at t = T0 is detectable if
the following inequality is satisfied for some θI ∈ (0, µI)
at some time t > T0:

∥

∥

∥

∥

∫ t

T0

CIe
AI,0(t−τ)φI,f

(

x(τ), uI (τ), τ
)

dτ

∥

∥

∥

∥

> r̄I(t) + ǭξI (t)

+

∫ t

0

‖CIe
AI,0(t−τ)‖

(

‖GfI‖H̄p(s)[x̃
max,φ
I (τ)]

+ |hp(τ)|x̄I,d + χ̄I(τ)

)

dτ

whereφI,f
(

x(t), uI(t), t
)

, Hp(s)[βI(t−T0)φI(x(t), uI(t))],

x̃
max,φ
I (t) , αI

(

e−(µI−θI)tx̄2I,d

+
θ−1
I

s+ (µI − θI)

[

(v̄I(t) + ‖φI,f
(

x(t), uI(t), t
)

‖)2
]

)
1

2

.

The above fault detectability theorem implicitly char-
acterizes the type of faults that can be detected by the
proposed distributed fault detection scheme. Clearly,
the fault functions φI(x, uI) are typically unknown and
therefore this condition cannot be checked apriori.

6 Simulation Results

In this section, we consider a numerical example to il-
lustrate some of the concepts developed in this paper.
The example is based on a system of two interconnected
one-link manipulators with revolute joints actuated by a
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Fig. 2. Residual and detection threshold signals based on the nonlinear observer performance.

DC motor, where the elasticity of the joint can be mod-
eled by a linear tensional spring [16] . The state variable

x
(1)
I represents the motor position, x

(2)
I the motor veloc-

ity, x
(3)
I the link position and x

(4)
I the link velocity. The

system dynamics of the two subsystems I = 1, 2, with

xI =
[

x
(1)
I x

(2)
I x

(3)
I x

(4)
I

]

, are given by

ẋI = AIxI + fI + ηI
yI = CIxI + ξI

where for the first subsystem: A1 = [0 1 0 0 ; -48.6
-1.25 48.6 0 ; 0 0 0 1 ; 19.5 0 -19.5-3.33 0], η1 =

[0; 0; 0; 0.1sin(x
(3)
1 )], f1 = [0; 43.2u; 0;−3.33sin(x

(3)
1 ) +

3.33x
(3)
1 + 2sin(x

(4)
2 )], and for the second subsystem:

A2 = [0 1 0 0 ; -24.3 -0.625 24.3 0 ; 0 0 0 1 ; 9.75

0 -9.75-1.665 0 ], η2 = [0; 0; 0; 0.1sin(x
(3)
2 )], f2 =

[0; 21.6u; 0;−1.665sin(x
(3)
2 ) + 1.665x

(3)
2 + 2sin(x

(4)
1 )].

The matrix CI for both subsystems is given by
CI = [1 0 0 0; 0 1 0 0; 0 0 0 1] and the input uI for both
subsystems is a sinusoid of magnitude 1 and frequency
1 Hz. In this simple example, we consider an abrupt
multiplicative actuator fault in subsystem 1 where the
input changes from u1 = ū1 to u1 = (1+ψ1)ū1 for some
parameter ψ1 ∈ [−1, 0] characterizing the magnitude of
the fault. In the simulation example, the fault occurs at
T0 = 2 sec with a magnitude ψ1 = −0.2. In addition,
the measurement noise is generated from a Gaussian
distribution with mean µξ = 0, variance σ2

ξ = 0.00025
and it is then passed through a saturation block in or-
der to limit its values between [−0.05, 0.05] so that its
maximum magnitude is 0.05.

At first, we proceed with the nonlinear observer
design according to Section 3. The function f1
satisfies the Lipschitz condition (4) with Gf1 =
[0 0 0 0;0 0 0 0;0 0 0 0;0 0 6.66 0]. The nonlinear ob-

server for subsystem 1 is designed so that V̇1(x̃1) <
−µ1V1(x̃1) with µ1 = 30. The specific choice for µ1

is made because it is required that ρ1 (which is se-
lected based on (21)) satisfies ρ1 = µ1 for comparison
purposes between the filtering and non-filtering case.

To obtain the solution of (13) we solve it as an ARE:
Ā⊤

1 P1 + P1Ā1 + ǫIG
⊤
f1
Gf1 +

1
ǫ1
P1P1 − δ21C

⊤
1 C1 = −ǫ′1I.

For given µ1 = 30 and ǫ′1 = 0.01 (generally a small
positive scalar), we try to find suitable values for ǫ1,
δ1 that result in a symmetric, positive definite matrix
P1 solution of the previous ARE. The values that are
chosen are ǫ1 = 1, δ1 = 25 and then the observer gain
matrix L1 is calculated from Lemma 1: L1 = [ 22.45
-2.11 -0.11 ; -2.11 44.89 -10.86 ; 15.82 25.04 -12.36 ;
-0.11 -10.86 27.13 ]. The eigenvalues of (A1 −L1C1) are
−25.91± 31.81 and −21.95± 1.74, and therefore they
are well damped and they guarantee fast convergence
to the actual states for the nominal system.

Now, we implement the residual and threshold signals
without the use of filtering as described inRemark 2. The
bounds used in this case are ξ1,b = 0.07 and∆f1,1 = 0.1.
In addition the bound on the modeling uncertainty is
η̄1 = 0.1 and the bound on the system initial conditions
is x̄1,d = 1. The parameters used for the threshold are
µ1 = 30 and θ1 = 20. The results are shown in Figure 2a
where it is shown that the threshold is too conserva-
tive thus the fault is not detected. Next, we proceed and
implement the proposed fault filtering detection scheme
which allows less conservative thresholds to be obtained.
The local FDI module that monitors the first subsystem
computes the residual (8) by using a low-pass filter with

transfer functionHp(s) =
252

(s+50)2 and the fault detection

threshold (32) with ρ1 = 30, γ1 = 20. For comparison
purposes, note that these parameters have the same val-
ues as in the no filtering case presented before (µ1 = 30
and θ1 = 20). For the calculation of the detection thresh-
old, equations (31), (28) are used with ǭξ1 = 0.002 and
ǭ∆1,1

= 0.002. Note that the transfer function Hp(s) has
a non-negative impulse response hp(t) and therefore the
calculation of h̄p(t) is not needed, but hp(t) is used in-
stead. Figure 2b shows that the fault is successfully de-
tected at around t = 2.19 sec, indicating the effective-
ness of the proposed scheme.
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7 Conclusion

In this paper a distributed fault detection filtering
approach for a class of input-output interconnected,
continuous-time, nonlinear systems with modeling un-
certainties and measurement noise is presented. Utiliz-
ing nonlinear observer design and under certain assump-
tions, a distributed fault detection scheme is proposed
which is inherently tied with the observer characteristics
and the fault detectability condition is obtained which
characterizes in an implicit way a class of detectable
faults. The main contribution of this paper is the novel
use of a nonlinear observer approach for the purpose
of fault detection which is used to alleviate the lack of
full state measurements and the novel use of filters as
a linear state transformation that allows the use of any
strictly proper and asymptotically stable filters. As a re-
sult, the fault detection is correlated with the observers’
performance and tight, adaptive detection thresholds
are obtained due to the noise dampening characteristics
of the filters. Future research efforts will be devoted in
developing a comprehensive fault isolationmethodology.
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