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Abstract

We present a necessary and sufficient condition for a spinor ω to
be of nullity zero, i.e. such that for any null vector v, vω 6= 0. This
dives deeply in the subtle relations between a spinor ω and ωc, the
(complex) conjugate of ω belonging to the same spinor space.

1 Introduction

101 years ago Élie Cartan [6, 7] introduced spinors that were later thoroughly
investigated by Claude Chevalley [8] in the mathematical frame of Clifford
algebra; in this work spinors were identified as elements of minimal left ideals
of the algebra. The interplay between spinors and null (also: isotropic)
vectors, pioneered by Cartan, and thus sometimes called the Cartan map,
is central and have been visited many times since then, see e.g. [5, 9, 3] and
references therein. This relation is pivotal to many fields of physics, the
Weyl equation being just one prominent application.

Let the nullity N(ω) of spinor ω be the dimension of the subspace of
null vectors that annihilate ω i.e. those vectors v such that vω = 0. Simple
(also: pure) spinors are the spinors with maximum nullity. Nullity provides
a coarse classification of spinors that have been studied in detail: see [11]
and references therein. In this paper we investigate the properties of a family
of spinors complementary to simple spinors: the spinors of zero nullity i.e.
those spinors that are not annihilated by any null vector.

We will investigate these spinors in C2m and R2m with signature (m,m),
a common choice in these studies [5, 11], exploiting the Extended Fock Basis
(EFB) of Clifford algebra [1, 2], recalled in section 2. With this basis any
element of the algebra can be expressed in terms of simple spinors: from
scalars to vectors and multivectors. Section 3 present vector and spinor
spaces of the algebra and reports some needed results [3]. Section 4 is
dedicated to spinors and at the end brings the main result: a necessary
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and sufficient condition for a spinor to be of zero nullity; with respect to the
previous study of this problem [11] that tackled Weyl spinors here the results
hold for any spinor. A part from exceptional cases a spinor of zero nullity
can be seen as the sum of a spinor of positive nullity with its (complex)
conjugate. With this result it is easy to build a basis of spinor space made
entirely of spinors of zero nullity.

For the convenience of the reader we tried to make this paper as elemen-
tary and self-contained as possible.

2 Clifford algebra and its ’Extended Fock Basis’

We start summarizing the essential properties of the EFB introduced in [1]
and [2]. We consider Clifford algebras [8] over field F, with an even number
of generators γ1, γ2, . . . , γ2m, a vector space F2m := V and a scalar product
g: these are simple, central, algebras of dimension 22m. As usual

2g(γi, γj) = γiγj + γjγi := {γi, γj}

and we concentrate to F = C or F = R with signature V = Rm,m; g(γi, γj) =
δij(−1)i+1 i.e.

{

γ22i−1 = 1
γ22i = −1

i = 1, . . . ,m . (1)

Given the Rm,m signature we indicate the Clifford algebra with Cℓm,m(g).
The Witt, or null, basis of the vector space V is defined:

{

pi = 1
2 (γ2i−1 + γ2i)

qi = 1
2 (γ2i−1 − γ2i)

⇒

{

γ2i−1 = pi + qi
γ2i = pi − qi

i = 1, 2, . . . ,m (2)

that, with γiγj = −γjγi, easily gives

{pi, pj} = {qi, qj} = 0 {pi, qj} = δij (3)

showing that all pi, qi are mutually orthogonal, also to themselves, that
implies p2i = q2i = 0, at the origin of the name “null” given to these vectors.

Following Chevalley we define spinors as elements of a minimal left ideal
we will indicate with S. Simple spinors are those elements of S that are
annihilated by a null subspace of V of maximal dimension.

The EFB of Cℓm,m(g) is given by the 22m different sequences

ψ1ψ2 · · ·ψm := Ψ ψi ∈ {qipi, piqi, pi, qi} i = 1, . . . ,m

in which each ψi is either a vector or a bi–vector and we will reserve Ψ for
EFB elements. The main characteristics of EFB is that all its elements are
simple spinors [1, 2].
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The EFB essentially extends to the entire algebra the Fock basis [5] of its

spinor spaces and, making explicit the construction Cℓm,m(g) ∼=
m
⊗Cℓ1,1(g),

allows one to prove in Cℓ1,1(g) many properties of Cℓm,m(g).
A classical results that we will need in what follows exploits the isomor-

phism (of vector spaces) Cℓm,m(g) ∼= ΛV with the Grassmann algebra and
leads [8] to the following useful formula for the Clifford product vµ of any
two elements v ∈ V, µ ∈ Cℓm,m(g)

vµ := v µ+ v ∧ µ (4)

where v µ represents the contraction of v with µ (if also µ ∈ V then
2v µ = {v, µ}) and v ∧ µ is the exterior or wedge product.

3 Properties of vector V and spinor S spaces

With the Witt basis (2) it is easy to see that the null vectors {pi} can build
vector subspaces made only of null vectors that we call Totally Null Planes
(TNP, also: isotropic planes) of dimension at maximum m [7]. Moreover the
vector space V is easily seen to be the direct sum of two of these maximal
TNP P and Q respectively:

V = P ⊕Q

{

P := Span (p1, p2, . . . , pm)
Q := Span (q1, q2, . . . , qm)

since P ∩ Q = {0} each vector v ∈ V may be expressed in the form

v =
m
∑

i=1
(αipi + βiqi) with αi, βi ∈ F. Using (3) it is easy to derive the

anticommutator of two generic vectors v and u =
m
∑

i=1
(γipi + δiqi)

{v, u} =

m
∑

i=1

αiδi + βiγi ∈ F ⇒
1

2
{v, v} = v2 =

m
∑

i=1

αiβi . (5)

We define

V0 = {v ∈ V : v2 = 0} V1 = {v ∈ V : v2 6= 0}

clearly V = V0 ∪ V1 and V0 ∩ V1 = ∅ but neither V0 nor V1 are subspaces of
V which is simple to see. Nevertheless V0 contains subspaces of dimension
m, e.g. Q, and, similarly, V1 ∪ {0} contains subspaces of dimension m, e.g.
Span (γ1, . . . , γ2k−1, . . . , γ2m−1). In [3] it is proved that for any nonzero
vector v and spinor ω

vω = 0 ⇐⇒ v ∈ V0 (6)

and thus, for all v ∈ V1, vω 6= 0.
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3.1 Conjugation in V

When F = C complex conjugation in vector space V is given by

v =

m
∑

i=1

αipi + βiqi ⇒ v =

m
∑

i=1

βipi + αiqi (7)

that with (5) gives v2 = v2. For F = R, since αi = αi, the conjugation is
obtained by exchanging basis vectors pi and qi (or, identically, exchanging
coefficients αi and βi) and in both cases conjugation defines an involutive
automorphism on V since v = v;

For F = R we can go further: by (5) v2 = v2 and this conjugation is an
isometry on V that lifts uniquely to an automorphism on the entire algebra
and since our algebra is central simple all its automorphisms are inner. So
there must exist an element C such that v = CvC−1.

To find its explicit form let ∆± = (p1 ± q1) · · · (pm ± qm) and with (2)
it is easy to see that ∆+ = γ1 · · · γ2k−1 · · · γ2m−1 whereas ∆− is the product

of the even, spacelike, γ’s. With (1) one easily finds ∆2
± = (−1)

m(m∓1)
2 and

defining

C =

{

∆+

∆−
C−1 =

{

(−1)
m(m−1)

2 ∆+ for m odd

(−1)
m(m+1)

2 ∆− for m even
(8)

we can prove that v = CvC−1: it suffices to write v in the Witt basis and
make the simple exercise of proving that CpiC

−1 = qi. One easily verifies

v = CCvC−1C−1 = CC−1vCC−1 = v .

Returning to the case F = C, also in this case C is defined and CpiC
−1 =

qi so that, indicating with v⋆ the vector v with complex conjugate field
coefficients, we can write (7) as

v = Cv⋆C−1

that holds also for F = R since in this case v⋆ = v and thus from now on we
will stick to this form for (complex) conjugation. It is an easy exercise to
verify that this form generalizes to any element of the algebra ω giving

ω = Cω⋆C−1

and that, for both F = C and R,

v2 = 0 ⇐⇒ v2 = 0

and one can prove [3]:

Proposition 1. Given nonzero vector v and ω ∈ S such that vω = 0 it
follows vω 6= 0, conversely vω = 0 implies vω 6= 0.
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3.2 Some results for spinor space S

Given the spinor space S we can build its Fock basis Ψa where the index a
takes 2m values and can be thought expressed in binary form as a string of
m “bits” taking values ±1 that represent the h−signature of Ψa [5, 3]. The
generic element of S is expressed by the simple spinor expansion:

ω ∈ S ω =
∑

a

ξaΨa . (9)

For each nonzero spinor ω ∈ S we define its associated TNP as:

M(ω) := {v ∈ V : vω = 0} and N(ω) = dimFM(ω)

and the spinor is simple iff the TNP is of maximal dimension, i.e. iff N(ω) =
m. A standard result [4] says that given u1, u2, . . . , uk ∈ V0 they form a TNP
of dimension k with 0 < k ≤ m if and only if

u1u2 · · · uk = u1 ∧ u2 ∧ · · · ∧ uk 6= 0 (10)

that implies also {ui, uj} = 0 ∀i, j = 1, . . . , k and thus that all vectors in
M(ω) are mutually orthogonal and it’s easy to see that M(ω) is a vector
subspace of V contained in V0.

There is also a result [3] complementary to that of proposition 1:

Proposition 2. For any nonzero vector v and ω ∈ S such that vω = 0 it
follows vω 6= 0, conversely vω = 0 implies vω 6= 0.

We remark that given ω ∈ S, in general ω = Cω⋆C−1 belongs to a
different spinor space SC 6= S, see [3], [10]. Since S is a minimal left ideal
one can define the “projection” of ω in the same spinor space of ω as

ωc := Cω⋆ (11)

and for any ω ∈ S with (9) it is simple to get [3]:

ωc = Cω⋆ =
∑

a

ξaCΨa =
∑

a

s(a)ξaΨ−a (12)

where s(a) = ±1 is a sign, quite tedious to calculate exactly [2] and Ψ−a is
the Fock basis element with h−signature opposite to that of Ψa. A signi-

ficative difference with ω is that while ω = ω, (ωc)c = C2ω = (−1)
m(m−1)

2 ω.
Previous result on ω can be extended [3] to ωc:

Proposition 3. For any nonzero v ∈ V0, given nonzero ω ∈ S such that
vω = 0 it follows vωc 6= 0, conversely vωc = 0 implies vω 6= 0.
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A useful consequence of this result is:

M(ω) ∩M(ωc) = {0} . (13)

In [3] is proved the

Proposition 4. Given k ≤ m nonzero v1, v2, . . . , vk ∈ V0 forming a TNP
of dimension k, any spinor that annihilates v1, v2, . . . , vk may be written as

ω = u1u2 · · · ukΦ (14)

for an appropriate choice of Φ ∈ S whereas the choice of the null vectors ui
is completely free provided they span the same TNP.

We are now ready to prove the technical

Lemma 1. Given a nonzero spinor ω withM(ω) = Span
(

u1, u2, . . . , uN(ω)

)

,
then given nonzero v ∈ V0 such that vω := ω′ 6= 0 then N(ω′) ≥ N(ω) and,
more precisely

N(ω′) ≥ N(ω) + 1 ⇐⇒

{

N(ω) = 0 or
{v, ui} = 0 ∀i = 1, . . . , N(ω)

N(ω′) = N(ω) ⇐⇒ {v, ui} 6= 0 for at least one i = 1, . . . , N(ω) .

Proof. Spinors are member of a minimal left ideal and thus ω′ is a spinor and
v ∈M(ω′) and this is enough to prove the case N(ω) = 0. By proposition 4
we may write ω = u1u2 · · · uN(ω)Φ for an appropriate choice of Φ and since
vω 6= 0 it follows vu1u2 · · · uN(ω) 6= 0 and with (10) u1u2 · · · uN(ω) = u1 ∧
u2 ∧ · · · ∧ uN(ω) 6= 0 and with (4) we can write

vu1u2 · · · uN(ω) = v (u1 ∧ u2 ∧ · · · ∧ uN(ω)) + v ∧ u1 ∧ u2 ∧ · · · ∧ uN(ω) 6= 0

and at least one of the two terms must be nonzero. Necessarily v∧u1∧u2∧
· · · ∧ uN(ω) 6= 0 because otherwise v ∈ Span

(

u1, u2, . . . , uN(ω)

)

that would
give vu1u2 · · · uN(ω) = 0 against hypothesis.

With the recurrence relation

v (u1∧u2∧· · ·∧uN(ω)) =
1

2
{v, u1}u2∧· · ·∧uN(ω)−u1∧[v (u2∧· · ·∧uN(ω))]

the first term expands in a sum containing all {v, ui} and there are two
possibilities; the first is {v, ui} = 0 for all i = 1, . . . , N(ω): this implies that

vu1u2 · · · uN(ω) = v ∧ u1 ∧ u2 ∧ · · · ∧ uN(ω) 6= 0

and with (10) this is sufficient to get that Span
(

v, u1, u2, . . . , uN(ω)

)

⊆
M(ω′) and N(ω′) ≥ N(ω) + 1. The second possibility is that {v, ui} 6= 0
for some i = 1, . . . , N(ω) and we can assume that there is only one vector
ui for which this holds (if this is not the case it is always possible to make
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a proper rotation in Span
(

u1, u2, . . . , uN(ω)

)

to get it). So without loss of
generality we suppose {v, u1} 6= 0, {v, ui} = 0 for i = 2, . . . , N(ω) and so

vω′ = v2ω = 0

u1ω
′ = u1vω = u1vu1u2 · · · uN(ω)Φ = {v, u1}u1u2 · · · uN(ω)Φ = {v, u1}ω 6= 0

uiω
′ = uivω = −vuiω = 0 i = 2, . . . , N(ω)

so that M(ω′) = Span
(

v, u2, . . . , uN(ω)

)

and N(ω′) ≥ N(ω). We conclude
showing that N(ω′) > N(ω) is forbidden in this case; supposing the contrary
M(ω′) should contain, beyond v and N(ω)−1 of the null vectors ofM(ω), at
least one null vector z that would give zvω = 0. But this new vector would
necessarily be orthogonal to all previous vectors and, by the hypothesis on
N(ω), would also give zω 6= 0 and thus also z {v, u1}ω = zu1vω 6= 0. But
{z, u1} = 0 and one would get the contradiction 0 6= zu1vω = −u1zvω = 0.

Along this proof, using the expression ω′ = vω = vu1u2 · · · uN(ω)Φ, we
have seen that, in all cases, there are at least N(ω) null vectors in M(ω′)
thus we can conclude that, in full generality, N(vω) ≥ N(ω). ✷

In summary multiplication vω either ‘adds’ v to M(ω) or ‘removes’ the
vector with which v had a nonzero scalar product, neat examples are:

ω′ = uk+1ω = (−1)ku1u2 · · · ukuk+1Φ

ω′ = ujω = u1u2 · · · uj−1ujuj+1 · · · ukΦ
′

moreover, in the first case, it is easy to exhibit examples for which N(vω) >
N(ω) + 1.

4 Spinors of zero nullity

We start from the following observation: if F = R and a spinor ω is such
that

ωc = Cω = αω α ∈ R − {0} (15)

then it is simple to see that for any nonzero v ∈ V0, vω 6= 0: supposing the
contrary would violate (13). This introduces the spinors of zero nullity for
which N(ω) = 0 i.e. M(ω) = {0}.

Before characterizing them we observe that (15) implies α2 = C2 =

(−1)
m(m−1)

2 and thus

α = ±

{

1 ⇐⇒ m ≡ 0, 1 (mod 4)
i ⇐⇒ m ≡ 2, 3 (mod 4)

and in the second case the problem Cω = αω has solution only if F = C.1

1it is a simple exercise to show that α = ±i also for real spaces of Lorentzian signature

R
2m−1,1

7



On the other hand if F = C then ωc can never be equal to αω since
(·)c : S → S given by ωc = Cω⋆ is C-semilinear while αω is C-linear and
there can be equality in C only if ω = 0. So, in the complex case, ωc and ω
are always linearly independent. We have thus proved:

Proposition 5. Any nonzero spinor ω ∈ S is linearly independent from ωc

with the exception of F = R and m ≡ 0, 1 (mod 4) when there exist cases in
which ωc = Cω = ±ω.

We continue showing that for all spinors N(ω) = N(ωc):

Proposition 6. For any nonzero spinor ω ∈ S, N(ω) = N(ωc) and if
M(ω) = Span (v1, v2, . . . , vk) then M(ωc) = Span (v1, v2, . . . , vk).

Proof. Let’s suppose first N(ω) > 0, for any v ∈M(ω) one has

0 = vω = v⋆ω⋆ = v⋆C−1Cω⋆ = Cv⋆C−1Cω⋆ = vCω⋆ = vωc

that implies N(ωc) ≥ N(ω). In turn from v ∈M(ωc) one has (C⋆ = C)

0 = vωc = vCω⋆ = v⋆Cω = C−1v⋆Cω = vω

that implies N(ω) ≥ N(ωc) and thus N(ω) = N(ωc). This argument proves
also the part on the composition of TNP’s M(ω) and M(ωc).

It remains the case N(ω) = 0: since now vω 6= 0 for any v ∈ V0 it follows
also vω = C−1v⋆Cω 6= 0 and this relation can be multiplied by C, that,
being a product of non null vectors, by (6), keeps the result different from
zero, thus for any v ∈ V0 also v⋆Cω 6= 0 and vCω⋆ = vωc 6= 0 and thus
N(ωc) = 0. ✷

With this proposition applied to (14) we get, for any 0 ≤ k ≤ m

ω = u1u2 · · · ukΦ ⇐⇒ ωc = u1u2 · · · ukCΦ⋆ := u1u2 · · · ukΦc . (16)

This result together with (13) gives a first characterization of spinors of zero
nullity since it is now simple to prove that

N(ω) = 0 ⇐⇒ M(ω) =M(ωc)

and clearly, for F = R, (15) implies M(ω) =M(ωc), not viceversa.

The spinors that are eigenvectors of C are the exception, rather than
the rule, for spinors of nullity zero. In the general case spinors ϕc and ϕ are
linearly independent and we will show that, under proper conditions, any
linear combination of ϕ and ϕc is a spinor with nullity zero; for example
ω = αq1q2q3+βp1q1p2q2p3q3 has N(ω) = 0 for any αβ 6= 0. To proceed we
need some technical results holding for both F = R and F = C:
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Lemma 2. For any nonzero spinor ϕ linearly independent from ϕc let

ω = αϕ+ βϕc α, β ∈ F − {0} (17)

then v ∈ V0 is such that vω = 0 if and only if

αvϕ = −βvϕc 6= 0 (18)

this in turn requires 0 ≤ N(ϕ) ≤ 2. For N(ϕ) > 0 necessarily m > 1 and,
defining M(ϕ) = Span

(

u1, u2, . . . , uN(ϕ)

)

, then {v, ui} 6= 0 and {v, uj} 6= 0
for at least one i and one j; i, j = 1, . . . , N(ϕ).

Proof. Given the form of ω, by proposition 3, neither vϕ nor vϕc can be
zero if one wants vω = 0 that thus can hold only if (18) holds.

To prove the bounds on N(ϕ) we show that outside these bounds a
necessary condition for (18) does not hold. Let’s define spinors ϕ′ := αvϕ

and ϕ′′ := −βvϕc with which (18) reads ϕ′ = ϕ′′ that obviously implies

M(ϕ′) =M(ϕ′′) ⇒ N(ϕ′) = N(ϕ′′) (19)

moreover v ∈M(ϕ′).
If N(ϕ) = 0 we have seen that by lemma 1 that N(ϕ′), N(ϕ′′) ≥ 1 and

if e.g. M(ϕ′) =M(ϕ′′) = Span (v) then (19) can be satisfied.
For N(ϕ) > 0 with lemma 1 there are four possibilities for N(ϕ′) and

N(ϕ′′) but the two in which N(ϕ′) 6= N(ϕ′′) are immediately ruled out.
There remain either N(ϕ′) = N(ϕ′′) ≥ N(ϕ)+1 or N(ϕ′) = N(ϕ′′) = N(ϕ).
The condition M(ϕ′) = M(ϕ′′) with proposition 6 rules out the first case
since clearly Span

(

v, u1, u2, . . . , uN(ϕ)

)

6= Span
(

v, u1, u2, . . . , uN(ϕ)

)

for any
N(ϕ) > 0 so the only remaining possibility is to have N(ϕ′) = N(ϕ′′) =
N(ϕ) that implies, by quoted lemma, {v, ui} 6= 0 and {v, uj} 6= 0 for at
least one i, j ∈ {1, . . . , N(ϕ)}.

We show with an example that if N(ϕ) = 2 a solution of (18) can’t be
excluded: let ϕ = u1u2Φ, ϕc = u1u2Φc and v = u1 + u2, clearly v ∈ V0 and
M(ϕ′) =M(ϕ′′) = Span (u1, u2) and (19) could be satisfied.

Supposing N(ϕ) > 2 with lemma 1, since one can always reduce to the
case in which {v, ui} 6= 0 and {v, uj} 6= 0 for exactly one i, j ∈ {1, . . . , N(ϕ)},
we would have that inM(ϕ′) necessarily remains at least one ui that appears
as ui in M(ϕ′′) and thus (19) can never be realized with which we proved
that necessarily 0 ≤ N(ϕ) ≤ 2.

For m = 1 the maximum dimension of a TNP is 1 but to satisfy N(ϕ′) =
N(ϕ′′) = 1 with lemma 1 one should have {v, u1} 6= 0 and {v, u1} 6= 0 that
would imply v2 6= 0 against initial hypothesis of v ∈ V0 so for N(ϕ) > 0 we
must necessarily have m > 1. ✷

Corollary 7. For any spinor ϕ with N(ϕ) > 2 then any ω ∈ Span (ϕ,ϕc)
has N(ω) = 0.
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Proof. We start remarking that N(ϕ) > 2 implies m > 2 and that ϕ is
linearly independent from ϕc since, otherwise, N(ϕ) = 0. Supposing by
absurdum that N(αϕ+βϕc) > 0 by lemma 2 this would require 0 ≤ N(ϕ) ≤
2 against hypothesis. ✷

4.1 The subspace Sω

We show that every ω ∈ S defines uniquely a 2-dimensional subspace Sω ⊆ S

that corresponds usually to Span (ω, ωc). Given nonzero ω ∈ S let

Sω =

{

Span (ω, ωc) ⇐⇒ ω and ωc are linearly independent
Span (ω+, ω−) ⇐⇒ ωc = ±ω (see below)

(20)

and in the first case it is fairly obvious that Sω is a two dimensional subspace
of S. In the second case necessarily F = R and m ≡ 0, 1 (mod 4); let e.g.
ωc = Cω = ω := ω+, then with (12) one obtains that (ω+)c =

∑

a s(a)ξaΨ−a

and to have Cω+ = ω+ one must have ξa = s(−a)ξ−a. Choosing instead
ξa = −s(−a)ξ−a one defines ω− such that Cω− = −ω− that thus always
exists and that, by eigenvector properties, is linearly independent from ω+

and they thus form, also in this case, the two dimensional subspace Sω
containing the initial spinor ω. An example for F = R and m = 1 is:

{

C(q + pq) = (p+ q)(q + pq) = (q + pq)
C(q − pq) = −(q − pq)

and for any ω, Sω = S. A simple property of Sωis

Proposition 8. Given nonzero ω and its Sω, given any ϕ ∈ Sω also ϕc ∈
Sω.

Proof. For any ϕ = αω + βωc, α, β ∈ F, then ϕc = C2βω + αωc; the other
definition of Sω is proved similarly. ✷

Proposition 9. Given any nonzero ω and its Sω, there always exist ω0, ω0c ∈
Sω such that N(ω0) = N(ω0c) > 0.

This proposition is proved in detail in the Appendix but one can get an
intuition of this result from an interesting property of Sω. The spinor ω is
nonzero, so let us suppose that in its Fock basis expansion (9) appears the
term ξaΨa. Moving now to the spinor space S′ of g−signature −a, then here
Ψa is a primitive idempotent [2]. It is not difficult to see that in this spinor
space the spinors ω, ωc, ωcC

−1(= ω) and ωC−1 (the last two are in S′C−1)
form a sub algebra of Cℓ(m,m) that is isomorphic to Cℓ(1, 1). So it is always
possible to “rotate” the minimal left ideal formed by ω, ωc, combining them
linearly, to build a Fock basis of Cℓ(1, 1) made of two spinors of positive
nullity.

We will call the spinors (ω0, ω0c) the Fock basis of Sω; a useful conse-
quence is:

10



Corollary 10. Given nonzero ω and Sω, any ϕ ∈ Sω can be expressed
ϕ = αω0 + βω0c, α, β ∈ F, with N(ω0) = N(ω0c) > 0.

For the next proposition, that brings the main result, we need a different
form for the generic spinor ω ∈ S that exploits the properties of the Fock
basis expansion (9). If m ≥ 2 one can collect all terms with identical first
two components of (9) and any ω may be written as

ω = q1q2Φqq + q1p2q2Φqp + p1q1q2Φpq + p1q1p2q2Φpp (21)

where the spinors Φxy belong to a spinor space S′ of dimension 2m−2 and
contain all the field coefficients ξa of (9). We remark the subtle difference
with (16): whereas there Φ ∈ S and the relation works since S is a minimal
left ideal, here Φxy ∈ S′ and we are exploiting the properties of Fock basis
expansion (9). The difference emerges when we calculate ωc: writing from
(8) C =

(

p1 + (−1)m−1q1
)

· · ·
(

pm + (−1)m−1qm
)

, we find from (11)

ωc = Cq⋆1q
⋆
2Φ

⋆
qq + Cq⋆1p

⋆
2q

⋆
2Φ

⋆
qp + Cp⋆1q

⋆
1q

⋆
2Φ

⋆
pq + Cp⋆1q

⋆
1p

⋆
2q

⋆
2Φ

⋆
pp

and we observe that q⋆i = qi because they all have field coefficients 1 (all
field coefficients that are not 1 are actually buried in Φxy) and defining
C ′ :=

(

p3 + (−1)m−1q3
)

· · ·
(

pm + (−1)m−1qm
)

the conjugation operator of
the spinor space S′ we find (obviously (−1)m−3 = (−1)m−1)

ωc = Cq1q2Φ
⋆
qq +Cq1p2q2Φ

⋆
qp +Cp1q1q2Φ

⋆
pq +Cp1q1p2q2Φ

⋆
pp =

= −
(

p1 + (−1)m−1q1
)

q1
(

p2 + (−1)m−1q2
)

q2C
′Φ⋆

qq +

+(−1)m−1
(

p1 + (−1)m−1q1
)

q1
(

p2 + (−1)m−1q2
)

p2q2C
′Φ⋆

qp +

+(−1)m−2
(

p1 + (−1)m−1q1
)

p1q1
(

p2 + (−1)m−1q2
)

q2C
′Φ⋆

pq +

+
(

p1 + (−1)m−1q1
)

p1q1
(

p2 + (−1)m−1q2
)

p2q2C
′Φ⋆

pp =

= q1q2Φppc
− q1p2q2Φpqc

+ p1q1q2Φqpc
− p1q1p2q2Φqqc

. (22)

4.2 The case of N(ω0) ≤ 2

Given ω and its Sω we give now sufficient conditions for having spinors of
nullity zero also in the case that the Fock basis of Sω has N(ω0) ≤ 2:

Proposition 11. Given nonzero ω and its Sω (20) with its Fock basis
(ω0, ω0c) and m > 2, then for F = C for any ϕ = αω0 + βω0c, α, β ∈ F

and αβ 6= 0, then N(ϕ) = 0.

For F = R with m ≡ 2, 3 (mod 4) and N(ω0) ≤ 2 additional conditions on
ω0 are needed:

• if N(ω0) = 2 that the Φxy ∈ S′ of its expression (21) is such that
Φxyc

6= ±Φxy;
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• if N(ω0) = 1 that do not hold that: both of the Φxy ∈ S′ of its expres-
sion (21) are such that Φxyc

= ±Φxy and α = ±β.

Proof. If N(ω0) = N(ω0c) > 2 we already know, by corollary 7, that any
ϕ = αω0 + βω0c with αβ 6= 0 has nullity zero; we prove now that this also
holds for N(ω0) = N(ω0c) = 1, 2 for F = C and for F = R with additional
conditions. First of all we note that since N(ω0) > 0, by lemma 2, m ≥ 2.

Let’s consider first N(ω0) = N(ω0c) = 2 and let M(ω0) = Span (u1, u2)
for some u1, u2 ∈ V0 and, since they form a TNP, necessarily, {u1, u2} = 0.
To avoid unnecessary complications and a heavy notation throughout this
proof we will assume, without loss of generality, that {ui, ui} = 1 so that
u1, u2, u1, u2 can be seen as 4 elements of a Witt basis of V ; and this basis
is then also used to build a Fock basis of S so that we will write, with (21)
and (22), in full generality and renaming ui := qi and ui := pi

ω0 = q1q2Φqq ω0c = p1q1p2q2Φqqc
.

We proceed by absurdum supposing that there exists v ∈ V0 such that
v(αω0 + βω0c) = 0. By necessary conditions of lemma 1 we must have
{v, qi} 6= 0 and {v, pj} 6= 0 with 1 ≤ i, j ≤ 2 and there are two possibilities:
the first is i = j; in this case we may always write in full generality

v = qi + ξpi + v′ 1 ≤ i, j ≤ 2, ξ ∈ F

with {v′, qi} = {v′, pi} = 0 and v′2 = −(qi + ξpi)
2 = −ξ and, since we can

always obtain that v has nonzero scalar product with just one qi and one pi
we can conclude that also for the other coordinate {v′, qj} = {v′, pj} = 0. It
is easy to see that in this case, supposing e.g. i = 1, M(vω0) = Span (v, q2)
while M(vω0c) = Span (v, p2) that violates necessary conditions (19) and so
in this case v(αω0 + βω0c) 6= 0. The second possibility is that i 6= j and let
e.g. {v, q2} 6= 0 and {v, p1} 6= 0; it follows that we may write

v = q1 + ξp2 + v′ ξ ∈ F

and again {v′, q1} = {v′, p1} = {v′, q2} = {v′, p2} = 0 and in this case
v′2 = 0; we get now

(q1 + ξp2 + v′)(αω0 + βω0c) = αξp2ω0 + αv′ω0 + βq1ω0c + βv′ω0c

and since v′ω0 6= 0 and v′ω0c 6= 0 by the hypothesis N(ω0) = 2 we must
conclude that, to satisfy the relation, one must necessarily have v′ = 0
because there are no other ways that the terms αv′ω0 and βv

′ω0c can cancel
out. So the relation reduces to αξp2ω0 + βq1ω0c = 0 where both terms are
again nonzero and it is easy to see that

αξp2ω0 + βq1ω0c = q1p2q2(αξΦqq − βΦqqc
) = 0

12



and we observe that q1p2q2 6= 0 and the term in parenthesis is a spinor in
S′ that can’t be zeroed by any of the null vectors that precedes it. So this
expression can be zero only if Φqqc =

αξ
β
Φqq in S′ spinor space.

We remark that if m = 2 this expression involves only field coefficients
and can thus always be solved to zero; this shows that there are no spinors
of zero nullity in this case, an anticipation of a more general result proved
later.

If m > 2 then, by proposition 5, is impossible to satisfy this expression
in F = C and so we must conclude that for N(ω0) = N(ω0c) = 2 the nullity
of all spinors αω0 + βω0c with αβ 6= 0 is zero. For F = R, by the same
proposition, the part in parenthesis can have solution only for m− 2 ≡ 0, 1
(mod 4) i.e. m ≡ 2, 3 (mod 4) with the necessary condition αξ = ±β that
shows that for any α, β the vector v = q1 ±

β
α
p2 annihilates αω0 + βω0c. So

in F = R, to have N(αω0 + βω0c) = 0 we must add the additional condition
that Φqq is linearly independent from Φqqc

(that is automatically satisfied if
e.g. N(Φqq) > 0 that happens, for example, when N(ω0) > 2).

We go now to the case N(ω0) = N(ω0c) = 1 and, by same hypothesis of
previous case, we can assume M(ω0) = q1 and we can write, with (21) and
(22) and in full generality

ω0 = q1q2Φqq + q1p2q2Φqp

ω0c = p1q1q2Φqpc − p1q1p2q2Φqqc .

We proceed again by absurdum supposing that there exists v ∈ V0 such
that v(αω0 + βω0c) = 0. By necessary conditions of lemma 1 we must have
{v, q1} 6= 0 and {v, p1} 6= 0 so that we may always write in full generality

v = q1 + ξp1 + v′ ξ ∈ F

with {v′, q1} = {v′, p1} = 0 and since v is null we must have v′2 = −(q1 +
ξp1)

2 = −ξ so that

vϕ = (q1 + ξp1 + v′)(αω0 + βω0c) = α(ξp1 + v′)ω0 + β(q1 + v′)ω0c

and we observe that (ξp1 + v′)2 = (q1 + v′)2 = v′2 = −ξ and thus, by (6),
both terms in the equality are nonzero so that, to satisfy vϕ = 0, one must
have

ω0c =
α

βξ
(q1 + v′)(ξp1 + v′)ω0 = · · · =

α

β
v′p1ω0 .

We observe now that the only request made on v′ is that it must be orthog-
onal to the subspace Span (q1, p1) so that it is always possible to make a
proper rotation in V basis to obtain, without loss of generality, that

v′ = q2 − ξp2

13



with which at last the necessary condition becomes:

p1q1q2Φqpc
− p1q1p2q2Φqqc

=
α

β
(q2 − ξp2)p1(q1q2Φqq + q1p2q2Φqp) =

=
α

β
(p1q1q2Φqp − ξp1q1p2q2Φqq)

that to be satisfied needs that the two equations are separately satisfied

p1q1q2(Φqpc
−
α

β
Φqp) = 0

p1q1p2q2(Φqqc
−
α

β
ξΦqq) = 0

and again for m > 2 these equations cannot be satisfied in S′ if F = C. If
F = R again they can be satisfied only for m ≡ 2, 3 (mod 4) and in this
case, if α = ±β it is always possible to find v such that vϕ = 0 and it is
sufficient that either Φqq is linearly independent from Φqqc or Φqp from Φqpc

or that α 6= ±β to have N(αω0 + βω0c) = 0 also in F = R. ✷

4.3 The main result

We resume all previous results in the following characterization of spinors
of zero nullity:

Theorem 1. In Cℓ(m,m) with m 6= 2 a nonzero spinor ω ∈ S has N(ω) = 0
if and only if it can be written in the Fock basis (ω0, ω0c) of Sω (20) as

ω = αω0 + βω0c α, β ∈ F − {0} .

For F = R with m ≡ 2, 3 (mod 4) and N(ω0) ≤ 2 additional conditions on
ω0 are needed:

• if N(ω0) = 2 that the Φxy ∈ S′ of its expression (21) is such that
Φxyc

6= ±Φxy;

• if N(ω0) = 1 that do not hold that: both of the Φxy ∈ S′ of its expres-
sion (21) are such that Φxyc

= ±Φxy and α = ±β.

The case m = 2 is exceptional since there are no spinors of zero nullity
for both F = R or C.

Proof. Proposition 11 proves the forward part of the theorem for m > 2.
We now suppose N(ω) = 0: we can define Sω with its Fock basis (ω0, ω0c)
and obviously ω = αω0 + βω0c with αβ 6= 0 because otherwise one would
contradict the hypothesis N(ω) = 0. In the particular case F = R with
m ≡ 2, 3 (mod 4) and N(ω0) ≤ 2 then at least one of the Φxy ∈ S′ of
its expression (21) is linearly independent from its conjugate Φxyc

because
otherwise, as pointed out in the proof of proposition 11, there always exists
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a null vector that annihilates αω0 + βω0c that would contradict our initial
hypothesis.

The case m = 1 cannot be derived by proposition 11 but it can be proved
directly solving vω = 0 for the generic null vector and the generic spinor

vω = (αp + βq)(ξ1q + ξ2pq) = βξ2q + αξ1pq = 0 αβ = 0

that can be solved only if ξ1ξ2 = 0.
In the case m = 2 we already saw in the proof of proposition 11 that

there are no spinors of 0 nullity but also in this case we can give a direct
proof; we can write the generic spinor (9) as

ω = ξ1q1q2 + ξ2q1p2q2 + ξ3p1q1q2 + ξ4p1q1p2q2

and it is a simple exercise to check that the vector2

v = ξ3ξ4p1 − ξ1ξ2q1 − ξ2ξ4p2 − ξ1ξ3q2

is null and such that vω = 0. ✷

An interesting offspring of this result is that one can build a basis of
spinor space(s) S made entirely of spinors of zero nullity since, trivially
from (9) one can write

ω =
∑

a>0

ξaΨa + ξ−aΨ−a =

=
∑

a>0

ξa + ξ−a

2
(Ψa +Ψ−a) +

ξa − ξ−a

2
(Ψa −Ψ−a)

and for m 6= 2 the basis {Ψa + Ψ−a,Ψa − Ψ−a : a > 0} is made entirely of
spinors of zero nullity, each element being the sum of two simple spinors.
Moreover any nonzero ω with N(ω0) = N(ω0c) > 0 can be written, not
uniquely, as a linear combination of two zero nullity spinors taken from its
Sω.

These results show the complementary roles of ω and ωc and that their
span contains all spinors of zero nullity but for two “directions”, those of the
Fock basis of Sω (apart from pathological cases when F = R). This situation
is very similar to the spinor space S of Cℓ(1, 1) that has two directions, q
and pq, of nullity 1 (by the way in this case these are also the simple spinors
of S) while all other directions are of zero nullity.

2this is the solution when ξi 6= 0, ∀i, in other cases it takes slightly different forms.
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Appendix

To prove proposition 9 we need some preliminary results.

Proposition 12. Given any nonzero ω with N(ω) = 0 and any v ∈ V0 it is
always possible to write ω as:

ω = vΦv + vΦv (23)

where Φv,Φv ∈ S and are both nonzero.

Proof. Around any couple of null vectors v, v it is possible to build a Witt
basis and a Fock basis of S and the written expansion follows immediately.
Since N(ω) = 0 clearly vω 6= 0 and vω 6= 0 and if either of Φv,Φv would be
zero this would contradict N(ω) = 0. ✷

Proposition 13. Given a maximal TNP Va ⊂ V0 and its corresponding
simple spinor Ψa, i.e. such that M(Ψa) = Va, then ω ∈ S is such that

ω = vω′ ∀v ∈ Va, ω
′ ∈ S

if and only if ω = ξaΨa.

Proof. Since from any maximal TNP we can build a Witt basis of V nam-
ing its null vectors qi, without loss of generality we suppose Va = Q =
Span (q1, . . . , qm) and Ψa = q1q2 · · · qm .

Supposing first ω = ξaΨa, for any v =
∑m

i=1 αiqi ∈ Q we have

ω = ξaΨa =
ξa

m

(

m
∑

i=1

αiqi

)

m
∑

i=1

s(i)

αi
Ψa(i) Ψa(i) = q1q2 · · · piqi · · · qm

where s(i) = ±1 and such that s(i)qiΨa(i) = Ψa and we have supposed, for
simplicity, that all αi 6= 0 (the formula can be easily adapted to other cases).

Viceversa let’s suppose that ω = vω′ for any v ∈ Q, it follows that for
any v ∈ Q one has vω = 0 that means that ω is a simple spinor and, by
proposition 6 of [3], ω = ξaΨa for some ξa. ✷

This result can be generalized from the case of a simple spinor Ψa to the
case of a spinor that contains Ψa in its Fock basis expansion (9)

Corollary 14. Given a maximal TNP Va ⊂ V0 and its corresponding simple
spinor Ψa then ω ∈ S is such that

ω = vω′ + ω′′ ∀v ∈ Va, ω′, ω′′ ∈ S, ω′ 6= 0

if and only if ω = ξaΨa + ω′′′ for some ω′′′ ∈ S.
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Proof. Supposing ω = ξaΨa + ω′′′ previous proposition gives the result.
Viceversa let ω = vω′ + ω′′ for any v ∈ Q (as before we take Va = Q);
in this case we proceed by induction on the dimension m: for m = 1 the
most general spinor takes the form ω = ξ1q + ξ2pq and the proof is simple.
Let’s now suppose the proposition true for m− 1 and let’s move to m: with
self explanatory notation in this case the most general spinor has the form
ω = q1Φq+p1q1Φp and any null vector of Q may be written as v = αq1+βq

′

where q′ is a null vector of the m− 1 dimensional maximal TNP Q′. By the
induction hypothesis for any null vector q′ ∈ V ′ we can write Φq = q′Φ′

q+Φ′′
q

and the first term contains the simple spinor ξq2 · · · qm. It follows that our
spinor of the case m can be written

ω = q1Φq+p1q1Φp = q1(q
′Φ′

q+Φ′′
q)+p1q1Φp = (αq1+βq

′)
1

α
q′Φ′

q+q1Φ
′′
q+p1q1Φp

and thus in the term q1Φq appears the simple spinor ξq1q2 · · · qm. ✷

Proposition 15. Given any nonzero ω with N(ω) = 0 for any ξa 6= 0 in
its expansion (9) necessarily also ξ−a 6= 0

Proof. Given any ξa 6= 0 we write ω = ξaΨa+ω
′ and since, by proposition 12,

for any null vector v ∈ M(Ψa) we can write ω as in (23) where in vΦv

certainly appears the term ξaΨa (and possibly other terms). By previous
corollary applied to the term ω′ = vΦv+ω

′′ (ω′′ can be zero) it must contain
ξ−aΨ−a. ✷

We are now ready to give the proof of proposition 9

Proof. If N(ω) > 0 then ω0 := ω and we are done so let’s suppose that
N(ω) = 0, in this case we can write with slightly modified (9) and (12)

ω =
∑

a>0 ξaΨa + ξ−aΨ−a

ωc =
∑

a>0 s(−a)ξ−aΨa + s(a)ξaΨ−a

and let ξb 6= 0; by previous proposition necessarily also ξ−b 6= 0 so that
choosing ω0 := s(b)ξbω − ξ−bωc we get:

ω0 =
(

s(b)ξbξb − s(−b)ξ−bξ−b

)

Ψb +
∑

a>0,a6=b

· · ·

where the field coefficient of Ψ−b is 0. If
(

s(b)ξbξb − s(−b)ξ−bξ−b

)

6= 0, this
violates the necessary condition for a spinor to be of zero nullity and thus
N(ω0) > 0. If

(

s(b)ξbξb − s(−b)ξ−bξ−b

)

= 0 one can repeat the procedure
starting from the newly defined ω0 and ω0c that must be nonzero because
otherwise the initial spinors ω and ωc wouldn’t be linearly independent.
This linear independence guarantees also that this iterative procedure must
terminate with the zeroing of just one term because, otherwise, again, the
initial spinors would be linearly dependent. ✷
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