
Automatic Synthesis of Regular Expressions

from Examples

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo,
Eric Medvet, and Enrico Sorio ∗

July 5, 2013

Abstract

We propose a system for the automatic generation of regular ex-
pressions for text-extraction tasks. The user describes the desired task
only by means of a set of labeled examples. The generated regexes
may be used with common engines such as those that are part of Java,
PHP, Perl and so on. Usage of the system does not require any fa-
miliarity with regular expressions syntax. We performed an extensive
experimental evaluation on 12 different extraction tasks applied to real-
world datasets. We obtained very good results in terms of precision
and recall, even in comparison to earlier state-of-the-art proposals.
Our results are highly promising toward the achievement of a practical
surrogate for the specific skills required for generating regular expres-
sions, and significant as a demonstration of what can be achieved with
GP-based approaches on modern IT technology.

1 Introduction

A regular expression is a means for specifying string patterns concisely.
Such a specification may be used by a specialized engine for extracting the
strings matching the specification from a data stream. Regular expressions
are a long-established technique for a large variety of text processing appli-
cations and continue to be a routinely used tool due to their expressiveness
and flexibility. Indeed, regular expressions have become an essential device
in broadly different application domains, including construction of XML

∗A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet and E. Sorio are with the Depart-
ment of Engineering and Architecture (DIA), University of Trieste, Via Valerio 10, 34127
Trieste, Italy

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Trieste

https://core.ac.uk/display/53741483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


schemas, extraction of bibliographic citations, network packets rewriting,
network traffic classification, signal processing hardware design, malware
and phishing detection and so on.

Constructing a regular expression suitable for a specific task is a tedious
and error-prone process, which requires specialized skills including familiar-
ity with the formalism used by practical engines. For this reason, several
approaches for generating regular expressions automatically have been pro-
posed in the literature, with varying degrees of practical applicability (see
Section 2 for a detailed discussion). In this work we focus on text extraction
tasks and describe the design, implementation and experimental evaluation
of a system for the automatic generation of regular expressions from exam-
ples. The user is required to describe the desired task by providing a set of
examples, in the form of strings in which each string is accompanied by the
(possibly empty) substring to be extracted. Based on these examples, the
system generates a regular expression suitable for use with widespread and
popular engines such as libraries of Java, PHP, Perl and so on. The system
is internally based on multi-objective Genetic Programming (GP): GP is
a computational paradigm inspired by biological evolution [1]. We remark
that all the user has to provide is a set of examples. In particular, the user
need not provide any initial regular expression or hints about structure or
symbols of the target expression. Usage of the system, thus, requires neither
familiarity with GP nor with regular expressions syntax.

We performed an extensive experimental evaluation of our proposal on
12 different extraction tasks: email addresses, IP addresses, MAC (Ethernet
card-level) addresses, web URLs, HTML headings, Italian Social Security
Numbers, phone numbers, HREF attributes, Twitter hashtags and citations.
All these datasets were not generated synthetically, except for one: the
Italian Social Security Numbers dataset. We obtained very good results for
precision and recall in all the experiments. Some of these datasets were used
by earlier state-of-the-art proposals and our results compare very favorably
even to all these baseline results.

We believe these results may be practically relevant also because we
obtained very good figures for precision and recall even with just a few tens
of examples and the time required for generating a regular expression is in
the order of minutes.

It seems reasonable to claim, thus, that the system may be a practical
surrogate for the specific skills required for generating regular expressions,
at least in extraction problems similar to those analyzed in our evaluation.

A prototype of our system is publicly available at http://regex.inginf.
units.it.

2



2 Related work

The problem of synthesizing regular expressions [2] or deterministic finite
automata (DFAs) [3] from examples is long-established. DFAs and regular
expressions may solve similar problems but differ in expressiveness and com-
pactness: a DFA may be exponentially larger than the corresponding regular
expression. When using an evolutionary approach to learn a DFA from ex-
amples, this difference may imply a very large search space—unpractical
on non trivial alphabets. Indeed, most of the research about DFA learning
considers strings constructed from an alphabet including very few symbols
(usually 2, as in [3]), which clearly does not match text extraction problems.

An evolutionary approach is proposed in [4] and assessed on the extrac-
tion of hyperlinks from HTML files. This work considers a flagging problem:
an example is handled correctly when the generated regex does extract some
text from the example, irrespective of the string that is actually extracted.
We consider instead an extraction problem: an example consists of a string
paired with a substring in that line; the example is handled correctly only
when exactly that (possibly empty) substring is extracted. We included
in our experimental evaluation the dataset of [4]. Interestingly, our results
improve those of the cited work even in terms of flagging precision and recall.

Problem and fitness definition in [5] are more similar to ours. The au-
thors applies a Genetic Algorithm for evolving regular expressions in several
populations, followed by a composition module that composes two given
regular expressions in several predefined ways and selects the composition
which scores better on a validation set. The criteria for choosing from the
final populations the two specific expressions to be input to the composi-
tion module are not given. The proposal is assessed in the context of web
data extraction, in particular URLs and phone numbers. According to the
authors, when applied to real web documents, the generated expressions
are often not able to extract essential URLs components. A later work by
the same authors proposes a Genetic Algorithm that restricts the search
space by using simple regular expressions constructed with a dedicated al-
gorithm as building blocks for candidate solutions [6]. Performance in URL
extraction from real web documents is still quite low, the reported value for
F-measure being 0.27 (on datasets that are not public).

An active learning approach for text extraction is explored in [7]. The
application domain is criminal justice information systems and the main fo-
cus is minimizing the manual effort required by operators. Starting from a
single positive example, human operators are introduced in the active learn-
ing loop in order to manually prune irrelevant candidate examples generated

3



by the learning procedure. The approach is assessed on datasets with train-
ing set larger than the corresponding testing set—in our experiments the
training set is a small fraction of the testing set. The cited work proposes
an algorithm that may generate only reduced regular expressions, i.e., a re-
stricted form of regular expressions not including, for example, the Kleen
operator used for specifying zero or more occurrences of the previous string
(e.g., “a*” means zero or more occurrences of the “a” character). This lim-
itation is not present in the active learning algorithm proposed in [8], which
requires a single positive example and an external oracle able to respond to
membership queries about candidate expressions—the role played by human
operators in the previous works. This algorithm is provably able to generate
arbitrarily complex regular expressions—not including the union operator
“|”—in polynomial time, but no experimental evaluation is provided.

An approach that may be applied to a wide range of practical text ex-
traction cases is proposed in [9]. This proposal requires a labeled set of
examples and an initial regular expression that has to be prepared with
some domain knowledge—which of course implies the presence of a skilled
user. The algorithm applies successive transformations to the starting ex-
pression, for example by adding terms that should not be matched, until
reaching a local optimum in terms of precision and recall. The proposal
is assessed on regular expressions for extracting phone numbers, university
course names, software names, URLs. These datasets were publicly avail-
able and we included some of them in our experimental evaluation. The
requirement of an initial regular expression is not present in [10], which is
based on the identification in the training corpus of relevant patterns at
different granularity, i.e., either tokens or characters. The most suitable of
these patterns are then selected and combined into a single regular expres-
sion. This proposal is assessed on several business-related text extraction
tasks, i.e., phone numbers, invoice numbers, SWIFT codes and some of the
datasets in [9] (we included these datasets in our evaluation).

Automatic generation of regular expressions from examples is an active
research area also in application domains very different from text extraction,
in particular, gene classification in biological research [11]. This algorithm
extracts patterns (mRNA sequences) that have biological significance but
cannot be annotated in advance. Our approach focuses on a radically dif-
ferent scenario, because we require that each positive example is annotated
with the exact substring which is to be identified.

4



3 Our approach

3.1 User experience

The user provides a set of examples. Each example is composed by a string
t and the substring s of t which has be extracted by the desired regular
expression; without loss of generality, we assume that each example contains
at most one substring to be extracted. We call negative example an example
where s is empty.

The system generates a regular expression fully compatible with all ma-
jor regular expression engines, including those of Java, Perl and PHP.

3.2 Implementation

Our system is internally based on GP. We represent each candidate solution—
an individual, in GP parlance—as an abstract syntax tree. A leaf node is an
element from a predefined terminal set (strings between parentheses indicate
the label of the corresponding node):

• a large alphabet of constants including common characters and punc-
tuation symbols (“a”, . . . ,“z”,“A”, . . . ,“Z”,“0”, . . . ,“9”,“@”,“#”, . . . ),

• the numerical and alphabetical ranges (“a-z”,“A-Z”,“0-9”),

• two common predefined character classes (“\w” and “\d”),

• the wildcard character (“.”).

A branch node of the tree is instead an element from a predefined functions
set consisting of the following regular expressions operators:

• the possessive quantifiers (“c1*+”, “c1++” and “c1?+”),

• the non-capturing group (“(c1)”),

• the character class and negated character class (“[c1]” and “[^c1]”),

• the concatenator (“c1c2”),

• and the ternary possessive quantifiers (“c1{c2,c3}+”).

Labels ci of function set elements are templates used for transforming the
corresponding node and its children into (part of) a regular expression. For
example, a node of type “possessive question mark” will be transformed into
a string composed of the string associated with the child node followed by

5



the characters “?+”. The string associated with each child node will be con-
structed in the same way, leaf nodes being associated with their respective
labels. We transform a tree τ into a string Rτ which represents a regular
expression by means of a depth-first post order visit (see [12] for an example
and further details).

The ability of an individual to solve the problem of interest is quantified
by its fitness. The fitness is usually defined in terms of some predefined
performance indexes of the solution represented by the individual and com-
puted on a set of solved instances of the problem (the learning corpus). We
will describe our fitness definition later in this section.

A GP execution starts from an initial population of individuals generated
at random and consists in an evolutionary search as follows. 1. Generate
an intermediate population with this composition: 10% of the individuals
are generated at random; 10% of the individuals are generated by applying
the genetic operator ”mutation” to an individual selected from the current
population; selection is performed with a tournament of size 7, i.e., 7 indi-
viduals are selected at random and then the individual with highest fitness in
this set is selected; finally, 80% of the individuals are generated by applying
the genetic operator ”crossover” to a pair of individuals selected from the
current population, each with a tournament as above. 2. Construct a new
population composed of individuals with highest fitness among those in the
current population (a strategy called elitism) and those in the intermediate
population. These steps constitute a generation. We iterate this process
until either a solution with perfect fitness is found or a predefined maximum
number of generations have evolved. We keep the population size constant
across all generations. Upon generation of a new individual, we check the
syntactic correctness of the corresponding expression. If the check fails, the
individual is discarded and a new one is generated.

We used two fitness functions and implemented ranking between individ-
uals by means of a standard multi-objective optimization algorithm—Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). The fitness functions
to be minimized are: (i) the sum of the Levenshtein distances (also called
edit distances) between each detected string and the corresponding desired
string, and (ii) the length of the regular expression. In detail, we defined
the fitnesses fd(R) and fl(R) of an individual R as follows:

fd(R) =
n∑
i=1

d(si, R(ti)) (1)

fl(R) = l(R) (2)

6



where: ti is the i-th example string in a set of n given examples, si is the
substring to be found in ti, R(ti) is the first string extracted by the individual
R for the example ti, d(t′, t′′) is the Levenshtein distance between strings t′

and t′′, l(R) is the number of characters in the individual R—i.e., the length
of the regular expression represented by that individual.

The GP search is implemented by a software developed in our lab. The
software is written in Java and can run different GP searches in parallel on
different machines.

3.3 Observations

We remark that the fitness is not defined in terms of precision and recall,
which are the performance metrics that really matter in the final result.
Other prior works attempt to minimize the number of unmatched strings
in the training corpus, thereby focusing more directly on precision and re-
call [4]. Our early experiments along this line did not lead to satisfactory
results. Looking at the generated individuals, we found that this approach
tends to be excessively selective, in the sense that individuals failing to
match just a few characters are as important in the next evolutionary step
as those that are totally wrong. We thus decided to use the Levenshtein
distance (along the lines of [5]) and obtained very good results. A more
systematic comparison between different fitness definitions is given in the
experimental evaluation.

The choice of function set and terminal set has been influenced by the
results of our early experiments, as follows. Regular expressions may include
quantifiers, i.e., metacharacters that describe how many times a given group
of characters shall repeat to be considered a match. Quantifiers can be
grouped by their behavior in three macro groups: greedy, when they return
the largest matching string, lazy, when they return the minimal match,
and possessive, that are very similar to greedy quantifiers except that a
possessive quantifier does not attempt to backtrack when a match fails. In
other words, once the engine reaches the end of a candidate string without
finding a match, a greedy quantifier would backtrack and analyze the string
again, whereas a possessive quantifier will continue the analysis from the
end of the candidate string just analyzed. Since greedy and lazy quantifiers
have worst case exponential complexity, we decided to generate individuals
that include only possessive quantifiers.

This design choice has been corroborated by the results of early ex-
periments in which we allowed individuals to include either greedy or lazy
quantifiers. The execution time of these experiments was way too long to be

7



practical—in the order of several tens of hours for generating a regular ex-
pression, as opposed to the minutes or few tens of minutes typically required
when only possessive quantifiers are allowed (Section 4). Allowing regular
expressions to contain only possessive quantifiers lead to results that cannot
be handled directly by JavaScript engines included in major browsers. How-
ever, a simple mechanical transformation—which consists in replacing each
possessive quantifier with an equivalent expression composed of group op-
erators and a greedy quantifier—makes the resulting expression compatible
with JavaScript. Our prototype implements this mechanical transformation
and allows the user to opt for a regular expression which is compatible with
JavaScript.

4 Experiments

4.1 Methodology

We considered 12 different extraction tasks on datasets in which we manually
labelled all data (Table 1). We made our best to include in the evaluation
all earlier proposals that address our problem.

We executed each experiment as follows:

1. We split the dataset in three subsets selected randomly: a training set,
a validation set and a testing set. The training set and the validation
set are balanced, i.e., the number of positive examples is always the
same as the number of negative examples. Those sets are used as
learning corpus, as described below.

2. We executed a GP search as follows: (i) we ran J different and inde-
pendent GP evolutions (jobs), each on the training set (without the
examples in the validation set) and with the same values for GP-related
parameters (in particular, a population size of 500 and a number of
generations of 1000); (ii) we selected the individual with the best fit-
ness on the training set for each job; (iii) among the resulting set of J
individuals, we selected the one with the best F-measure on the val-
idation set and used this individual as the final regular expression R
of the GP search.

3. We evaluated precision, recall and F-measure of R on the testing set.
In detail, we count an extraction when some (non empty) string has
been extracted from an example and a correct extraction when exactly
the (non empty) string associated with a positive example has been

8



Table 1: Extraction Tasks and Datasets

Task Extracted item Corpus description
#Examples

Pos. Neg.

ReLIE URL URL

Collection of web-pages ob-
tained from the publicly avail-
able University of Michigan
Web page collection (used
by [9, 10])

2820 1057

Cetinkaya HREF HREF attribute
HTML source of a set of 3 web
pages (used by [4])

211 3205

Cetinkaya URL URL The same as Cetinkaya HREF 466 767

Hashtag/Cite Hashtags and citations
Twitter messages collected us-
ing the Twitter Streaming API

34879 15121

LogIP IP addresses
Log from our lab gateway
server running the vuurmuur
firewall software

5000 5000

LogMAC Ethernet card address The same as LogIP 5000 5000

Italian SSN Italian SSNs

Partly composed of syntheti-
cally generated examples in-
cluding some form of noise and
partly obtained by OCR pro-
cessing of low quality printed
documents

2783 2724

Email Header IP IP addresses

Headers of 50 emails from per-
sonal mail boxes of our lab
staff. This task is more chal-
lenging than LogIP because
email headers typically con-
tain strings closely resembling
to IP addresses, such as serial
numbers, unique identification
numbers or timestamps

480 1728

Website Email Email addresses
HTML source of the address
book page from the website of
a local nonprofit association

1095 24495

Website Heading HTML headings
HTML source of a set of
pages taken from Wikipedia
and W3C web sites

566 48947

9



0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n
g

F
-m

ea
su

re
%

Training size

Our approach
Li et al. [9]

(a) ReLIE URL task

0

20

40

60

80

100

10 100 1000 10000 100000

T
es

ti
n
g

F
-m

ea
su

re
%

Learning size

Our approach
Li et al. [9]

Brauer et al. [10]

(b) ReLIE Phone Number task

Figure 1: Analysis of tasks ReLIE URL and ReLIE Phone Number. Per-
formance comparison between our approach and earlier state-of-the-art pro-
posals.

extracted. Accordingly, the precision of a regular expression is the ra-
tio between number of correct extractions and number of extractions;
the recall is the ratio between number of correct extractions and num-
ber of positive examples; F-measure is the harmonic mean of precision
and recall.

4. We repeated steps 1–3 five times.

5. We averaged the results for precision, recall and F-measure across the
five repetitions.

4.2 Results

We executed a first suite of experiments with a learning corpus size of 100
elements, 50 training examples and 50 validation examples, and J = 128
jobs. The learning corpus is always a small portion of the full dataset, around
1-4% except for the Cetinkaya URL task in which it is 8.1%. The results were
very good in all tasks as we always obtained values of precision, recall, and
F-measure around or higher than 90% (see Table 2). The only exceptions are
the precision indexes for Cetinkaya HREF and the ReLIE Phone precision.
However, even these results constitute a significant improvement over earlier
works as discussed in detail in the following.

Tasks ReLIE URL and ReLIE Phone Number have been used in earlier
relevant works [9, 10]. We repeated our experiments with different sizes for
the training set (as clarified in more detail below) and plotted the average F-
measure of the generated expressions on the testing set against the learning

10



set size. The results are in Fig. 1(a) for ReLIE URL and in Fig. 1(b) for
ReLIE Phone Number. The figures show also curves for the corresponding
F-measure values as reported from the cited works. It seems fair to claim
an evident superiority of our approach—note the logarithmic scale on the
x-axis.

The performance indexes of our approach are obtained, as described in
the previous section, as the average performance of the best expressions
generated in each of the five repetitions, where the best expression for each
repetition is chosen by evaluating J = 128 individuals on the validation set.
We analyzed all the 5 × 128 individuals that compose the final populations
of the five repetitions and verified that the very good performance which we
obtain is not the result of a bunch of lucky individuals (the corresponding
performance distributions across the individuals can be found in [12]): our
approach manage to generate systematically a number of different expres-
sions with high values of precision, recall and F-measure.

The datasets of tasks Cetinkaya HREF and Cetinkaya URL were also
used in earlier relevant works [4] in the context of a flagging problem: a posi-
tive example is counted as correct when some string is extracted, irrespective
of the string. We assessed the performance of our result, where an example
is correct when exactly the desired string is extracted, and of the regular
expressions described in [4] according to this metric—i.e., we used all these
expressions for solving a flagging problem on our testing set. We obtained
with our results a flagging accuracy of 100% and 99.64% on the Cetinkaya
HREF and Cetinkaya URL tasks, respectively, whereas the results of [4] are
99.97% and 76.07%. Our results thus exhibit better performance, which is
interesting because: (i) the regular expressions in [4] were generated with
266 and 232 learning examples for the two tasks, whereas our result used
100 learning examples; (ii) our GP search aimed at optimizing a different
(stronger) metric.

Having ascertained the good performance of the previous configuration,
we investigated other dimensions of the design space in order to gain insights
into the relation between quality of the generated expressions and size of the
training set. We executed a large suite of experiments by varying the size
of the learning set, as summarized in Table 2. This table reports, for each
task, the number of learning examples, the percentage of the learning corpus
with respect to the full dataset and the number of training examples. It can
be seen that the quality of the generated expression is very good in nearly
all cases, even when the learning corpus is very small. Not surprisingly, for
some tasks a learning corpus composed of only 25–50 examples turns out to
be excessively small—e.g., Cetinkaya HREF. Even in these cases, however,

11



Table 2: Experiment results with different learning size

Task
Dataset Results (%) Time

Learning % Training Prec. Recall F-m. (min)

ReLIE URL

25 0.7 12 77.3 82.5 78.3 2
50 1.3 25 79.9 98.1 88.0 4
100 2.6 50 88.6 98.1 93.0 6
250 6.4 150 89.7 99.0 94.1 10
400 10.3 300 92.0 98.6 95.2 23

ReLIE
Phone Number

25 0.1 12 80.9 90.9 84.0 2
50 0.1 25 85.4 99.2 91.7 5
100 0.2 50 83.2 98.7 90.2 7
250 0.6 150 87.7 99.1 93.0 11
400 1.0 300 90.2 99.1 94.5 28

Cetinkaya HREF

25 0.7 12 34.5 94.8 46.9 5
50 1.5 25 72.2 94.4 81.6 10
100 2.9 50 81.3 99.9 89.6 17
250 7.3 150 85.6 99.2 91.8 30
400 11.7 300 88.1 100.0 93.5 41

Cetinkaya URL

25 2.0 12 79.4 89.6 83.4 3
50 4.1 25 87.6 98.4 92.7 7
100 8.1 50 90.6 99.7 94.9 12
250 22.3 150 95.0 99.8 97.3 22
400 32.4 300 97.1 99.8 98.5 29

Twitter
Hashtag/Cite

25 0.1 12 98.7 91.2 94.8 1
50 0.1 25 99.1 95.6 97.3 2
100 0.2 50 100.0 100.0 100.0 3
250 0.5 150 99.9 100.0 100.0 8
400 0.8 300 99.8 99.9 99.9 13

Twitter URL

25 0.5 12 95.4 99.5 97.3 1
50 0.9 25 97.3 99.4 98.3 2
100 1.9 50 96.6 99.7 98.1 7
250 4.7 150 96.5 99.6 98.0 12
400 7.5 300 97.4 99.4 98.4 24

Log IP

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 9
250 2.5 150 100.0 100.0 100.0 7
400 4.0 300 100.0 100.0 100.0 30

Log MAC

25 0.3 12 100.0 100.0 100.0 4
50 0.5 25 100.0 100.0 100.0 7
100 1.0 50 100.0 100.0 100.0 10
250 2.5 150 100.0 100.0 100.0 19
400 4.0 300 100.0 100.0 100.0 29

Italian SSN

25 0.5 12 95.6 99.6 97.6 1
50 0.9 25 90.7 99.7 94.9 2
100 1.8 50 94.7 99.7 97.1 2
250 4.5 150 98.6 99.7 99.2 3
400 7.3 300 98.5 99.6 99.1 6

Email Header IP

25 1.1 12 84.2 99.8 91.3 2
50 2.3 25 86.1 99.4 92.4 4
100 4.5 50 87.0 99.4 92.8 6
250 11.3 150 89.5 98.1 93.6 9
400 18.1 300 89.8 99.9 94.6 20

Website Email

25 0.1 12 75.3 99.2 81.0 2
50 0.2 25 88.3 99.8 92.3 5
100 0.4 50 89.0 98.1 91.8 7
250 1.0 150 99.1 100.0 99.6 10
400 1.6 300 99.1 100.0 99.6 23

Website Heading

25 0.1 12 79.9 100.0 88.7 6
50 0.1 25 72.4 91.4 78.7 10
100 0.2 50 89.8 95.4 92.4 15
250 0.5 150 90.6 89.9 89.2 28
400 0.8 300 92.7 100.0 96.2 42

12



Table 3: Regular expressions obtained with a training set of 50 elements.
For each task, we report only the shortest expression among those obtained
in the five repetitions.

Task Regular expression
Twitter Hashtag/Cite [@#]\w++

Twitter URL \w++[^\w]*+\w\.\w\w[^#]\w*+

Log IP \d++\.\d++\.\d++\.\d++

Italian SSN ([A-Z]{4,8}+(\w\w\w)*+[A-Z])*+

Email Header IP \d*+\.\d*+\.\d*+\.\d*+

Website Email (\-?+\w*+@*+\.*+\w++)*+

Log MAC \w*+:\w*+:\w\w:\w\w:\w\w:\w\w

Website Heading \<h[^X]*+

ReLIE URL ((\w++:)?+/*+\w++\.[a-z]\w([^1]\w)?+\w(\.([^1]\w++)++)?+)++

ReLIE Phone Number ([^\)]\d)++[^:][^:]\d++[^:]\d\d[^:]\d

Cetinkaya HREF h[r][^\.]*+(([^1][^h][^1]*+\w*+[^1])*+)*+/*+(\.*+\w\w*+/*+[^1])*+\w*+

Cetinkaya URL ([/\w:]*+\.([^:][/\w\.]++)*+)

enlarging the learning corpus does improve performance and 100 examples
always suffice to achieve F-measure greater than 90%.

The table also reports the average execution time for each repetition. We
executed our experiments on 4 identical machines running in parallel, each
powered with a quad-core Intel Xeon X3323 (2.53 GHz) and 2GB of RAM.
Execution time is in the order of a few minutes, which seems practical.
Indeed, although constructing the learning corpus is not immediate, the
size of such a corpus is sufficiently small to be constructed in a matter of
minutes as well. Most importantly, though, this job does not require any
specific skills to be accomplished.

We also explored the possibility of reducing the number of jobs J = 128,
in order to save computing resources. We repeated each of the experiments
in Table 2 twice, with J = 64 and J = 32. We found that performance does
not degrade significantly even when the number of jobs drops from 128 to
32—which roughly corresponds to dividing the execution time in Table 2 by
four. In this perspective, we decided to set J = 32 in the prototype of our
system available at http://regex.inginf.units.it.

We believe that our fitness definition plays a crucial role in determining
the very good results. In order to gain further insights into this issue, we
executed further experiments with different fitness definitions. First, we
defined a linear combination of the objectives in Eqn. (1) and (2):

f(R) =

n∑
i=1

d(si, R(ti)) + αl(R) (3)

13



Next, we focused on the experiment of the Twitter URL task with learn-
ing corpus of 400 examples and executed this experiment with the following
fitness definitions.

MO [Edit,Length] the multi-objective fitness function of our approach (Sec-
tion 3.2).

MO [Edit,Depth] a multi-objective fitness function in which the length of
the regular expression is replaced by the depth of the tree representing
the individual.

Edit + αLength a linear combination of the objectives, with varying values
for the α parameter (Eqn. 3);

Edit + αDepth the same as the previous definition, but using the depth of
the tree instead of the length of the expression;

Errors a set of four fitness definitions obtained from the four above by
counting the number of missed examples rather than the sum of the
edit distances between each detected expression and the corresponding
example.

These experiments have three key outcomes (we omit the correspond-
ing detailed results, that can be found in [12], for space reasons). First,
fitness definitions aimed at minimizing the number of missed examples do
not work. Indeed, this observation is perhaps the reason why the earlier
approaches shown in the Fig. 1(a) and Fig. 1(b) need a much larger training
set. Second, when minimizing the sum of the edit distances, the various
fitness flavors have essentially no effect on precision and recall, but they do
have a strong impact on the complexity, and thus on readability, of the gen-
erated expression. Third, a multi-objective framework avoids the problem
of estimating the linearization coefficients, but a broad range of values for
α provide expressions that are shorter and of comparable quality.

Finally, we show a sample of the expressions generated by our system
in Table 3. The table has one row for each of the previous experiments
with training set of 50 elements. Each row shows the shortest expression
generated across the corresponding five repetitions. The expressions have
not been manipulated and are exactly as generated by our machinery.

5 Concluding remarks

We have proposed an GP-based approach for the automatic generation of
regular expressions for text extraction. The approach requires only a set of

14



labeled examples for describing the extraction task and it does not require
any hint about the regular expression that solves that task. No specific skills
about regular expressions are thus required by users.

We assessed our proposal on 12 datasets from different application do-
mains. The results in terms of precision and recall are very good, even
if compared to earlier state-of-the-art proposals. The training corpus was
small, in a relative sense (compared to the size of the testing set), in an
absolute sense and in comparison to earlier proposals. The execution time
is sufficiently short to make the approach practical.

Key ingredients of our approach are: (i) a multi-objective fitness func-
tion based on the edit distance and the length of the candidate regular
expression, (ii) the enforcement of syntactical constraints on all the indi-
viduals constructed during the evolution, (iii) the choice of speeding up fit-
ness evaluation by constructing individuals that may include only possessive
quantifiers.

As for any automatic generation method based on examples, our ap-
proach effectiveness crucially depends on how representative the examples
are for the extraction task. This issue might become relevant when the task
includes semantic constraints that cannot be described by means of a few
examples (e.g., IP addresses).

Although our approach has certainly to be investigated further on other
datasets and application domains, we believe that our results are highly
promising toward the achievement of a practical surrogate for the specific
skills required for generating regular expressions, and significant as a demon-
stration of what can be achieved with GP-based approaches on modern IT
technology.

References

[1] John R Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection (Complex Adaptive Systems).
1992.

[2] A. Bràzma. Efficient identification of regular expressions from repre-
sentative examples. In Conference on Computational learning theory,
volume 1, pages 236–242. ACM, 1993.

[3] Simon M Lucas and T Jeff Reynolds. Learning deterministic fi-
nite automata with a smart state labeling evolutionary algorithm.

15



IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(7):1063–1074, 2005.

[4] Ahmet Cetinkaya. Regular expression generation through grammatical
evolution. In International Conference on Genetic and evolutionary
computation, GECCO, pages 2643–2646, New York, NY, USA, 2007.
ACM.

[5] D.F. Barrero, David Camacho, and M.D. R-Moreno. Automatic Web
Data Extraction Based on Genetic Algorithms and Regular Expres-
sions. Data Mining and Multi-agent Integration, pages 143–154, 2009.

[6] David F. Barrero, Maŕıa D. R-Moreno, and David Camacho. Adapting
searchy to extract data using evolved wrappers. Expert Systems with
Applications, 39(3):3061–3070, February 2012.

[7] Tianhao Wu and W.M. Pottenger. A semi-supervised active learning
algorithm for information extraction from textual data. Journal of the
American Society for Information Science and Technology, 56(3):258–
271, 2005.

[8] Efim Kinber. Learning regular expressions from representative exam-
ples and membership queries. Grammatical Inference: Theoretical Re-
sults and Applications, pages 94–108, 2010.

[9] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and Ann Arbor. Regular Expression Learning for Infor-
mation Extraction. Computational Linguistics, (October):21–30, 2008.

[10] Falk Brauer, Robert Rieger, Adrian Mocan, and W.M. Barczynski. En-
abling information extraction by inference of regular expressions from
sample entities. In ACM International Conference on Information and
knowledge management, pages 1285–1294. ACM, 2011.

[11] Wiliam B. Langdon, J. Rowsell, and A. P. Harrison. Creating regular
expressions as mrna motifs with gp to predict human exon splitting.
In International Conference on Genetic and evolutionary computation,
GECCO, pages 1789–1790, New York, NY, USA, 2009. ACM.

[12] Automatic synthesis of regular expressions from
examples (supplemental material), at http://

machinelearning.inginf.units.it/data-and-tools/

automatic-synthesis-of-regular-expressions-from-examples.

16


