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Abstract 

Processing-in-memory (PIM) is emerging as a new computing paradigm to replace the existing von Neumann com‑
puter architecture for data-intensive processing. For the higher end-user mobility, low-power operation capability is 
more increasingly required and components need to be renovated to make a way out of the conventional software-
driven artificial intelligence. In this work, we investigate the hardware performances of PIM architecture that can be 
presumably constructed by resistive-switching random-access memory (ReRAM) synapse fabricated with a relatively 
larger thermal budget in the full Si processing compatibility. By introducing a medium-temperature oxidation in 
which the sputtered Ge atoms are oxidized at a relatively higher temperature compared with the ReRAM devices fab‑
ricated by physical vapor deposition at room temperature, higher device reliability has been acquired. Based on the 
empirically obtained device parameters, a PIM architecture has been conceived and a system-level evaluations have 
been performed in this work. Considerations include the cycle-to-cycle variation in the GeOx ReRAM synapse, analog-
to-digital converter resolution, synaptic array size, and interconnect latency for the system-level evaluation with the 
Canadian Institute for Advance Research-10 dataset. A fully Si processing-compatible and robust ReRAM synapse and 
its applicability for PIM are demonstrated.
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Introduction
Over the past several decades, the physical downscal-
ing in process technology is approaching the limits of 
fundamental physics. On the other hand, the demands 
on higher device scalability and operation speed, and 
low-power consumption capability have been inces-
santly increased, which gets more accelerated by neces-
sity of data-intensive processing represented by big 
data analytics and deep learning for making accurate 
decisions in recent times. Conventional von Neumann 
architecture suffers from the memory bottleneck in 
this data-intensive applications due to the physically 
separated central processing unit and memory domain, 
along with the serial communication method between 
them. This inevitable serial data shuttling between the 
processing and memory domains leads to huge amount 
of latency and energy expenditure, which gets worse 
as the data size is required to be larger. Processing-
in-memory (PIM) computing architecture has been 
researched for a long time in the very-large-scale inte-
gration (VLSI) technology regime for higher parallel-
ism in data processing by introducing the processing 
capability into the memory domain [1–6]. However, 
most of the technological contributions have been 

made for the near-memory processing (NMP) in ways 
that the physical distance between processing and 
memory domains is reduced. The rather metaphori-
cally used expression of PIM can be more substantially 
literal when supported by the device-level innovations. 
The PIM architecture design assures highly parallel 
computing capabilities which stem from the localized 
multiplication-and-accumulation (MAC) operations 
preferably using nonvolatile memories woven for the 
crossbar array toward higher area and energy efficien-
cies. Resistive-switching random-access memory 
(ReRAM) is considered as one of the most promising 
candidates for the synaptic components in the PIM 
architecture due to its simple device structure, high 
scalability, and fast switching speed [7–17]. Although 
researches on ReRAM devices have been focused on 
various aspects including device structure, electrode 
materials, and process integration based on wide vari-
ety of switching materials such as TiO2, NiO2, and 
TaOx, for higher device performances and reliability 
[18–20], there is still room for further improving the 
robustness of switching materials in terms of param-
eter distributions. For the qualification of ReRAM 
for the application as PIM component, higher device 
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reliability should be warranted to endure the highly fre-
quent learning and inference operations. Reliability of 
ReRAM devices has been a major concern, particularly 
in terms of distributions of low-resistance state (LRS) 
and high-resistance state (HRS) resistances with large 
deviations. Chou et  al. fabricated Ni/GeOx/TiOy/TaN 
ReRAM device by room-temperature processing [21]. 
It shows an on/off ratio of 30 and a rather wide distri-
bution of switching voltage. Cheng et  al. reported Ni/
GeOx/HfON/TaN ReRAM device with an on/off ratio 
of 900 fabricated at room temperature [22]. In a recent 
report, oxidation of Ge was pursued by an annealing 
at 600  °C, but the amount of GeOx was small so that 
the HRS current was not effectively suppressed, which 
led to a small on/off ratio [23]. Also, it has been shown 
that GeOx formed by an oxidation above 450  °C dem-
onstrates an improved uniformity in surface roughness 
and the interface quality between the switching layer 
and electrode layers gets better [24].

In this work, electrically more robust and reliable 
ReRAM based on GeOx as the switching material has 
been fabricated, characterized, and the system-level 
evaluations are carried out for the PIM architecture 
with the embedment of GeOx ReRAM cells as the syn-
aptic components. The switching layer of GeOx was 
prepared by a medium-temperature oxidation (MTO) 
with a relatively higher thermal budget, in the opposite 
direction in which the ReRAM cells are usually fabri-
cated by physical vapor deposition (PVD) at room tem-
perature or at low temperatures not prominently higher 
than that. Based on the device operation parameters 
extracted from the measurement results, system-level 
evaluations of the PIM based on GeOx ReRAM are per-
formed with image recognition tests by series of simu-
lations accommodating the realistic hardware circuitry. 

Detailed hardware performance parameters are pre-
sumed from a system-level simulation package for 
32-nm technology node [25]. Last but not the least, the 
effects of nonideal ReRAM operation characteristic of 
variation in cycle-to-cycle operations on the hardware 
neural network performances are closely investigated.

Results and Discussion
Device Fabrication and Characterization
There have been various candidates for the material 
combination to make up the metal–insulator–semicon-
ductor (MIS) stacks for ReRAM devices. In this work, 
Ni/GeOx/p+-Si MIS stack was fabricated. There are two 
reasons for having employed the material combination: 
one is to equip the fabrication viability through intro-
ducing the materials with compatibility to conventional 
Si processing which is mostly adopted for the mod-
ern VLSI electronics, and the other is to obtain more 
concentrated distribution of operation voltages with 
nonmetallic switching material. Figure  1a shows the 
cross-sectional view of a fabricated ReRAM device by a 
high-resolution transmission microscopy (HR-TEM), by 
which GeOx switching layer with 3-nm thickness is con-
firmed. The schematic of the fabricated ReRAM cells is 
shown in Fig.  1b. Ni and p+ Si act as the materials for 
the top electrode (TE) and bottom one (BE), respec-
tively. Figure  2a shows the measured I–V curves from 
the fabricated ReRAM device with a diameter of 100 μm 
after 1, 5, 10, and 20 direct-current (DC) sweeps using 
a Keithley 4200A, with 0.1-mA compliance current. The 
distributions of set and reset voltages are confirmed to 
be narrow owing to the nonmetallic switching dielec-
tric material formed by a MTO and finalized by a post-
deposition annealing (PDA). In order to elucidate the 
conduction mechanism in the Ni/GeOx/p+-Si ReRAM 

Fig. 1  Fabricated GeOx ReRAM cell. a Cross-sectional image by high-resolution transmission electron microscopy (HR-TEM). b Schematic of the 
ReRAM array in the Ni/GeOx/p

+-Si metal–insulator–semiconductor (MIS) stack
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cell, I–V curves in the high-resistance state (HRS) in the 
positive voltage HRS region and in the negative voltage 
LRS region are depicted in Fig.  2b and inset. The con-
duction mechanisms in the three regions of HRS state 
can be categorized into space-charge-limited current 
(SCLC) mechanism which follows the relation I ∝ Vα. 
In Fig.  2b, different slopes are obtained depending on 
regions: region I (voltage < 0.7  V) with a slope of 1.83, 
region II (0.7  V ≤ voltage < 2.5  V) with a slope of 2.49, 
and region III (voltage > 2.5  V) with a slope of 4.78. In 
many previous reports, it was proven that different 
slopes could be extracted even under a single mecha-
nism of SCLC [26–31]. Ohmic conduction follows the 
I–V relation with α ~ 1, dependency with Child’s square 
law can manifest with α ~ 2, and trap-filled conduction 
has the predominance with α > 2. Although linear rela-
tion has not been found in the HRS of the fabricated 
device, the other regions are governed by SCLC with dif-
ferent powers. In the region of relatively low voltage in 
HRS, the trap centers inside the GeOx layer are filled by 
the weak carrier injection from the Ni TE. Carrier trans-
port in this region is effectively described by the Child’s 

law where the current density (J) is expressed in a closed 
form [32–37]:

Here, κ is the dielectric constant of GeOx, μ is the car-
rier mobility across the dielectric, V is the applied voltage, 
and t is the thickness of GeOx layer. This region is also 
known as the trap-mediated SCLC region [38, 39]. As the 
voltage increases, the injected carriers begin to have the 
predominance over the thermally generated ones in num-
ber within the switching layer (region II) and the slope 
further increases. As the voltage goes very high, strong 
carrier injection takes place and all the trap states inside 
the switching layer are occupied by the carriers. In this 
region (region III), the conduction is made without being 
affected by traps and becomes completely space-charge-
dependent, by which it is called trap-filled SCLC [40]. In 
case of LRS state in the negative TE voltage region, the 
slope is extracted to be 1.06 as shown in the inset of 

(1)JChild =

9

8
κµ

V 2

t3

Fig. 2  Measurement and fitting results from the fabricated GeOx ReRAM cell. a I–V curves at 1, 5, 10, and 20 sweeps. b Double logarithmic I–V 
characteristics in the positive-voltage HRS region. Inset shows the negative-voltage LRS region. c Endurance and d retention characteristics of the 
fabricated ReRAM device
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Fig. 2b, in which the current conduction mechanism can 
be mainly explained by ohmic conduction. The endurance 
and retention characteristics of the GeOx ReRAM devices 
are demonstrated in Fig. 2c, d, respectively. The enhanced 
device reliability is evident from the high on/off ratio 
reaching 4.8 × 103 and the retention time longer than 104 s 
as shown in Fig. 2c, d, which reveals an explicit improve-
ment in comparison with a device having the similar con-
figuration reported in the previous literature [21]. 
Figure  3a–d illustrates the construction and destruction 
of the conducting bridge in the Ni/GeOx/p+-Si ReRAM 
device. There is no conduction filament in the pristine 
state (Fig.  3a), but Ni2+ ions begin to penetrate into the 
GeOx switching layer as the TE voltage increases. These 
Ni2+ ions are reduced at the BE resulting in the gradual 
growth of conductive filaments of Ni atoms toward the 
TE (Fig.  3b). As the TE voltage increases, the filament 
formed by the Ni atoms touches the TE and the resistance 
state turns to LRS (Fig. 3c). As the TE voltage is reduced 
and goes into the negative region, the conductive filament 
undergoes electrochemical dissolution and gets ruptured 
leading to the HRS state (Fig. 3d). This formation and rup-
ture of the conducting filament, or conducting bridge, are 
realized by the metallic species, which is more likely to be 
observed in the ReRAM cells employing Ni as the TE 
material [41, 42]. Oxygen vacancy migration has been 
identified as a dominating mechanism for formation of 
conductive filament in the oxide-based ReRAMs. While 
the possibility of oxygen vacancy formation still remains 
in the operation principle of the fabricated device, the 
essential point that needs to be conveyed lies in the fact 

that the predominance might have been moved to forma-
tion of metallic conductive filament based on Ni atoms in 
conduction mechanism. This is due to the electrochemi-
cally active nature of Ni which can easily form metallic 
conductive filaments inside the oxide dielectric, which 
also can be supported by previous studies carried out by 
Sun et al. [42]. In addition, a main requirement for stable 
and reliable oxygen migration is the formation of oxygen 
reservoir layer (ORL) typically formed close to the metal-
lic anode [43]. There is no explicit presence of ORL in the 
fabricated device as can be confirmed by the TEM image 
in Fig. 1a, since the deposited Ge was thermally oxidized 
in the O2 ambient at 550 °C and further densified over the 
additional annealing at 600  °C, which suppressed the 
chances to form a mixed-phase layer, ORL, between the 
Ni anode and the lower GeO2 layer [23]. The highest tem-
perature over the device fabrication was 600  °C as men-
tioned above, and thus, we can put the entire process 
integration after front-end-of-the-line (FEOL) of the Si 
complementary metal–oxide–semiconductor (CMOS) 
integrated circuits. The standard temperature for alloy 
with H2/N2 mixture in the CMOS processing that comes 
at the final step is usually around 450  °C. Thus, there is 
much room to insert the entire process integration of 
GeOx ReRAM in the back-end-of-the-line (BEOL) of Si 
CMOS processing. Considering the fact that there are 
many candidates for Si processing-compatible metals with 
melting points higher than 600  °C for constructing gate, 
barrier, and interconnect, including Ti, TiN, W, Cu, and 
poly-Si, the ReRAM arrays can be fabricated even after all 
the metallization in the Si CMOS integrated circuits are 

Ni TE

GeOx

p+ Si BE

: Ni atom

(a) (b) (c) (d)

: Ni2+ ion

Fig. 3  Schematic of the switching process of the Ni/GeOx/p+-Si ReRAM device (larger sign denotes larger bias). a Pristine state. b Ni2+ ions (gray 
circles) move toward the p+ Si bottom electrode and undergoes reduction to form Ni atoms (red circles), by which a conductive filament is formed 
and grows toward the Ni top electrode. c Conductive filament touches the top electrode (LRS). d Rupture of the conductive filament due to the 
application of opposite polarity bias voltage (HRS)
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completed if proper electrical isolation is warranted by 
depositing inter-layer dielectrics (ILDs). The ReRAM 
array can be integrated with CMOS circuits either verti-
cally or horizontally. If low-melting-point metals are 
required in some parts of interconnection, it can be real-
ized by at the far-back-end-of-the-line at the same time 
not to distort the material properties, doping profiles, and 
critical dimensions defined in the previous stages. Mono-
lithic 3D integration of ReRAM on Si CMOS circuits was 
reported with a processing temperature of 525  °C for 
90 min [36]. Although the processing temperature for oxi-
dation and PDA were 550 °C and 600 °C, respectively, the 
processing times were much shorter, for 10  min and 
20 min, respectively. Thus, it should not be a threat to the 
Si processing compatibility in terms of not only material 
but also  thermal budget. The annealing can be further 
adjusted with lower temperature and prolonged time [23]. 
The conducting filaments repeating the construction and 
destruction with voltage dependence shown in Fig. 3a–d 
are randomly distributed over the ReRAM cell as illus-
trated in Fig. 4a. Each filament can be described as a par-
allel combination of a voltage-dependent resistance and a 
capacitance as shown in Fig. 4b. The series resistance (Rs) 
at the top of the block comes from the series combination 
of TE, BE, and contact resistances. Since all the filaments 
are connected in parallel between TE and BE, all the 
resistances can be lumped into an equivalent cell resist-
ance (Rc), and likewise, all the parallel capacitances are 
summed into an equivalent cell capacitance (Cc)  as dem-
onstrated in Fig.  4c. Although the construction and 
destruction of the conducting bridge are explained by the 
movements of the metallic atoms and the bridging mech-
anism can be varied according to the material combina-
tion making up the cell stack, an individual cell can be 
described by a variable resistor and a capacitor, and thus, 
the suggested equivalent electrical circuit model in 

Fig.  4b, c is allowed to have the high universality for 
ReRAM devices. In order to extract the passive elements 
in the ReRAM cell, the fabricated devices were brought to 
an impedance analyzer, IM3590 by Hioki, with introduc-
ing the equivalent circuit model in Fig. 4c. The Cole–Cole 
plots from the fabricated ReRAM device in the HRS and 
LRS are shown in Fig.  5a, b, respectively. The measure-
ment frequency was varied from 1 Hz to 200 kHz, and the 
x (Z′) and y (Z″) axes indicate the real and imaginary parts 
of the impedance. We applied different voltages for 
extracting the impedances at HRS and LRS. A high DC 
bias can be desirable for obtaining explicit capacitance 
values. However, in order for preserving the switching 
layer quality relatively more vulnerable in the LRS state 
and device reliability over the long-time frequency sweep 
period under a DC bias stress, the value was lowered to 
0.7 V for the measurement in the LRS. Once the bias volt-
age is lower than the set voltage (~ 3.8 V in this work), it 
was experimentally confirmed that there was no signifi-
cant change in impedance analysis results with a change 
in bias voltage in performing the frequency sweep [44]. As 
the frequency goes higher, the trajectory is plotted in the 
counterclockwise direction. The appearance of a single 
semicircle in the Cole–Cole plot is an affirmation of the 
fact that the charge transport mechanism in the device 
can be described in terms of a parallel RC circuit as 
described in Fig. 4c. The square symbols in Fig. 5a, b show 
the measurement results whereas the continuous lines 
denote the fitted data. Table  1 shows the values of the 
extracted parameters from the impedance analysis of the 
GeOx ReRAM device. It is revealed that the capacitance in 
the LRS is much smaller than that in the HRS, which 
attributes to the reduction in effective area for the device 
capacitance taking place over the growth of a conductive 
filament. The higher accuracy in the impedance analysis 
fitting shows that the physical simplification of a realistic 
ReRAM cell in Fig.  4a and the equivalent circuits in 

Fig. 4  Physical and electrical representations of a GeOx ReRAM cell. a Three-dimensional schematic of an ReRAM cell and the conducting filaments. 
b Electrical circuit model considering the multiple growths of conducting filaments. c Simplest ReRAM equivalent circuit
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Fig.  4b, c induced from the results in Fig.  4a have high 
coherence.

Training Approach and Hardware Architecture of the PIM 
with GeOx ReRAM
The off-chip training capability for graphical image rec-
ognition by the GeOx ReRAM has been evaluated using 
the Canadian Institute for Advanced Research (CIFAR)-
10 dataset in the Visual Geometry Group (VGG)-8 neu-
ral network architecture. The architecture of the VGG-8 
network comprises a total 8 layers: 6 convolutional 
layers and 2 fully connected layers. The detailed sche-
matic of the VGG-8 network architecture is shown in 
Fig. 6a. The input CIFAR-10 dataset has a collection of 
60,000 color (red–green–blue) images of 32 × 32 resolu-
tion. The images can be broadly classified into 10 out-
put indexes. During the network training, the data is 
grouped into 50,000 train and 10,000 test images with a 
batch size of 200. The VGG-8 network has been trained 
using a stochastic gradient descent (SGD) algorithm 
and rectified linear unit (ReLU) activation function. The 
realization of hardware-sense neural network for a PIM 
architecture is illustrated in Fig.  6b [25]. The hardware 
design is capable of evaluating the performance of the 
VGG-8 network of GeOx ReRAM synaptic devices. The 
system takes into account the various hardware con-
straints including technology node, analog-to-digital 
converter (ADC) precision and the nonideal changes 
in the synaptic weights during the training. The sys-
tem design has been hierarchically organized into chip 
level, processing element level, and synaptic array level 
elements. For the full single-chip hardware integration, 
peripheral circuits including ADCs, buffers, multiplexers 
(MUX), interconnects with the 32-nm predictive tech-
nology SPICE model parameters have been presumably 
used and other relevant circuitry such as digital adders 
and shift registers have been also considered. The accu-
mulation circuits include the chip-level units, processing 
element level adders, tile-level adders, and shift adders 
on the edges of the ReRAM synapse array. The system-
level performance has been evaluated using an analog 
parallel read-out scheme using 64 × 64 synaptic array 
size and 5-bit ADC precision. The input data flow into 
the wordline (WL) switch matrix, and the MAC opera-
tions in the crossbar array generate partial sums which 
are accumulated along the columns using the read-out 
circuits (flash ADCs). The bit-quantized ADCs are much 
larger in area than the synaptic array column pitch and 
hence they share several columns using the column 
MUX. The roles of adders and shift registers are to shift 
and accumulate partial sums by the MAC operations 
over repeated  cycles due to batch-wise data processing. 

Fig. 5  Impedance analysis of the fabricated GeOx ReRAM device in 
the complex plane by a chemical impedance analyzer. Cole–Cole 
plots of the device in the a HRS at TE voltage = 2.3 V and b LRS at 
TE voltage = 0.7 V. The arrows in the figures indicate the directions 
of frequency sweep (counterclockwise directions) during the 
impedance analyses

Table 1  Values of passive elements extracted from the 
impedance analyses

Resistance 
states

Rs (Ω) Rc (MΩ) C (pF) Extraction 
voltage 
(V)

HRS 197 12.1 163 2.3

LRS 216 29.2 116 0.7
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A major concern with the batch-wise data processing 
lies in the large amount of intermediate data generated 
during the feed-forward process taking place in the 

computation of activations. In order to minimize the 
requirement for in-chip memory space, the PIM archi-
tecture can be designed to send the intermediate data 
to off-chip DRAM, which can be optional depending on 

Fig. 6  Schematic of neural network and PIM architecture. a VGG-8 neural network for CIFAR-10 image recognition. The convolutional layers are 
marked as Conv1 to Conv6, and the corresponding feature maps are indicated. The fully connected (FCN) layers are identified as FCN7 and FCN8 
with their dimension of weights in the brackets. b Design of a tile of PIM architecture embedding the GeOx ReRAM synapse array
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neural network size and chip area of the GeOx ReRAM 
PIM architecture.

System‑Level Performance Evaluation
For evaluating the system-level performances of the 
PIM architecture based on GeOx ReRAM, binary-state 
switching operations in the synaptic array were assumed 
with potentiation (write) voltage = 3  V with a pulse 
width = 100 µs and inference voltage = 0.7 V with a pulse 
width = 100  µs. Figure  7 shows the accuracy in CIFAR-
10 image recognition as a function of number of epochs 
in comparison between software and hardware neural 
networks. It is observed that the PIM system with the 
hardware neural network of GeOx ReRAM synapses has 
achieved an accuracy of 91.27%, which is comparably 
high with the accuracy obtained by the software neural 
network, 92.31%, in terms of test accuracy. A sharp jump 
is witnessed in both the software and hardware-based 
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trainings at 200 epochs. This is due to the decreasing 
learning rate strategy employed after 200 epochs for the 
optimized training of the network. Inset of Fig. 8 shows a 
subset of the CIFAR-10 dataset. The system-level param-
eters from the simulation of the designed PIM architec-
ture are summarized in Table  2. Figure  8a–c shows the 
pie diagrams of portions in energy, latency, and area 
occupied by different hardware components in the PIM 
architecture. The energy distribution in Fig.  8a reveals 
that the ADCs (multi-level current sense amplifier) and 
interconnects consume the largest energy, followed by 
the accumulation circuits. The synaptic array energy con-
sumption is extremely low as compared to other compo-
nents. The latency distribution in Fig. 8b shows that the 
logic and buffer circuits along with the interconnects 
have the predominance in determining the overall system 
latency. The large size of the VGG-8 network results in 
the considerable amount of on-chip data transfer from 
the buffer memory and a large number of synapses in 
the array leading to increase complexity in intercon-
nects within the PIM chip. This is a crucial factor in lim-
iting the overall chip latency. Finally, it is observed from 
Fig. 8c that the total chip area is largely occupied by the 
ADCs. Thus, the ADC area needs to be intensively opti-
mized with regard to both energy and area efficiencies. 
The energy, latency, and area minimally consumed by the 
GeOx ReRAM synapse array are an indication of its high 
applicability in the hardware PIM architecture. Further, 
the computational demands of the VGG-8 network on 
the hardware PIM design are also evaluated in order for 
understanding the future directions for the optimization 
of hardware neural network architecture. In order to cal-
culate the energy distribution across the VGG-8 layers, 
firstly, the simulator maps the trained synaptic weights 

in each layer (per epoch) into a hierarchical organiza-
tion of tiles, processing elements (PEs), down to synaptic 
arrays. This weight mapping is proceeded in the manner 
that the memory domain inside the chip is optimally uti-
lized. Once the weight mapping is completed, the infer-
ence operations are carried out for each epoch using the 
images from the test dataset in the CIFAR-10 dataset. 
During the inference, the energy distribution of each 
layer is calculated as the sum of energies consumed by 
the synaptic array and subcircuit modules such as analog-
to-digital converter (ADC), switch matrix, multiplexer, 
etc. For the energy calculation in the subcircuit module, 
the dynamic energy consumption at each node is calcu-
lated to be CVDD

2 by the effective total capacitance across 
a logic gate (C) and drive voltage (VDD) and summed up 
to obtain the total energy consumption in the subcircuit 
module for a single operation. This is further multiplied 
by the number of operations in the subcircuit module to 
calculate the total dynamic energy consumed by a spe-
cific module. For calculating the energy consumption 
in the synapse array, two components are considered: 
static energy consumed by a synapse and dynamic energy 
consumed by the parasitic capacitance inside the array. 
The static energy consumption of a synaptic device is 
obtained by the conductance of an ReRAM (G) (synap-
tic weight), inference voltage (Vinf), and inference pulse 
width (Tinf) as follows:

The dynamic energy consumption in the array inter-
connect is calculated based on RC analysis. In the similar 
manner, the latency distributions across individual layers 
are obtained as the sum of latency of the subcircuit mod-
ules (multiplied by the number of operations) with the 
RC values in the synapse array as the load. The Horowitz’ 
equation has been used for calculating the latency of logic 
gates in the subcircuits [45]. The latency over the synapse 
array is accommodated into the total latency by consider-
ing the synapse array RC values as the load parameters for 
the subcircuit modules connected to the synapse array. 
Further details about the architectural and performance 
estimation details of the system-level simulations can be 
explained [25]. Figure 9 depicts the flowchart which gives 
the detailed description of the procedure for calculation 
of energy distribution and latency distribution across 
the VGG-8 layers. The as-computed layer-wise energy 
consumption and latency distributions of the VGG-8 
network are shown in Fig. 10a, b. It is observed that the 
convolutional layers with additional pooling layers (previ-
ously shown in Fig.  6a), i.e., layers 2 and 4, demand the 
largest energy and time consumptions for the in-memory 

(2)Energysynapse = GV2
infTinf

Table 2  Chip-level parameters and performances computed per 
epoch for the GeOx ReRAM synapse array-based PIM architecture

PIM chip parameters Values

Chip area 62.5 mm2

Total energy on chip 3.35 × 10–5 J

Latency 1.33 ms

Peak energy efficiency 58.92 TOPS/W

Mean energy efficiency 36.42 TOPS/W

Inference energy in the synapse array 1.64 × 10–6 J

Other logic energy 3.55 × 10–7 J

ADC energy 1.37 × 10–5 J

Interconnect energy 1.20 × 10–5 J

Inference latency in the synapse array 2.20 × 10–5 s

Other logic latency 5.58 × 10–4 s

ADC latency 5.86 × 10–5 s

Interconnect latency 5.55 × 10–4 s
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computations. Judging from both the histograms, it is 
clarified that the inference energy and latency of the syn-
aptic array across all the layers of VGG-8 are minimized 
by the virtues of the fabricated GeOx ReRAM. However, 
it is important to consider the variation in the device-level 
operations in evaluating the system-level performances. 
Recently, there have been several studies on the effects 
of nonideal variations in the synaptic devices on the PIM 
system performances [46–48]. As one of the most deci-
sive nonidealities, variation in cycle-to-cycle switching 
operations can be quantified as a standard deviation and 
can be treated as an independent variable in determining 
the system accuracy. Figure 10c shows the maximum test 
accuracy for the CIFAR-10 image recognition as a func-
tion of the cycle-to-cycle variation. It is explicitly shown 
that there is little drop in the accuracy up to the standard 
deviation of 0.02, which confirms the robustness of the 
GeOx ReRAM synaptic devices implementing the PIM 
architecture. It is demonstrated in Fig. 10d that the infer-
ence energy monotonically increases with the standard 
deviation but the system preserves the robustness against 
the device-level variation up to standard deviation of 0.02.

Conclusion
ReRAM cells featuring the Ni/GeOx/p+-Si stack with a 
high Si processing compatibility have been fabricated 
and characterized, with a particular interest in imple-
menting highly-scalable nonvolatile memory-based PIM 
architecture. The fabricated ReRAM device has demon-
strated increased reliability due to the medium-temper-
ature oxidation process. The circuit and performance 
parameters of the fabricated GeOx ReRAM were fed into 
the system-level simulation with realistic peripheral cir-
cuitry to evaluate the system accuracy in image learning 
and the applicability of the GeOx ReRAM technology for 
the future computing architecture. The CIFAR-10 image 
recognition accuracy and hardware parameters have 
been evaluated in consideration of device-level nonideal-
ity. The energy consumption, latency, and area occupied 
by the synaptic array are observed to be the smallest in 
comparison with other functional modules in the PIM 
architecture. The computational demands of the pooling 
layer in the VGG-8 network on the overall chip energy 
consumption has been revealed by layer-wise neural net-
work evaluation. In conclusion, a high image recognition 
accuracy above 90%, high energy efficiency, low latency, 
and minimal area requirement warrant that the GeOx 
ReRAM can be a plausible candidate for realizing the 
chip-packaged PIM architecture.

Weight mapping into 
hardware

Subcircuit energy calculation
All logic gate dynamic energy 
calculation
Total energy of subcircuit =

number 
of operations)

Test data loading

Energy calculation

Synapse array energy calculation
Synapse array static energy 
calculation
Interconnect energy calculation
Total energy of synapse array 
= Array static energy + 
interconnect energy

Latency calculation

Total energy calculation
Subcircuit total energy +
synapse array total energy

Subcircuit latency calculation
Propagation delay calculation 
using Horowitz equation
Total latency = path delay
number of operations

Synapse array latency calculation
Synapse array RC value
considered as load parameter 
for driving subcircuit

Total latency calculation
Total latency= Subcircuit total
latency with synapse array RC
as load value

Fig. 9  Workflow depicting the sequential steps involved with calculations of energy and latency over the layers in the VGG-8 neural network
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Methods
Device Fabrication
The proposed ReRAM devices were fabricated in the class-
controlled Si nanofabrication facility. After preparing and 
initial cleaning of 6″ p-type (100) Si wafers, ion implanta-
tion was performed with a dose of B 5 × 1015  cm−2 at an 
acceleration energy of 40 keV. Dopant activation was car-
ried out in the furnace at 900 °C for 20 min, and Ge of 3 
nm thickness was deposited by a thermal evaporator at 
96-A source current and 40 × 10–6  torr vacuum pressure. 
Then, dry oxidation of Ge was performed by a medium-
temperature oxidation (MTO) at 550 °C with an O2 flow of 
7,250 sccm for 10 min. and the wafers were sent to a ther-
mal tube for an additional annealing at 600 °C with an N2 
flow of 5000 sccm for 20 min. Lithography was performed 
using a mask aligner for circular patterns. 200-nm-thick 
Ni was deposited on the GeOx switching layer, and then, 
acetone and isopropyl alcohol (IPA) were put in the cyclic 
uses for lift-off and residual removal processes. Finally, the 
wafers were rinsed in the de-ionized (DI) water and com-
pletely dried for finishing the device fabrication.

Electrical Measurement
Electric switching characteristics of the fabricated GeOx 
RRAM device were obtained at room temperature using 
a Keithley 4200A-SCS semiconductor parameter analyzer 
inside an electrically shielded probe station. The imped-
ance analyses were carried out using a Hioki IM3590 
impedance analyzer in the air ambient.

System‑Level PIM Evaluation Environments
The system-level simulations were carried in a high-end 
workstation employing a 32-core AMD Ryzen 9 Proces-
sor as the central processing unit (CPU) and an NVIDIA 
RTX 3090 as the graphic processing unit (GPU). For the 
neural network training, a stochastic gradient descent 
(SGD) algorithm was adopted with rectified linear unit 
(ReLU) activation function. During the network training, 
a batch size of 200 and a learning rate of 1 were used. The 
weight and the gradient were considered to have 5-bit 
precisions, whereas the activation and the error were 
computed with 8-bit precision.
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Fig. 10  Histograms demonstrating a energy and b latency distributions across the different computational layers in the VGG-8 network. c 
Maximum test accuracy and d inference energy in the synapse array as a function of variation in the cycle-to-cycle GeOx ReRAM operations
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