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Abstract

An m-ary block code, m = 2, 3, 4, . . ., of length n ∈ IIN is called balanced if, and only if,
every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal
to b(m− 1)n/2c. This paper presents efficient encoding schemes to m-ary balanced codes with parallel
(hence, fast) decoding. In fact, the decoding time complexity is O(1) digit operations. These schemes
are a generalization to the m-ary alphabet of Knuth’s complementation method with parallel decoding.
Let

(
n
w

)
m

indicate the number of m-ary words of length n and weight w∈{0, 1, . . . , (m − 1)n}. For
any m∈IIN, m ≥ 2, a simple implementation of the method is given which uses r∈IIN check digits to
balance k ≤

{(
r

b(m−1)r/2c
)
m
− {m mod 2 + [(m− 1)k] mod 2}

}
/(m− 1) information digits with an

encoding time complexity of O(mk logm k) digit operations. A refined implementation of the parallel
decoding method is also given with r check digits and k ≤ (mr − 1)/(m − 1) information digits,
where the encoding time complexity is O(k

√
logm k). Thus, the proposed codes are less redundant

than the m-ary balanced codes with parallel decoding found in the literature and yet maintain the same
complexity.

Index Terms

Balanced codes, m-ary alphabet, Knuth’s complementation method, parallel decoding scheme,
unidirectional error detection, optical and magnetic recording.

A preliminary version of this paper was presented at the IEEE International Symposium on Information Theory (ISIT 2010)
in Austin, Texas, USA - June 13-18, 2010.

September 13, 2013 DRAFT



2

I. Introduction
Let ZZm = {0, 1, . . . ,m − 1} indicate the m-ary alphabet, m ≥ 2. Given n ∈ IIN, the word

X = x1x2 . . . xn over ZZm of length n is called m-ary balanced (or briefly, balanced) if, and only
if, the weight of X , w(X) =

∑n
i=1 xi = b(m− 1)n/2c (or, equivalently d(m− 1)n/2e), where

the sum is over the real field. For example, when n = 8 and m = 3, the word X = 11210102∈ZZ8
3

is balanced. An m-ary balanced code is a block code of length n such that each codeword is
balanced. The m-ary balanced codes can be used to detect unidirectional errors, to design error
control codes in general, to reject the low frequencies in digital communication systems, and
so on [10], [4], [8], [12]. The code design problem is to convert the information words into
balanced words using minimum possible redundancy. This minimum redundancy is rmin(m, k) '
(1/2) logm[(m−1)k]+(1/2) logm [(m+ 1)π/6] check digits for a k digit information word over
the m-ary alphabet [10]. Also, the conversion should be done so that the encoding and decoding
processes are computationally as simple as possible. For the first time Knuth gave an efficient
method to solve this problem for the binary case [6]. Given a k∈IIN bit information word X∈ZZk

2,
Knuth’s idea is to complement some first h∈IIN bits of X until a word X(h) of a certain weight is
reached. Then, an r∈IIN bit check symbol C = C(X)∈ZZr

2 is appended to obtain the n = k+ r

bit codeword E(X) = X(h)C(X) ∈ ZZn
2 as encoding of X . The check C is chosen so that 1)

the codeword E(X) is balanced (that is, w(E(X)) = w
(
X(h)

)
+ w(C) = bn/2c), and 2) the

original information word X can be recovered from X(h) and C. This Knuth’s complementation
method works because the “random walk” sequence

{
w
(
X(h)

)
: h = 0, 1, . . . , k

}
always meets

any natural number w ∈ [min{w(X), k − w(X)},max{w(X), k − w(X)}]. In particular, there
always exists at least one index hb ∈ [0, (k − 1) + k mod 2] such that w

(
X(hb)

)
= bk/2c.

Such indices hb = hb(X) are sometimes referred to as the balancing indices of X [11]. Many
researchers have given various efficient implementations of this complementation method for
both binary and m-ary cases [2], [1], [9], [10], [11], [13], [8], [5]. In the parallel decoding
implementation of Knuth’s complementation method, the check symbol C directly indicates the
number hb of bits of X complemented. In other words, among all possible k+k mod 2 different
functions 〈Ch〉(X)

def
= X(h), h∈ [0, (k − 1) + k mod 2], used in the code design, the check C

encodes the function that is actually used to encode X . Such functions 〈Ch〉’s are sometimes
referred to as the balancing functions of the code design [2], [11]. Hence, decoding can be done
very fast in parallel once hb is recovered (say, with a table look-up of size O(k log k) memory
bits) from C = Chb(X). This implies that the decoding time complexity is O(1) bit operations.

In [8], a generalization to the m-ary case of Knuth’s complementation method with parallel
decoding is given. Here, two balanced code design methods for symbols over ZZm with parallel
decoding are described. In the first method (the simple scheme of Section II), the checks are also
balanced (as in [8]) whereas in the second (the refined scheme of Section III) this restriction is
not needed, resulting in much less redundant codes. Let the m-nomial coefficients be defined as(

k

w

)
m

def
=
∣∣∣{X∈ZZk

m : w(X) = w
}∣∣∣ =

∑
x∈ZZm

(
k − 1

w − x

)
m

,

for all k ∈ IIN and w ∈ [0, (m − 1)k]. Using r check digits, the first parallel decoding scheme
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can balance information words with length (in the following integer expressions, we let x mod 2

indicate the integer equal to 0 if the integer x is even and 1 if x is odd)

k ≤ 1

(m− 1)

{(
r

b(m− 1)r/2c

)
m

− {m mod 2 + [(m− 1)k] mod 2}
}
. (1)

Note that, with the same r check digits, the parallel decoding balanced codes given in [8] can
only have

k ≤
{(

r

b(m− 1)r/2c

)
m

}
/m.

With r∈ IIN check digits, the proposed second scheme improves the redundancy of the simple
schemes as it can balance

k ≤ mr − 1

m− 1
(2)

information digits. With regard to the complexity, there may be many ways to implement the
coding system which may depend on the applications. However, assuming to have a table look-up
of size O(mk logm k) memory m-ary digits, all the above balanced codes can be implemented
easily in O(mk logm k) m-ary digit operations to encode and O(1) m-ary digit operations to
decode. For the simple scheme, Weber and Immink [13] and Swart and Weber [8] proposed to
transmit extra auxiliary data by exploiting the degree of freedom of selecting from more than one
possible balanced encoding of a given information word. Section IV shows some experimental
results which indicate that some extra δk = (1/2) logm k + Θ(log log k) information digits can
be balanced with this technique applied to the codes proposed here, for all m∈IIN, m ≥ 2.

The proposed codes are designed based on the generalized complementation scheme, referred
as “m-ary complementation in stages” [10]. Given the integer m ≥ 2 and k, r, n ∈ IIN, in the
following we let

K
def
= (m− 1)k,

R
def
= (m− 1)r,

N
def
= (m− 1)n = K +R.

II. The simple scheme
As mentioned earlier, in this scheme, the checks are also balanced words as in [8]. However,

with the same number of check digits the codes in this section can balance k/(m−1) more extra
information digits with respect to the number, k, of information digits of the m-ary balanced
codes in [8]. Let the radix of the code be m ≥ 2 and r∈IIN be the number of check digits. Let
CS def

= {C0, C1, . . . , Cp−1}, p∈IIN, be the lexicographic ordered set of the first r digit balanced
words of weight bR/2c + (K mod 2) · (R mod 2). For example, if m = 3 and r = 3 then the
weight is 2 · 3/2 = 3 and there are

(
3
3

)
3

= 7 balanced words. These words in lexicographic
order with their indices are 012 - 0, 021 - 1, 102 - 2, 111 - 3, 120 - 4, 201 - 5 and 210 -
6. If these words are used as the checks of the proposed balanced code then the index of the
balanced check word directly indicates the number of steps used to complement the information
word. Thus, every information word X∈ZZk

m of length k∈IIN information digits is encoded as
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E(X) = 〈Chb
〉(X)Chb

, where hb = hb(X) is an index such that w(〈Chb
〉(X)) = bK/2c. Note

that the codeword E(X) is an m-ary word of length n = k + r and weight

w(E(X)) = w(〈Chb
〉(X)) + w(Chb

) =⌊
K

2

⌋
+
⌊
R

2

⌋
+ (K mod 2) · (R mod 2) =

⌊
N

2

⌋
.

On receiving Y Ch ∈ ZZn
m, the decoder simply computes D(Y Ch) = E−1(Y Ch) = 〈Ch〉−1(Y ).

A lookup table (of size O(p)) or enumerative encoding [3] method can be used to encode and
decode the balancing index hb∈ [0, p− 1] in and from the check symbol Chb

∈CS respectively.
Now we consider a suitable m-ary generalization of the complementation method. The com-

plement of a digit x ∈ ZZm is x def
= [(m − 1) − x] ∈ ZZm. Thus, if X ∈ ZZk

m then w(X) =

k(m− 1)−w(X) = K−w(X). In the following, we develop a general m-ary complementation
scheme so that the weight of the information word can reach every number in the range
[w(X), K − w(X)]. In this way, at some point the weight of the word after certain number
of complementation steps is guaranteed to reach the value of bK/2c.

A digit is complemented in l∈IIN stages using a function

f : ZZm × [0, l]→ ZZm (3)

as in [10]. However, in this case the function f must satisfy the following three properties to be
a good/correct m-ary complementation function.

Complementation property: for all x∈ZZm, f(x, 0) = x and f(x, l) = x∈ZZm; that is,
at the end of the last stage l the digit is complemented;

(4)

Connectedness property: for all x ∈ ZZm and y ∈ [min{x, x},max{x, x}] there exists
j ∈ [0, l] such that f(x, j) = y; that is, when complementing the digit x in l stages we
should get all the integers in the range [min{x, x},max{x, x}]; and,

(5)

Invertibility property: for all j∈ [0, l] and x1, x2∈ZZm, x1 6= x2 =⇒ f(x1, j) 6= f(x2, j);
that is, (f(0, j), f(1, j), . . . , f(m−1, j)) is a permutation of (0, 1, . . . ,m−1) (this property
is needed because if yj = f(x1, h) = f(x2, h) for x1 6= x2, j∈ [1, k] and some h∈ [0, l],
then, while decoding, it may not be clear whether to decode the digit yj to xi or xj).

(6)

For example, when m = 3 and l = 3 (= (m − 1) + m mod 2) the function f : ZZ3 × [0, 3] →
ZZ3 = {0, 1, 2} defined as

f(0, 0) = 0, f(0, 1) = 1, f(0, 2) = 2, f(0, 3) = 2,
f(1, 0) = 1, f(1, 1) = 2, f(1, 2) = 0, f(1, 3) = 1,
f(2, 0) = 2, f(2, 1) = 0, f(2, 2) = 1, f(2, 3) = 0

(7)

satisfies the properties (4), (5) and (6). If instead m = 4 and l = 3 (= (m− 1) +m mod 2) the
function f : ZZ4 × [0, 3]→ ZZ4 defined as

f(0, 0) = 0, f(0, 1) = 1, f(0, 2) = 2, f(0, 3) = 3,
f(1, 0) = 1, f(1, 1) = 0, f(1, 2) = 3, f(1, 3) = 2,
f(2, 0) = 2, f(2, 1) = 3, f(2, 2) = 0, f(2, 3) = 1,
f(3, 0) = 3, f(3, 1) = 2, f(3, 2) = 1, f(3, 3) = 0

(8)
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satisfies the properties (4), (5) and (6). For notational convenience, let us also represent the m-ary
complementation function f with the m× (l+1) matrix f = (f(x, j) : x = 0, 1, . . . ,m−1, j =

0, 1, . . . , l). For example, the 3-ary complementation function (7) is also represented by

f =

(
0 1 2 2
1 2 0 1
2 0 1 0

)
. (9)

Note that the above matrix is the operation table of the group (ZZ3,+ mod 3) with the addition
of the last column so that to assure that the property (4) is satisfied. Whereas, the 4-ary
complementation function (8) is also represented by

f =

 0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

 . (10)

This matrix is the operation table of the Klein group (ZZ2 × ZZ2,+ mod 2), where 0 = 00,
1 = 01, 2 = 10 and 3 = 11.

Now, a suitable definition of the random walk for this simple m-ary scheme is defined. Given
k∈IIN and X = x1x2 . . . xk∈ZZk

m, let X(0,l−m mod 2) def
= X(f ;0,l−m mod 2) def

= X , and

X(i,j) def
=X(f ;i,j) def

= x1x2 . . . xi−1f(xi, j)xi+1 . . . xk−1xk, (11)

for all i∈ [1, k +m mod 2] and j∈ [1, l −m mod 2] (X(i,j) is the word obtained when the first
i − 1 digit of X are complemented and the i-th digit is at the j-th stage of complementation).
The property (6) of f implies that if X(i,j) = Y = y1y2 . . . yk∈ZZk

m, with

(i, j)∈{(0, l −m mod 2)} ∪ {[1, k]× [1, l −m mod 2]} ∪ {(k +m mod 2, 1)}

then
Y )i,j( def

= y1y2 . . . yi−1f
−1(yi, j)yi+1 . . . yk−1yk = X. (12)

In other words, the inverse function of ci,j(X)
def
= X(i,j) is exactly c−1

i,j (X)
def
= Y )i,j(, for all

(i, j)∈{(0, l −m mod 2)} ∪ {[1, k]× [1, l −m mod 2]} ∪ {(k +m mod 2, 1)}.
At this point, the random walk sequence is defined as follows. For all

h∈ [0, (l −m mod 2)k +m mod 2]

define
X(h) def

= X(f ;h) def
= X(f ;i(h),j(h)); (13)

where,  i(h)
def
= dh/(l −m mod 2)e∈ [1, k +m mod 2],

j(h)
def
= (h− 1) mod (l −m mod 2) + 1∈ [1, l −m mod 2].

(14)

Note that the above two component function (i(h), j(h)) from the integer interval [0, (l−m mod

2)k +m mod 2] to {(0, l−m mod 2)} ∪ {[1, k]× [1, l−m mod 2]} ∪ {(k +m mod 2, 1)} is a
bijection with inverse

h(i, j)
def
= (i− 1)(l −m mod 2) + j∈ [0, (l −m mod 2)k +m mod 2]. (15)
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For this simple scheme the random walk to be considered is
{
w
(
X(h)

)
: h = 0, 1, . . . , p− 1

}
,

with p
def
= (l − m mod 2)k + m mod 2 + 1, where the balancing functions are the p bijective

functions defined as 〈Ch〉(X)
def
= X(h), for all h∈ [0, p− 1]. Note that, depending on whether m

is odd or even the random walk sequence definition differs.
For example, if m = 3 (odd), l = 3, f : ZZ3 × [0, 3] → ZZ3 is defined as in (7), k = 9 and

X = 201001210∈ZZ9
3 then K = (m − 1)k = 18, bK/2c = 9, p = 2k + 1 + 1 = 20, h∈ [0, 19]

and the random walk sequence is

X = X(0) = X(0,2) = 201001201, w(X(0)) = 7,
X(1) = X(1,1) = 001001201, w(X(1)) = 5,
X(2) = X(1,2) = 101001201, w(X(2)) = 6,
X(3) = X(2,1) = 011001201, w(X(3)) = 6,
X(4) = X(2,2) = 021001201, w(X(4)) = 7,
X(5) = X(3,1) = 022001201, w(X(5)) = 8,
X(6) = X(3,2) = 020001201, w(X(6)) = 6,
X(7) = X(4,1) = 021101201, w(X(7)) = 8,
X(8) = X(4,2) = 021201201, w(X(8)) = 9,←
X(9) = X(5,1) = 021211201, w(X(9)) = 10,
X(10) = X(5,2) = 021221201, w(X(10)) = 11,
X(11) = X(6,1) = 021222201, w(X(11)) = 12,
X(12) = X(6,2) = 021220201, w(X(12)) = 10,
X(13) = X(7,1) = 021221001, w(X(13)) = 9,←
X(14) = X(7,2) = 021221101, w(X(14)) = 10,
X(15) = X(8,1) = 021221011, w(X(15)) = 10,
X(16) = X(8,2) = 021221021, w(X(16)) = 11,
X(17) = X(9,1) = 021221022, w(X(17)) = 12,
X(18) = X(9,2) = 021221020, w(X(18)) = 10,

X = X(19) = X(10,1) = 021221021, w(X(19)) = 11.

Note that there are two balancing indices of X: hb(X) = 8 and 13 (see the “←” above). Since
there are p = 20 = |[0, 19]| <

(
5
5

)
3

= 51 different possible balancing indices, it is possible to
choose r = 5. However, since K is even, it is possible to use only the first p−1 = 19 = |[0, 18]| =(

4
4

)
3

balancing function, and so r = 4 can be actually chosen. In this case, the encoding of X
is E(X) = 〈C8〉(X)C8 = X(8)C8 = 021201210 1102 (however, a different encoding could be
E(X) = 〈C13〉(X)C13 = X(13)C13 = 021221010 2002). On receiving Y C = 021201210 1102,
the decoder computes the balancing index hb(X) = 8 from C = 1102 = C8. Then using (14) it
computes i = i(8) = d8/2e = 4 and j = j(8) = 7 mod 2 + 1 = 2. So, using (12), it decodes
Y C as

D(Y C) = 〈C8〉−1(Y ) = Y )4,2( = y1y2y3f
−1(y4, 2)y5y6y7y8y9 =

021f−1(2, 2)01210 = 201001210 = X

(please see (7) and note that f(0, 2) = 2, f(1, 2) = 0 and f(2, 2) = 1; hence, f−1(2, 2) = 0).
In this way we have given a design example of a 3-ary balanced code with k = 9 information

September 13, 2013 DRAFT



7

digits and r = 4 check digits of length n = 13. With the coding scheme in [8], r ≥ 5 check
digits are required to make k = 9 information digits 3-ary balanced.

Any information word X has its own encoding. In fact, after a certain number of proposed
complementation steps it is guaranteed to make the weight of the modified word to be bK/2c.
This is because when the i-th digit xi of X is complemented using f(xi, j), with j = 0, 1, . . . , l,
every digit in the range [min{xi, xi},max{xi, xi}] occurs (see (5)). Thus, the random walk of the
weight of X defined by the proposed complementation scheme reaches every integer in the range
[min{w(X), w(X) = K − w(X)},max{w(X), w(X)}], and so, it reaches the integer bK/2c.
The following theorem describes how to find the best (that is, “shortest”) balancing function f .

Theorem 1: For any m ≥ 2 there exists a complementation function f defined as in (3) and
satisfying the properties (4), (5) and (6) with l = (m−1)+m mod 2. So, the number of balancing
functions used by this simple parallel decoding scheme is p = K+m mod 2 +K mod 2, where
k∈IIN is the number of information digits and K = (m− 1)k.

Proof: In general, the number of balancing functions is p = (l − m mod 2)k + m mod

2 + K mod 2. So, if l = (m − 1) + m mod 2 then p = (m − 1)k + m mod 2 + K mod

2 = K + m mod 2 + K mod 2. Now we show that for any m ≥ 2 it is possible to define
complementation functions f as in (3) satisfying the properties (4), (5) and (6) with l = m if m
is odd and l = (m− 1) if m is even. If m is odd, the desired function f = fm can be defined in
matrix representation by considering the operation table of any right-cancellative groupoid with
the property (5) (for example, a group) of order m and adjoining the transposed of the vector
(m−1, . . . , 1, 0) as the last column to satisfy the property (4) (see (9) for example). If m is even,
the function f = fm can be defined from the operation table of any right-cancellative groupoid of
order m satisfying the properties (4) and (5). For example, such very general algebric structures
can be obtained as follows. Given an m×m matrix t = (ti,j : i, j = 0, 1, . . . ,m− 1) define the
m×m matrices 

t = ((m− 1)− ti,j : i, j = 0, 1, . . . ,m− 1) ,

t(rx) =
(
t(m−1)−i,j : i, j = 0, 1, . . . ,m− 1

)
,

t(ry) =
(
ti,(m−1)−j : i, j = 0, 1, . . . ,m− 1

)
.

Note that t is the matrix obtained by complementing each element of t. Also, the matrix t(rx)

(or t(ry)) is obtained by reversing the order of the rows (or columns, respectively) of t. Now, if
fm/2 : ZZm/2 × [0,m/2− 1]→ ZZm/2 is (represented by) the operation table of any cancellative
groupoid (for example, a group) then

fm
def
=


(
fm/2

) (
fm/2

)(ry)

(
fm/2

)(rx) (
fm/2

)(rx)(ry)

 . (16)

Note that the above fm satisfies the properties (4), (5), (6) and l = m − 1. For example, the
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matrix in (10) for m = 4 and the matrix

f =


0 1 2 3 4 5
1 2 0 5 3 4
2 0 1 4 5 3

3 5 4 1 0 2
4 3 5 0 2 1
5 4 3 2 1 0


for m = 6 are obtained with (16).

Note that Theorem 1 implies that using this simple parallel decoding scheme an m-ary balanced
code can be designed provided that the number of balancing function is no more than the
number of balanced check symbols; that is, p = K + m mod 2 + K mod 2 ≤

(
r

bR/2c

)
m
. This

relation implies (1). With regard to the complexity, let us assume we have a table look-up of
size O(mk logm k) m-ary digits to encode and decode the balancing index hb∈ [0, K]. In each
of the K encoding steps O(logm k) m-ary digits need to be computed (such as, the m-ary
digits representing the integer w(X(h))). So, a total of O(mk logm k) m-ary digits operations are
needed. While decoding, a parallel circuit of size O(mk logm k) can output from hb ∈ [0, K] a
length k vector to be “added (according to the complementation function used in the design)”
component-wise to the received information part and obtain the original information word. So,
a total of O(1) m-ary digit operations are needed to decode.

III. The refined scheme
In this scheme, the check symbols do not need to be balanced words and possibly more

than one check symbol indicate the same number of digits complemented in stages. In this
way, we reduce the redundancy with respect to the codes given in Section II. Let m ≥ 2,
k, r, n = k + r∈ IIN, p∈ IIN and CS def

= {Γ0,Γ1, . . . ,Γp−1}, be a sequence of mutually disjoint
non-empty subsets of r digit m-ary check symbols such that the following property holds.

Symmetric saturation property of CS: any Γ = Γh∈CS is a symmetric saturated set;
that is, for all natural v in the symmetric (with respect to R/2∈IR) interval

I = Ih
def
=

[⌈
R

2

⌉
−
⌊
|Γ|
2

⌋
,
⌊
R

2

⌋
+

⌊
|Γ|
2

⌋]

there exists exactly one check C∈Γ such that w(C) = v.

(17)

For example, when m = 3 and r = 3 the following is a symmetric saturated sequence of subsets
of ZZ3

3 (it is actually of maximal size because it is a partition of ZZ3
3).

Γ0
def
= {000, 001, 002, 012, 022, 122, 222},

Γ1
def
= {010, 020, 120, 220, 221},

Γ2
def
= {100, 200, 201, 202, 212},

Γ3
def
= {011, 021, 121},

Γ4
def
= {101, 102, 112},

Γ5
def
= {110, 210, 211},

Γ6
def
= {111}.

(18)
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Every element within a set Γh indicates the same number dh (to be defined below) and this dh
represents the number of information digits complemented in “stages” to make a word balanced.
As in [1] and [11], the p ≤

(
r

bR/2c

)
m

natural numbers d0, d1, . . ., dp−1 are defined as

dh
def
=

{
0 if h = 0,

dh−1 + b|Γh−1|/2c+ d|Γh|/2e if h∈ [1, p− 1].
(19)

For the example given in (18), we have d0 = 0, d1 = 0 + 3 + 3 = 6, d2 = 6 + 2 + 3 = 11,
d3 = 15, d4 = 18, d5 = 21 and d6 = 23. Now, given k∈IIN, define the functions

〈Γh〉(X)
def
= X(dh) def

= X(ϕi;dh) (20)

where X(0) def
= X = x1x2 . . . xk∈ZZk

m, and, for all d∈ [1, K],

X(d) def
= X(ϕi;d) def

= X(ϕi;i,j) def
= x1x2 . . . xi−1ϕi(xi, j)xi+1 . . . xk−1xk∈ZZk

m,

(21)

i = i(d)
def
=

⌈
d

m− 1

⌉
∈ [1, k], (22)

j = j(d)
def
= (d− 1) mod (m− 1) + 1∈ [1,m− 1], (23)

and where ϕi : ZZm× [0,m−1]→ ZZm are possibly different m-ary complementation functions
yet to be defined for all i∈ [1, k]. Note that the two component function (i(d), j(d)) from the
integer interval [0, K] to {(0,m− 1)} ∪ ([1, k]× [1,m− 1]) is a bijection with inverse

d(i, j)
def
= (i− 1)(m− 1) + j∈ [0, K]. (24)

To make a word to be a balanced codeword, every information word X ∈ ZZk
m is encoded as

E(X) = 〈Γhb
〉(X)Chb

, where hb = hb(X) is an index (referred as a balancing index) such
that there exists a (possibly unbalanced) check symbol Chb

∈ Γhb
which makes w(E(X)) =

w(〈Γhb
〉(X)) + w(Chb

) = bN/2c . On receiving Y Ch ∈ ZZn
m, the decoder simply computes

D(Y Ch) = E−1(Y Ch) = 〈Γh〉−1(Y ). In this scheme, each balancing function 〈Γh〉can be thought
as the component wise addition with a constant vector of length k; where the addition is made
modulo possibly many complementation matrices defined one for each digit position i∈ [1, k]. In
particular, note that the complementation function may differ from digit to digit. Namely, we may
assume that the first, say, 10 digits of the information word being encoded are complemented
using a complementation function ϕ1, the second, say, 13 digits are complemented using a
complementation function ϕ2, with possibly ϕ1 6= ϕ2, and so on. So, let F def

= {ϕi : i∈ [1, k]}
be a family of m-ary functions to be used in the code design such that

Complementation property of F : any f ∈F is a complementation function; that is,
for all x ∈ ZZm, f(x, 0) = x and f(x,m − 1) = x ∈ ZZm. In this way, X(0) = X ,
X(K) = X and w

(
X(0)

)
= K − w

(
X(K)

)
.

(25)

Smoothness property of F : any f ∈ F is smooth; that is, for all x ∈ ZZm and
j ∈ [0,m − 2], |f(x, j + 1)− f(x, j)| ≤ 1. In this way,

∣∣∣w(X(d+1)
)
− w

(
X(d)

)∣∣∣ ≤ 1,
for all d = 0, 1, . . . , K.

(26)
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Then, the “random walk” sequence
{
w
(
X(d)

)
: d = 0, 1, . . . , K

}
satisfies

for all X∈ZZk
m, there exists d∈ [0, K +K mod 2− 1] such that

w
(
X(d)

)
=
⌊
K

2

⌋ (
or
⌈
K

2

⌉)
,

(27)

and
for all X∈ZZk

m and d1, d2∈ [0, K +K mod 2− 1],

w
(
X(d2)

)
∈
[
w
(
X(d1)

)
− |d1 − d2|, w

(
X(d1)

)
+ |d1 − d2|

]
.

(28)

Now, the properties (27) and (28) are sufficient conditions for the following theorem to hold.
Theorem 2: Let m ≥ 2, k, r, n = k + r, p∈ IIN, CS def

= {Γ0,Γ1, . . . ,Γp−1} be any sequence
of mutually disjoint non-empty symmetric saturated subsets of ZZr

m (as in (17)) and

K ≤
p∑

h=1

|Γh| − [(K +R +KR) mod 2]. (29)

If B def
= {〈Γh〉 : h ∈ [0, p− 1]} is the set of functions defined in (20) where F = {ϕi : i∈ [1, k]}

is a set of m-ary smooth complementation functions (as in (25) and (26)) then for any information
word X ∈ZZk

m there exists a balancing index hb = hb(X). Furthermore, if m = 2 then every
function in B is one-to-one (that is, B is a well defined set of balancing functions).

Proof: Relation (27) and (28) follow from (25) and (26). Now, by using (27) and (28) the
proof of the existence of a balancing index hb(X) follows from the hypothesis (29) exactly as the
proof of Theorem 4 in [11], where k and r are replaced with K and R respectively. Note that,
if m = 2 then every complementation function satisfying the properties (25) and (26) is equal to
the usual bit complementation function represented by

(
0 1
1 0

)
. Since the bit complementation

function is a bijection of ZZ2, every function in B is one-to-one when m = 2.
Note that the maximum value of the rightmost expression in (29) is reached when CS is a partition
of ZZr

m. In this case p =
(

r
bR/2c

)
m

and (29) becomes K ≤ |ZZr
m|− [(K+R+KR) mod 2], which

is equivalent to k ≤ (mr − 1)/(m − 1) because k is an integer. So, if k ≤ (mr − 1)/(m − 1)

then the hypothesis of Theorem 2 can be easily satisfied and if CS is rearranged properly then
k up to (mr − 1)/(m− 1) digits can be balanced. This implies (2).

Obviously, we wish the set B defined in Theorem 2 to be a set of one-to-one balancing
functions for all integer m ≥ 2. However, this may not be true in general. For example, when
m = 3, the only complementation functions satisfying (25) and (26) are represented by the 3×3

matrices,

f =

(
0 1 2
1 1 1
2 1 0

)
, f ′ =

(
0 1 2
1 0 1
2 1 0

)
, or f ′′ =

(
0 1 2
1 2 1
2 1 0

)
(30)

Note that in the above matrices, all the columns are a permutation of the first column except
the middle one (that is, the column whose index is 1). So, if for all 〈Γh〉 ∈ B, j(dh) 6= 1,
where j(d) is defined in (23), then B is a set of one-to-one balancing functions. On the other
hand, if there exists 〈Γh̃〉∈B such that j̃ def

= j(dh̃) = 1 then 〈Γh̃〉may not be one-to-one. This
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is because, depending on which one among the three matrices mentioned above is chosen for
complementing the ĩ-th digit of X , with ĩ

def
= i(dh̃) defined in (22), the receiver, on receiving

yĩ = 1∈ZZ3 and knowing j̃ = 1, is uncertain on whether xĩ = 0 or 2∈ZZ3 for f ′ and f ′′ above;
or is uncertain whether xĩ = 0, 1 or 2∈ZZ3 for f . This means that decoding may be umbiguous
and so B may not be a good set of balancing functions. When m = 3, one way to solve this
problem is to choose the sequence CS (and hence, the sequence of the dh’s) so that j(dh) 6= 1,
for all h∈ [0, p− 1] (⇐⇒ the dh’s are all even integers). So, we readly see that the sequence
CS in (18) is not a good choice because it implies the odd integers d2 = 11, d3 = 15, d5 = 21

and d6 = 23. By rearranging the sequence CS in (18), the following example for r = 3 and
k = 13 fixes this problem. For all i∈ [1, k], let ϕi = f : ZZ3 × [0, 2] → ZZ2 be defined by the
3× 3 matrix f in (30) (but, we could have chosen f ′ or f ′′). The code design is defined by the
p = 7 balancing functions (please see (20) and (19)),〈

Γ0
def
= {000, 001, 002, 012, 022, 122, 222}

〉
(X)

def
= X(d0) = X(0),〈

Γ1
def
= {010, 020, 120, 220, 221}

〉
(X)

def
= X(d1) = X(6),〈

Γ2
def
= {011, 021, 121}

〉
(X)

def
= X(d2) = X(10),〈

Γ3
def
= {111}

〉
(X)

def
= X(d3) = X(12),〈

Γ4
def
= {110, 210, 211}

〉
(X)

def
= X(d4) = X(14),〈

Γ5
def
= {100, 200, 201, 202, 212}

〉
(X)

def
= X(d5) = X(18),〈

Γ6
def
= {101, 102, 112}

〉
(X)

def
= X(d6) = X(22).

(31)

If X = 1000022021010∈ZZ13
3 is an information word then

〈Γ0〉(X) = X = X(0) = X(0,2) = 1000022021010, w(X(0)) = 9,
〈Γ1〉(X) = X(6) = X(3,2) = 1220022021010, w(X(6)) = 13,←
〈Γ2〉(X) = X(10) = X(5,2) = 1222222021010, w(X(10)) = 17,
〈Γ3〉(X) = X(12) = X(6,2) = 1222202021010, w(X(12)) = 15,
〈Γ4〉(X) = X(14) = X(7,2) = 1222200021010, w(X(14)) = 13,←
〈Γ5〉(X) = X(18) = X(9,2) = 1222200201010, w(X(18)) = 13,←
〈Γ6〉(X) = X(22) = X(11,2) = 1222200201210, w(X(22)) = 15.

Hence, the/an encoding of X is E(X) = 〈Γ1〉(X)120 = X(6)120 = 1220022021010 120. On
receiving Y C = 1220022021010 120, the decoder computes the balancing index hb(X) = 1 from
C = 120∈Γ1. Since d1 = 6 it computes i = i(6) = d6/2e = 3 and j = j(6) = 5 mod 2 + 1 = 2

(indeed, when m = 3 there is no need to compute j because the dh is chosen so that j(dh) = 2,
for all h∈ [0, p− 1]). Hence, it computes

D(Y C) = 〈Γ1〉−1(Y ) = Y )3,2( = y1y2f
−1(y3, 2)y4y5y7y8y9y10y11y12y13 =

12f−1(2, 2)0022021010 = 1000022021010 = X.

(please note that the rightmost column of f in (30) defines f(0, 2) = 2, f(1, 2) = 1 and
f(2, 2) = 0; hence, f−1(2, 2) = 0). At this point, let us say that a function is

j-step invertible if, and only if, for all x1, x2∈ZZm, x1 6= x2 =⇒ f(x1, j) 6= f(x2, j)

(that is, the j-th column of f is a permutation of the 0-th column of f ).
(32)
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For example, all the functions in (30) are 2-step invertible and not 1-step invertible. Obviously,
any complementation function is 0-step invertible and (m− 1)-step invertible.

Given any integer m ≥ 2, our scheme would work easily if the following four competing
properties can be satisfied: 1) the number of columns l + 1 (or, let us say, length) of the
matrices/functions in F is the smallest possible value given by m (otherwise we get more
redundant code designs); 2) the complementation property (25) must hold; 3) the smoothness
property (26) must hold (if 2) or 3) do not hold then the hypothesis of Theorem 2 may not
hold and the balancing index existence may not be guaranteed) and 4) for all i∈ [1, k], the i-th
digit complementation function ϕi∈F is j-step invertible for all j∈ [0,m− 1]. Actually, there
would be no need to use many different complementation functions (as in the simple scheme
of Section II). However, we readly see that when m is odd, no function exists which satisfies
property 1), 2), 3) and is [(m − 1)/2]-step invertible (as we have shown in (30) for m = 3).
In general, no smooth complement function of length m exists which is j-step invertible for
all j = 0, 1, . . . ,m − 1. We were only able to find a systematic way to obtain a family of
m-ary smooth complementation functions of length m which are j-step invertible only for one
integer value of j ∈ [0,m − 1] − {(m − 1)/2} of our choice (the functions in (36) below).
Actually, in our code design we only use the functions in (36) which are j-step invertible with
one integer value for j∈ [dm/2e ,m− 1] (note that (m− 1)/2 6∈ [dm/2e ,m− 1]). However, this
choice of functions is successful only if the matching property (34) given below is satisfied.
So, to circumvent the invertibility problem shown in (30) for m = 3, we use the smooth
complementation functions given in (37) as elements of F and a symmetric saturated sequence
CS of subsets of check symbols such that property (34) holds. Since we can choose only one
value of j∈ [0,m− 1]−{(m− 1)/2} for which any i-th digit complementation function ϕi∈F
is j-step invertible, in our case, the matching property (34) can be surely assured if

for all h1, h2∈ [0, p−1], i(dh1) 6= i(dh1); where dh is defined in (19) and i(d) in (22) (that
is, for distinct balancing functions the digit positions being complemented are distinct).

(33)

Our strategy is to make the above property (33) true.
In this way, example (31) works because of the following general theorem.
Theorem 3: Assume the same hypothesis of Theorem 2 for CS def

= {Γ0,Γ1, . . . ,Γp−1} and
F = {ϕi : i∈ [1, k]}. If CS and F satisfy the property

Matching property for CS and F : for all h∈ [0, p− 1], the function ϕi∈F
is j-step invertible (as in (32)) for i = i(dh) and j = j(dh); where dh is
defined in (19), i(d) in (22) and j(d) in (23);

(34)

then B def
= {〈Γh〉 : h ∈ [0, p− 1]} as defined in (20) is a set of one-to-one balancing functions.

Proof: From Theorem 2, we only need to show that any function in B is one-to-one. Let
h∈ [0, p−1], X = x1x2 . . . xk∈ZZk

m and Y = y1y2 . . . yk∈ZZk
m be such that 〈Γh〉(X) = 〈Γh〉(Y ).

Then, from (20) and (21), it follows,

X(dh) = x1x2 . . . xi−1ϕi(xi, j)xi+1 . . . xk−1xk = y1y2 . . . yi−1ϕi(yi, j)yi+1 . . . yk−1yk = Y (dh),
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with i = i(dh) and j = j(dh) defined in (22) and (23) respectively. The above equation implies
x1x2 . . . xi−1 = y1y2 . . . yi−1, xi+1 . . . xk−1xk = yi+1 . . . yk−1yk and ϕi(xi, j) = ϕi(yi, j). The last
equation implies xi = yi because ϕi ∈ F is j-step invertible (property (34)). Hence, X = Y .
This implies that any 〈Γh〉∈B is one-to-one.
So, the general problem is reduced in solving the following non-trivial combinatorial problem.

Code design problem: Given any m ≥ 2, the number of information digits k∈IIN
and the number of check digits r∈IIN which satisfy (29) for some p∈IIN, find a
sequence CS of mutually disjoint non-empty symmetric saturated subsets of check
symbols (as in (17)) and find a sequence F of m-ary smooth complementation
functions (as in (25) and (26)) that match (that is, satisfying (34)).

(35)

Let us focus our attention on the m-ary complementation functions first. Given m ≥ 2, for all
c = 0, 1, 2, . . . , bm/2c − 1, consider any matrix of type,

fm(c)
def
=


Am(c) Bm(c)

Cm(c) Dm(c)

Em(c) Fm(c)

 =



0 1 . . . c c+ 1 c+ 2 . . . 0

1 . . . c− 1 c c+ 1 . . . 1
...

... . . . ...
...

... . . . ...
c c− 1 . . . 0 1 2 . . . c

c+ 1 . . . π1(c + 1) π2(c+ 1) . . . c+ 1

c+ 2 . . . π1(c + 2) π2(c+ 2) . . . c+ 2
...

... . . . ...
...

... . . . ...
c+ 1 . . . π1(c + 1) π2(c+ 1) . . . c+ 1

c c− 1 . . . 0 1 2 . . . c

c− 1 . . . 1 2 3 . . . c− 1
...

... . . . ...
...

... . . . ...
0 1 . . . c c+ 1 c+ 2 . . . 0



, (36)

where

Am(c)
def
=


0 1 . . . c
1 . . . c− 1
...

... . . . ...
c c− 1 . . . 0

, Bm(c)
def
=


c+ 1 c+ 2 . . . 0
c c+ 1 . . . 1
...

... . . . ...
1 2 . . . c

, Cm(c)
def
=


c+ 1 . . . π1(c + 1)
c+ 2 . . . π1(c + 2)

...
... . . . ...

c+ 1 . . . π1(c + 1)

,

Dm(c)
def
=


π2(c+ 1) . . . c+ 1
π2(c+ 2) . . . c+ 2

...
... . . . ...

π2(c+ 1) . . . c+ 1

, Em(c)
def
= [Am(c)](rx) and Fm(c)

def
= [Bm(c)](rx),

and where, π1, π2 : {c + 1, c + 2, . . . , c+ 1} → {c + 1, c + 2, . . . , c+ 1} are functions such
that π1 is any bijection (for example, the identity function), and π2 is any function such that
|π2(x) − π1(x)| ≤ 1, for all x ∈ {c + 1, c + 2, . . . , c+ 1}. On the other hand, for all c =

dm/2e , dm/2e+ 1, . . . ,m− 1, define the matrices

fm(c)
def
= [fm(m− 1− c)](rx)(ry) (37)
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from the above ones. We do note that any matrix fm(c) defined with (36) or (37) exists and
represents an m-ary smooth complementation function (see (25) and (26)) which is c-step
invertible (as in (32)); this, for all c∈ [0,m−1] if m is even, and for all c∈ [0,m−1]−{(m−1)/2}
if m is odd. For example, when m = 4 one choice of 4-ary complementation matrices is

fm(0) =


0 1 2 3

1 2 2 2
2 1 1 1

3 2 1 0

, fm(1) =


0 1 2 3
1 0 1 2

2 3 2 1
3 2 1 0

;

if c = 0, 1; and so,

fm(2) =


0 1 2 3
1 2 3 2

2 1 0 1
3 2 1 0

, fm(3) =


0 1 2 3

1 1 1 2
2 2 2 1

3 2 1 0

. (38)

for c = 2, 3. When m = 5 one choice of 5-ary complementation matrices is

fm(0) =


0 1 2 3 4

1 2 3 3 3
2 2 2 2 2
3 2 1 1 1

4 3 2 1 0

, fm(1) =


0 1 2 3 4
1 0 1 2 3

2 2 2 2 2

3 4 3 2 1
4 3 2 1 0

;

if c = 0, 1; and so,

fm(3) =


0 1 2 3 4
1 2 3 4 3

2 2 2 2 2

3 2 1 0 1
4 3 2 1 0

, fm(4) =


0 1 2 3 4

1 1 1 2 3
2 2 2 2 2
3 3 3 2 1

4 3 2 1 0

.
If instead, m = 6 one choice of 6-ary complementation matrices is

fm(0) =



0 1 2 3 4 5

1 2 3 4 4 4
2 3 3 3 3 3
3 2 2 2 2 2
4 3 2 1 1 1

5 4 3 2 1 0

, fm(1) =



0 1 2 3 4 5
1 0 1 2 3 4

2 2 3 3 3 3
3 3 2 2 2 2

4 5 4 3 2 1
5 4 3 2 1 0

, fm(2) =



0 1 2 3 4 5
1 1 1 2 3 4
2 1 0 1 2 3

3 4 5 4 3 2
4 4 4 3 2 1
5 4 3 2 1 0

;

if c = 0, 1, 2; and so,

fm(3) =



0 1 2 3 4 5
1 2 3 4 4 4
2 3 4 5 4 3

3 2 1 0 1 2
4 3 2 1 1 1
5 4 3 2 1 0

, fm(4) =



0 1 2 3 4 5
1 2 3 4 5 4

2 2 2 2 3 3
3 3 3 3 2 2

4 3 2 1 0 1
5 4 3 2 1 0

, fm(5) =



0 1 2 3 4 5

1 1 1 2 3 4
2 2 2 2 2 3
3 3 3 3 3 2
4 4 4 3 2 1

5 4 3 2 1 0

; (39)

for c = 3, 4, 5. Indeed, in our code design, we only need the m-ary complementation functions,
say, for c = dm/2e , dm/2e+ 1, . . . ,m− 1 (in the above examples, when m = 5, we only need
fm(3) and fm(4); when m = 6, we only need fm(3), fm(4) and fm(5)).
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At this point, to define the balancing function 〈Γh〉(X) = x(dh), h ∈ [0, p − 1], we turn our
attention to the proper design of a sequence CS = {Γ0,Γ1, . . . ,Γp−1}, p ∈ IIN, of mutually
disjoint non-empty symmetric saturated subsets of ZZr

m. The sequence CS must be defined so
that the dh’s (which are computed exclusively from the sequence CS using (19)) make (34)
satisfied for some F = {ϕi : i∈ [1, k]} to be defied appropriately. To this aim, let m, r∈IIN and

k ≤ mr − 1

m− 1
.

Hence, let P be a partition of the set of check symbols ZZr
m into non-empty symmetric saturated

subsets. Since P is a partition satisfying (17), it follows that

|P| =
(

r

bR/2c

)
m

,
∑
Γ∈P
|Γ| = |ZZr

m| = mr

and,
|Γ|∈{(R + 1)− 2x : x = 0, 1, . . . , bR/2c},

for all Γ∈P . Now, write

P =
bR/2c⋃
x=0

{Γ∈P : |Γ| = (R + 1)− 2x} =
m−2⋃
c=0

 ⋃
x∈[(m−1)ZZ+c]

{Γ∈P : |Γ| = (R + 1)− 2x}

 .
In this way, if we let

Tm(r, x)
def
= {Γ∈P : |Γ| = (R + 1)− 2x}, (40)

for all integer x∈ [0, bR/2c]; and

Sm(r, c)
def
=

⋃
x∈[(m−1)ZZ+c]

Tm(r, x) =
⋃

x∈[(m−1)ZZ+c]∩[0,bR/2c]
Tm(r, x) = (41)

Tm(r, c) ∪ Tm(r, (m− 1) + c) ∪ . . . ∪ Tm(r, bR/2c − [(bR/2c − c) mod (m− 1)]),

for all c∈ZZm−1, then

P =
bR/2c⋃
x=0

Tm(r, x) =
m−2⋃
c=0

Sm(r, c).

Now, let
tm(r, x)

def
= |Tm(r, x)| = |{Γ∈P : |Γ| = (R + 1)− 2x}|,

for all integer x∈ [0, bR/2c], and note that |Γ| = (R+ 1)− 2x if, and only if minC∈Γw(C) = x,
for x = 0, 1, . . . , bR/2c. Since P is a partition, this implies that tm(r, 0) =

(
r
0

)
m

= 1, and

tm(r, 0) + tm(r, 1) + . . .+ tm(r, x) = | {X∈ZZr
m : w(X) = x} | =

(
r

x

)
m

;

that is,

tm(r, x) =

(
r

x

)
m

− [tm(r, x− 1) + tm(r, x− 2) + . . .+ tm(r, 0)].
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All this implies,

tm(r, x) =

(
r

x

)
m

−
(

r

x− 1

)
m

, with initial conditions tm(r, 0) =

(
r

0

)
m

= 1. (42)

In the Appendix the integer sequence {tm(r, x) : x ∈ ZZ} is analyzed and some fundamental
properties for the design of CS are proved. In particular, the following key theorem is proved.

Theorem 4: The following relations hold.

|Sm(r, 0)| = |Sm(r, 1)|+ 1 and
|Sm(r, c)| = |Sm(r,m− c)|, for all c∈ [2, bm/2c].

Proof: See the proof in the Appendix I.
Now, for notational convenience, if m = 3 then let A1

def
= Sm(r, 0) and B1

def
= Sm(r, 1). If instead

m ≥ 4 then let (note that the definition for m = 3 differs from the definition for m ≥ 4),

A1
def
= Sm(r, 0), B1

def
= Sm(r, 1),

A2
def
= Sm(r,m− 2), B2

def
= Sm(r, 2),

A3
def
= Sm(r,m− 3), B3

def
= Sm(r, 3),

A4
def
= Sm(r,m− 4), B4

def
= Sm(r, 4),

...
...

Ac
def
= Sm(r,m− c), Bc

def
= Sm(r, c),

Ac+1
def
= Sm(r,m− c− 1), Bc+1

def
= Sm(r, c+ 1),

...
...

Abm/2c
def
= Sm(r, dm/2e), Bbm/2c

def
= Sm(r, bm/2c);

(43)

Now, from the partition P , the sequence CS = {Γ0,Γ1, . . . ,Γp−1}, with p ≤ |P| =
(

r
bR/2c

)
m

can
be defined as follows. Let/pick

Γ0∈A1,
Γ1∈B1 − {Γ0},
Γ2∈A1 − {Γ0,Γ1},
Γ3∈B1 − {Γ0,Γ1,Γ2},

...
Γ|A1∪B1|−2∈B1 − {Γ0,Γ1, . . . ,Γ|A1∪B1|−3},
Γ|A1∪B1|−1∈A1 − {Γ0,Γ1, . . . ,Γ|A1∪B1|−2}.

(44)

Note that |A1| = |B1| + 1 because of Theorem 4, and so, the above sequence is well defined.
Then, let/pick

Γ|A1∪B1|∈B2,
Γ|A1∪B1|+1∈A2 − {Γ|A1∪B1|},
Γ|A1∪B1|+2∈B2 − {Γ|A1∪B1|,Γ|A1∪B1|+1},
Γ|A1∪B1|+3∈A2 − {Γ|A1∪B1|,Γ|A1∪B1|+1,Γ|A1∪B1|+2},

...
Γ|A1∪B1|+|A2∪B2|−2∈B2 − {Γ|A1∪B1|,Γ|A1∪B1|+1, . . . ,Γ|A1∪B1|+|A2∪B2|−3},
Γ|A1∪B1|+|A2∪B2|−1∈A2 − {Γ|A1∪B1|,Γ|A1∪B1|+1, . . . ,Γ|A1∪B1|+|A2∪B2|−2}.
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Note that |A2| = |B2| because of Theorem 4, and so, the above sequence is well defined. In
general, for c = 2, 3, . . . , bm/2c, let/pick

Γ∑c−1

s=1
|As∪Bs|∈Bc,

Γ∑c−1

s=1
|As∪Bs|+1

∈Ac −
{

Γ∑c−1

s=1
|As∪Bs|

}
,

Γ∑c−1

s=1
|As∪Bs|+2

∈Bc −
{

Γ∑c−1

s=1
|As∪Bs|,Γ

∑c−1

s=1
|As∪Bs|+1

}
,

Γ∑c−1

s=1
|As∪Bs|+3

∈Ac −
{

Γ∑c−1

s=1
|As∪Bs|,Γ

∑c−1

s=1
|As∪Bs|+1

,Γ∑c−1

s=1
|As∪Bs|+2

}
,

...

Γ∑c

s=1
|As∪Bs|−2∈Bc −

{
Γ∑c−1

s=1
|As∪Bs|,Γ

∑c−1

s=1
|As∪Bs|+1

, . . . ,Γ∑c

s=1
|As∪Bs|−3

}
,

Γ∑c

s=1
|As∪Bs|−1∈Ac −

{
Γ∑c−1

s=1
|As∪Bs|,Γ

∑c−1

s=1
|As∪Bs|+1

, . . . ,Γ∑c

s=1
|As∪Bs|−2

}
.

(45)

Note that |Ac| = |Bc| because of Theorem 4, and so, the above sequence is well defined. This
process stops when the condition (29) of Theorem 2: K+[(KR+K+R) mod 2] ≤ ∑Γh∈CS |Γh|,
is satisfied. Note that the process eventually stops because we assumed k ≤ (mr − 1)/(m− 1),
and so K + [(KR + K + R) mod 2] ≤ mr = |ZZr

m| =
∑

Γ∈P |Γ|. This means that the sequence
CS just defined is well defined. The following theorem gives a constructive way to define a set
of balancing functions B (and hence, a code design), for all m ≥ 2.

Theorem 5: Given m, r, k∈IIN such that m ≥ 2 and k ≤ (mr− 1)/(m− 1), let the sequence
CS = {Γ0,Γ1, . . . ,Γp−1} be defined by (45) and the integers d0, d1, . . . , dp−1∈ [1, k] be defined
by (19). Then 0 = d0 < d1 < . . . < dp−1. Furthermore, if we let

c∈ [1, bm/2c], t∈ [0, |Ac ∪Bc| − 1] and h =
c−1∑
s=1

|As ∪Bs|+ t,

for all h∈ [0, p− 1], then
dh∈(m− 1)ZZ + (m− c), (46)

0 = i(d0) < i(d1) < . . . < i(dp−1) (47)

(and so, the information word digit positions i(dh)’s are all distinct as in (33)) and

j(dh) = m− c∈ [dm/2e ,m− 1] ; (48)

(and so, j(dh) 6= (m − 1)/2 if m is odd) where i(d) and j(d) are defined in (22) and (23)
respectively. So, let F = {ϕi : i∈ [1, k]} be defined by letting,

for all h∈ [0, p− 1], ϕi(dh)
def
= fm(j(dh)) = fm(m− c); (49)

where fm(j) are the j-step invertible smooth complementation functions defined by (37) for all
j∈ [dm/2e ,m− 1]. Then the set of functions B = {〈Γh〉 : h ∈ [0, p− 1]} is a set of one-to-one
balancing functions; where 〈Γh〉(X) = X(ϕi(dh);dh) = X(ϕi(dh);i(dh),j(dh)) is defined by (21).

Proof: See the proof in the Appendix II.
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For example, when m = 4, r = 3, R = (m−1)r = (4−1)3 = 9 and k = (mr−1)/(m−1) = 21,
the cardinality of partition P is |P| =

(
3
4

)
4

= 12. Such partition can be decomposed as follows

P =
4⋃

x=0

T4(3, x) =
2⋃

c=0

 ⋃
x∈[3ZZ+c]∩[0,4]

T4(3, x)

 =
2⋃

c=0

S4(3, c)

where T4(3, x) = {Γ∈P : |Γ| = 10− 2x} (see (40)) and S4(3, c) =
⋃

x∈[3ZZ+c]∩[0,4] T4(3, x) (see
(41)). Since (see (42))

t4(3, 0) = |T4(3, 0)| = |{Γ∈P : |Γ| = 10}| = 1,

t4(3, 1) = |T4(3, 1)| = |{Γ∈P : |Γ| = 8}| = 2,

t4(3, 2) = |T4(3, 2)| = |{Γ∈P : |Γ| = 6}| = 3,

t4(3, 3) = |T4(3, 3)| = |{Γ∈P : |Γ| = 4}| = 4,

t4(3, 4) = |T4(3, 4)| = |{Γ∈P : |Γ| = 2}| = 2,

it follows that (see (43))

|A1| = |S4(3, 0)| =

∣∣∣∣∣∣
⋃

x∈[3ZZ]∩[0,4]

T4(3, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{0,3}
T4(3, x)

∣∣∣∣∣∣ = t4(3, 0) + t4(3, 3) = 1 + 4 = 5

|B1| = |S4(3, 1)| =

∣∣∣∣∣∣
⋃

x∈[3ZZ+1]∩[0,4]

T4(3, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{1,4}
T4(3, x)

∣∣∣∣∣∣ = t4(3, 1) + t4(3, 4) = 2 + 2 = 4

|B2| = |A2| = |S4(3, 2)| =

∣∣∣∣∣∣
⋃

x∈[3ZZ+2]∩[0,4]

T4(3, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{2}
T4(3, x)

∣∣∣∣∣∣ = t4(3, 2) = 3.

So, according to (44) and (45), we pick

Γ0
def
= {120, 130, 212, 303}∈A1,

Γ1
def
= {301, 311}∈B1,

Γ2
def
= {201, 202, 221, 312}∈A1 − {Γ0},

Γ3
def
= {310, 320}∈B1 − {Γ1},

Γ4
def
= {210, 211, 230, 321}∈A1 − {Γ0,Γ2},

Γ5
def
= {010, 011, 012, 022, 032, 123, 223, 323}∈B1 − {Γ1,Γ3},

Γ6
def
= {300, 220, 302, 330}∈A1 − {Γ0,Γ2,Γ4},

Γ7
def
= {100, 020, 021, 031, 113, 132, 232, 332}∈B1 − {Γ1,Γ3,Γ5},

Γ8
def
= {000, 001, 002, 003, 013, 023, 033, 133, 233, 333}∈A1 − {Γ0,Γ2,Γ4,Γ6},

Γ9
def
= {101, 030, 103, 122, 213, 313}∈B2 = A2,

Γ10
def
= {110, 102, 112, 131, 222, 322}∈A2 − {Γ9}.

Γ11
def
= {200, 111, 121, 203, 231, 331}∈B2 − {Γ9,Γ10}.
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Hence, from (19) and (49), a code design can be defined by the following balancing functions:〈
Γ0

def
= {120, 130, 212, 303}

〉
(X)

def
= X(ϕi(d0)

;d0) = X(ϕ0;0) = X(f4(3);0) = X,〈
Γ1

def
= {301, 311}

〉
(X)

def
= X(ϕi(d1)

;d1) = X(ϕ1;3) = X(f4(3);3),〈
Γ2

def
= {201, 202, 221, 312}

〉
(X)

def
= X(ϕi(d2)

;d2) = X(ϕ2;6) = X(f4(3);6),〈
Γ3

def
= {310, 320}

〉
(X)

def
= X(ϕi(d3)

;d3) = X(ϕ3;9) = X(f4(3);9)〈
Γ4

def
= {210, 211, 230, 321}

〉
(X)

def
= X(ϕi(d4)

;d4) = X(ϕ4;12) = X(f4(3);12),〈
Γ5

def
= {010, 011, 012, 022, 032, 123, 223, 323}

〉
(X)

def
= X(ϕi(d5)

;d5) = X(ϕ6;18) = X(f4(3);18),〈
Γ6

def
= {300, 220, 302, 330}

〉
(X)

def
= X(ϕi(d6)

;d6) = X(ϕ8;24) = X(f4(3);24),〈
Γ7

def
= {100, 020, 021, 031, 113, 132, 232, 332}

〉
(X)

def
= X(ϕi(d7)

;d7) = X(ϕ10;30) = X(f4(3);30),〈
Γ8

def
=

{
000, 001, 002, 003, 013,

023, 033, 133, 233, 333

}〉
(X)

def
= X(ϕi(d8)

;d8) = X(ϕ13;39) = X(f4(3);39),〈
Γ9

def
= {101, 030, 103, 122, 213, 313}

〉
(X)

def
= X(ϕi(d9)

;d9) = X(ϕ16;47) = X(f4(2);47),〈
Γ10

def
= {110, 102, 112, 131, 222, 322}

〉
(X)

def
= X(ϕi(d10)

;d10) = X(ϕ18;53) = X(f4(2);53),〈
Γ11

def
= {200, 111, 121, 203, 231, 331}

〉
(X)

def
= X(ϕi(d11)

;d11) = X(ϕ20;59) = X(f4(2);59);

where the m(= 4)-ary complementation functions are defined in (38) as

ϕ0 = ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ6 = ϕ8 = ϕ10 = ϕ13 = f4(3) =

 0 1 2 3
1 1 1 2
2 2 2 1
3 2 1 0


and

ϕ16 = ϕ18 = ϕ20 = f4(2) =

 0 1 2 3
1 2 3 2
2 1 0 1
3 2 1 0

 .
If X = 332022210231211012100 ∈ ZZ21

4 is an information word then the encoder computes

〈Γ0〉(X) = X = X(0) = X(0,3) = 332022210231211012100, w(X(0)) = 29,
〈Γ1〉(X) = X(3) = X(1,3) = 032022210231211012100, w(X(3)) = 26,
〈Γ2〉(X) = X(6) = X(2,3) = 002022210231211012100, w(X(6)) = 23,
〈Γ3〉(X) = X(9) = X(3,3) = 001022210231211012100, w(X(9)) = 22,
〈Γ4〉(X) = X(12) = X(4,3) = 001322210231211012100, w(X(12)) = 25,
〈Γ5〉(X) = X(18) = X(6,3) = 001311210231211012100, w(X(18)) = 23,
〈Γ6〉(X) = X(24) = X(8,3) = 001311120231211012100, w(X(24)) = 23,
〈Γ7〉(X) = X(30) = X(10,3) = 001311123131211012100, w(X(30)) = 25,
〈Γ8〉(X) = X(39) = X(13,3) = 001311123102111012100, w(X(39)) = 22,

〈Γ9〉(X) = X(47) = X(16,2) = 001311123102122212100, w(X(47)) = 26,
〈Γ10〉(X) = X(53) = X(18,2) = 001311123102122320100, w(X(53)) = 26,
〈Γ11〉(X) = X(59) = X(20,2) = 001311123102122321220, w(X(59)) = 30,←

Hence, an/the encoding of X is

E(X) = 〈Γ11〉(X)231 = X(59)231 = 001311123102122321220 231.
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In the sequence, the words above the line are obtained with the function f4(3), the ones below
with the function f4(2). On receiving Y C = 001311123102122321220 231, the decoder computes
the balancing index hb(X) = 11 from C = 231∈Γ11. Since d11 = 59 it computes i = i(59) =

d59/3e = 20 and j = j(59) = 58 mod 3 + 1 = 2. Hence, it computes

D(Y C) = 〈Γ11〉−1(Y ) =

Y )20,2( = y1y2y3y4y5y6y7y8y9y10y11y12y13y14y15y16y17y18y19ϕ
−1
20 (y20, 2)y21 =

0013111231021223212[f4(2)]−1(2, 2)0 = 332022210231211012100 = X

(note that the third column of [f4(2)] defines [f4(2)](0, 2) = 2, [f4(2)](1, 2) = 3, [f4(2)](2, 2) = 0

and [f4(2)](3, 2) = 1; hence, [f4(2)]−1(2, 2) = 0). However, note that since any complementation
function is obviously (m−1)-step invertible, the last two columns of f4(2) are permutation of the
first column and we could have just chosen f4(2) only as complementation matrix. Obviously,
this simplification may hold true only for m = 2, 3, 4 and 5. Already for m ≥ 6 it seems we
are forced to use two or more complementation functions as in the following other example.
Consider m = 6, r = 2, R = (m − 1)r = (6 − 1)2 = 10 and k = (mr − 1)/(m − 1) = 7. The
cardinality of the partition P is |P| =

(
2
5

)
m

= 6. Such partition can be decomposed as follows

P =
5⋃

x=0

T6(2, x) =
4⋃

c=0

 ⋃
x∈[5ZZ+c]∩[0,5]

T6(2, x)

 =
4⋃

c=0

S6(2, c)

where T6(2, x) = {Γ∈P : |Γ| = 11− 2x} (see (40)) and S6(2, c) =
⋃

x∈[5ZZ+c]∩[0,5] T6(2, x) (see
(41)). Since (see (42))

t6(2, 0)
def
= |T6(2, 0)| = |{Γ∈P : |Γ| = 11}| = 1,

t6(2, 1)
def
= |T6(2, 1)| = |{Γ∈P : |Γ| = 9}| = 1,

t6(2, 2)
def
= |T6(2, 2)| = |{Γ∈P : |Γ| = 7}| = 1,

t6(2, 3)
def
= |T6(2, 3)| = |{Γ∈P : |Γ| = 5}| = 1,

t6(2, 4)
def
= |T6(2, 4)| = |{Γ∈P : |Γ| = 3}| = 1,

t6(2, 5)
def
= |T6(2, 5)| = |{Γ∈P : |Γ| = 1}| = 1,

it follows that (see (43))

|A1| = |S6(2, 0)| =

∣∣∣∣∣∣
⋃

x∈[5ZZ]∩[0,5]

T6(2, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{0,5}
T6(2, x)

∣∣∣∣∣∣ = t6(2, 0) + t6(2, 5) = 1 + 1 = 2,

|B1| = |S6(2, 1)| =

∣∣∣∣∣∣
⋃

x∈[5ZZ+1]∩[0,5]

T6(2, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{1}
T6(2, x)

∣∣∣∣∣∣ = t6(2, 1) = 1,

|B2| = |S6(2, 2)| =

∣∣∣∣∣∣
⋃

x∈[5ZZ+2]∩[0,5]

T6(2, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{2}
T6(3, x)

∣∣∣∣∣∣ = t6(2, 2) = 1,

|A2| = |S6(2, 4)| =

∣∣∣∣∣∣
⋃

x∈[5ZZ+4]∩[0,5]

T6(2, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{4}
T6(3, x)

∣∣∣∣∣∣ = t6(2, 4) = 1,
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|A3| = |B3| = |S6(2, 3)| =

∣∣∣∣∣∣
⋃

x∈[5ZZ+3]∩[0,5]

T6(2, x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

x∈{3}
T6(3, x)

∣∣∣∣∣∣ = t6(2, 3) = 1.

So, according to (44) and (45), we pick

Γ0
def
= {32}∈A1,

Γ1
def
= {10, 20, 30, 40, 50, 51, 52, 53, 54}∈B1,

Γ2
def
= {00, 01, 02, 03, 04, 05, 15, 25, 35, 45, 55}∈A1 − {Γ0},

Γ3
def
= {11, 12, 13, 14, 24, 34, 44}∈B2,

Γ4
def
= {22, 23, 33}∈A2,

Γ5
def
= {21, 31, 41, 42, 43}∈B3 = A3.

In this way, from (19) and (49), a code design can be defined by the following balancing
functions:

〈Γ0 = {32}〉(X)
def
= X(ϕi(d0)

;d0) = X(ϕ0;0) = X(f6(5);0),

〈Γ1 = {10, 20, 30, 40, 50, 51, 52, 53, 54}〉(X)
def
= X(ϕi(d1)

;d1) = X(ϕ1;5) = X(f6(5);5),

〈Γ2 = {00, 01, 02, 03, 04, 05, 15, 25, 35, 45, 55}〉(X)
def
= X(ϕi(d2)

;d2) = X(ϕ3;15) = X(f6(5);15),

〈Γ3 = {11, 12, 13, 14, 24, 34, 44}〉(X)
def
= X(ϕi(d3)

;d3) = X(ϕ5;24) = X(f6(4);24),

〈Γ4 = {22, 23, 33}〉(X)
def
= X(ϕi(d4)

;d4) = X(ϕ6;29) = X(f6(4);29),

〈Γ5 = {21, 31, 41, 42, 43}〉(X)
def
= X(ϕi(d5)

;d5) = X(ϕ7;33) = X(f6(3);33);

where the m(= 4)-ary complementation functions are defined in (39) as

ϕ0 = ϕ1 = ϕ3 = f6(5) =


0 1 2 3 4 5
1 1 1 2 3 4
2 2 2 2 2 3
3 3 3 3 3 2
4 4 4 3 2 1
5 4 3 2 1 0

 , ϕ5 = ϕ6 = f6(4) =


0 1 2 3 4 5
1 2 3 4 5 4
2 2 2 2 3 3
3 3 3 3 2 2
4 3 2 1 0 1
5 4 3 2 1 0


and

ϕ7 = f6(3) =


0 1 2 3 4 5
1 2 3 4 4 4
2 3 4 5 4 3
3 2 1 0 1 2
4 3 2 1 1 1
5 4 3 2 1 0

 .

If X = 1555122 ∈ ZZ7
6 is an information word then,

〈Γ0〉(X) = X = X(0) = X(0,5) = 1555122, w(X(0)) = 21,
〈Γ1〉(X) = X(5) = X(1,5) = 4555122, w(X(5)) = 24,
〈Γ2〉(X) = X(15) = X(3,5) = 4005122, w(X(15)) = 14,←
〈Γ3〉(X) = X(24) = X(5,4) = 4000522, w(X(24)) = 13,
〈Γ4〉(X) = X(29) = X(6,4) = 4000432, w(X(29)) = 13,

〈Γ5〉(X) = X(33) = X(7,3) = 4000435, w(X(33)) = 16,←

Hence, an encoding of X is E(X) = 〈Γ2〉(X)35 = X(15)35 = 4005122 35. In the sequence,
the words above the first line are obtained with the function f6(5), the ones between the first
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and second line with the function f6(4), and the ones below the second line with the function
f6(3). On receiving Y C = 4005122 35, the decoder computes the balancing index hb(X) = 2

from C = 35 ∈ Γ2. Since d2 = 15 it computes i = i(15) = d15/5e = 3 and j = j(15) =

14 mod 5 + 1 = 5. Hence, it computes

D(Y C) = 〈Γ2〉−1(Y ) = Y )3,5( = y1y2ϕ
−1
3 (y3, 5)y4y5y6y7 =

40[f6(5)]−1(0, 5)5122 = 1555122 = X.

(note that the sixth column of f6(5) defines [f6(5)](0, 5) = 5, [f6(5)](1, 5) = 4, [f6(5)](2, 5) = 3,
[f6(5)](3, 5) = 2, [f6(5)](4, 5) = 1 and [f6(5)](5, 5) = 0; hence, [f6(5)]−1(0, 5) = 5). Since any
complementation function is (m− 1)-step invertible, also in this case we could have simplified
the design and by using only two complementation functions by letting ϕ0 = ϕ1 = ϕ3 = ϕ5 =

ϕ6 = f6(4) and ϕ7 = f6(3). However, when m = 6 or more it does not seem to be possible to
give a code design with only one complementation function.

With regard to the complexity, also for this scheme lookup tables and/or circuits of size
O(p) = O(mk logm k) m-ary digits can be used to encode and decode the balancing index
hb ∈ [0, p − 1] to and from the check symbol Chb

∈ Γhb
∈ CS, respectively. To encode, we

just need to do at most p sequential steps to compute the p balancing functions and each step
requires O(logm k) m-ary digits operations to compute a constant number of quantities (such
as, the m-ary digits representing the integer w(X(dh)) from w(X(dh−1)). Obviously, this can
be done in O(logm k) digit operations if we have a table look-up to compute the weight of
any m-ary word of length i(dh) − i(dh−1) = O(logm k)). So, a total of O(p logm k) m-ary
digits operations are needed. Note that p ≤

(
r

bR/2c

)
m
'
√

6/[π(m+ 1)R] · mr (see (29) in

[7]) and, obviously, mr−1 < K ≤ mr (from (29)), so p = O(k/
√

logm k). Hence, a total of

O(p logm k) = O(k
√

logm k) m-ary digits operations are needed to encode (this is, considerably
less than the simple scheme). While decoding, as in the simple scheme, a parallel circuit of size
O(mk logm k) can output from hb ∈ [0, p − 1] a length k vector to be added component-wise
(according to the possibly at most bm/2c − 1 complementation functions used in the design)
to the received information part and obtain the original information word. So, a total of O(1)

m-ary digit operations are needed to decode.

IV. Transmitting extra information for the simple and refined coding schemes
For the simple scheme, Weber and Immink [13] and Swart and Weber [8] proposed to transmit

extra auxiliary data by exploiting the degree of freedom of selecting from more than one possible
balanced encoding of a given information word. In fact, for the binary case, the authors in [13]
showed that by choosing the balancing index of any given information word X , the encoder
can convey some extra δk = (1/2) log2 k − 0.916 information bits on average. In this way, the
minimum redundancy of the improved simple binary scheme becomes (note that (1) for m = 2

implies r = n− k = log2 k + Θ(log log k))

r′
def
= r − δk =

1

2
log2 k + Θ(log log k).
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Here, to improve the redundancy (that is, to make δk as large as possible), we not only propose
to choose among the possibly many balancing indices of X , but also propose to add more
balancing functions to the code design by using the unused check symbols. In this way, for any
m ≥ 2 and for both the simple and refined scheme, the new balancing functions are encoded by
the unused check symbols and can simply be chosen to be the identity function. For example,
consider the following code design obtained with the simple scheme for m = 2, k = 6 and
r = 4.

〈0011〉(X)
def
= X(0) = x1x2x3x4x5x6 = X,

〈0101〉(X)
def
= X(1) = x1x2x3x4x5x6,

〈0110〉(X)
def
= X(2) = x1x2x3x4x5x6,

〈1001〉(X)
def
= X(3) = x1x2x3x4x5x6,

〈1010〉(X)
def
= X(4) = x1x2x3x4x5x6,

〈1100〉(X)
def
= X(5) = x1x2x3x4x5x6.

The above design can be improved by adding the extra 9 balancing functions 〈C〉(X)
def
= X , for

C = 0000, 0001, 0010, 0100, 1000, 0111, 1011, 1101, 1110 and 1111. So, if X = 100100∈ZZ6
2

then
〈0011〉(X) = X(0) = 100100 = X, w(X(0)) = 2,
〈0101〉(X) = X(1) = 000100, w(X(1)) = 1,
〈0110〉(X) = X(2) = 010100, w(X(2)) = 2,
〈1001〉(X) = X(3) = 011100, w(X(3)) = 3, ←
〈1010〉(X) = X(4) = 011000, w(X(4)) = 2,
〈1100〉(X) = X(5) = 011010, w(X(5)) = 3, ←
〈0000〉(X) = X = 100100, w(X ) = 2,
〈0001〉(X) = X = 100100, w(X ) = 2,
〈0010〉(X) = X = 100100, w(X ) = 2,
〈0100〉(X) = X = 100100, w(X ) = 2,
〈1000〉(X) = X = 100100, w(X ) = 2,
〈0111〉(X) = X = 100100, w(X ) = 2, ←
〈1011〉(X) = X = 100100, w(X ) = 2, ←
〈1101〉(X) = X = 100100, w(X ) = 2, ←
〈1110〉(X) = X = 100100, w(X ) = 2, ←
〈1111〉(X) = X = 100100, w(X ) = 2;

and so E(X = 100100) can be chosen in the following 6 (> 2) different ways:

E(X) = 〈1001〉(X)1001 = X(3) 1001 = 011100 1001,
E(X) = 〈1100〉(X)1100 = X(5) 1100 = 011010 1100,

E(X) = 〈0111〉(X)0111 = X 0111 = 100100 0111,
E(X) = 〈1011〉(X)1011 = X 1011 = 100100 1011,
E(X) = 〈1101〉(X)1101 = X 1101 = 100100 1101,
E(X) = 〈1110〉(X)1110 = X 1110 = 100100 1110.

Table I and Table II respectively show the parameters of the simple and refined schemes with
the improvements suggested above. In each table, the four columns refer to the value of m = 2,
3, 4 and 5. For each m, the first and second subcolumns show the number k of information
digits and r of check digits, respectively. The third subcolumn shows the quantity k′ def

= k+ δk;
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where δk is the amount of information coming from the balancing index choice and the unused
check symbol contribution. The fourth subcolumn shows ∆

def
= kopt− k′. The values in the third

and fourth subcolumns which are above the double line “· · · = · · · ” are exact values. In this
case, ∆ is computed as the difference between the maximum number kopt

def
= logm

(
n

bN/2c

)
m

of
information digits that can be conveyed with a length n = k + r m-ary balanced code. Also,
k′

def
= k + δk, with δk computed by taking the average over all m-ary information words of

length k. The values which are below the double line are approximated. In this last case, kopt is
approximated with the formula kopt ≈ n − (1/2) logm[n(m2 − 1)] − (1/2) logm(π/6) (see (29)
in [7]), whereas, δk is computed by taking the average over 10 million samples. From the data
in the table we conjecture r′ def

= n− k′ = (1/2) logm k + Θ(log log k), for all m∈IIN, m ≥ 2.
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Appendix I
Here we prove the following theorem which directly gives the relations (used in the code

design of Section III) in the statement of Theorem 4 once it is noted that the integer sequence
sm(n, c) defined in (54) is such that sm(n, c)

def
= |Sm(n, c)|, with Sm(n, c) defined in (41).
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Theorem 6: Given m,n∈IIN and c∈ZZm−1, let sm(n, c) be defined in (54). Then the following
relations hold.

sm(n, 0) = sm(n, 1) + 1 and
sm(n, c) = sm(n,m− c), for all c∈ [2, bm/2c].

The above theorem follows from the combinatorial properties proved in Theorem 7 below
of the m-nomial integer sequence. Some preliminaries are needed. Let m∈ IIN be fixed. Given
n∈IIN, let the m-nomial integer sequence βm(n)

def
=
{(

n
w

)
m

: w∈ZZ
}

be defined as(
n

w

)
m

def
= |{X∈ZZn

m : w(X) = w}| =
∑

y∈ZZm

(
n− 1

w − y

)
m

, (50)

where the initial conditions are
(

0
0

)
m

def
= 1 and

(
0
w

)
m

def
= 0. For example, when m = 5,

β5(0) =
{
. . . , 0,

(
0
0

)
5

= 1, 0, . . .
}
,

β5(1) =
{
. . . , 0,

(
1
0

)
5

= 1, 1, 1, 1, 1 =
(

1
4

)
5
, 0, . . .

}
,

β5(2) =
{
. . . , 0,

(
2
0

)
5

= 1, 2, 3, 4, 5, 4, 3, 2, 1 =
(

2
8

)
5
, 0, . . .

}
,

β5(3) =
{
. . . , 0,

(
3
0

)
5

= 1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1 =
(

3
12

)
5
, 0, . . .

}
,

....
Whereas, when m = 6,

β6(0) =
{
. . . , 0,

(
0
0

)
6

= 1, 0, . . .
}
,

β6(1) =
{
. . . , 0,

(
1
0

)
6

= 1, 1, 1, 1, 1, 1 =
(

1
5

)
6
, 0, . . .

}
,

β6(2) =
{
. . . , 0,

(
2
0

)
6

= 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 =
(

2
10

)
6
, 0, . . .

}
,

β6(3) =
{
. . . , 0,

(
3
0

)
6

= 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1 =
(

3
15

)
6
, 0, . . .

}
,

....
Now, given the m-nomial integer sequence, for all m,n∈ IIN, define the new integer sequence
τm(n)

def
= {tm(n, x) : x∈ZZ} as

tm(n, x)
def
=

(
n

x

)
m

−
(

n

x− 1

)
m

. (51)

For example, when m = 5,
τ5(0) = {. . . , 0, t5(0, 0) = 1,−1 = t5(0, 1), 0, . . .},
τ5(1) = {. . . , 0, t5(1, 0) = 1, 0, 0, 0, 0,−1 = t5(1, 5), 0, . . .},
τ5(2) = {. . . , 0, t5(2, 0) = 1, 1, 1, 1, 1,−1,−1,−1,−1,−1 = t5(2, 9), 0, . . .},
τ5(3) = {. . . , 0, t5(3, 0) = 1, 2, 3, 4, 5, 3, 1,−1,−3,−5,−4,−3,−2,−1 = t5(3, 13), 0, . . .},

....
Whereas, when m = 6,

τ6(0) = {. . . , 0, t6(0, 0) = 1,−1 = t6(0, 1), 0, . . .},
τ6(1) = {. . . , 0, t6(1, 0) = 1, 0, 0, 0, 0, 0,−1 = t6(1, 6), 0, . . .},
τ6(2) = {. . . , 0, t6(2, 0) = 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1 = t6(2, 11), 0, . . .},
τ6(3) = {. . . , 0, t6(3, 0) = 1, 2, 3, 4, 5, 6, 4, 2, 0,

−2,−4,−6,−5,−4,−3,−2,−1 = t6(3, 16), 0, . . .},
....
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The following theorem holds.
Theorem 7: Given m,n∈ IIN, the following properties hold for the integer sequence τm(n)

defined as in (51). As usual, let N def
= (m− 1)n.

P1: For all x∈ZZ, tm(n, (N + 1)− x) = −tm(n, x). Furthermore,
tm(n, x) = 0 if x 6∈ [0, N + 1],
tm(n, x) ≥ 0 if x∈ [0, d(N + 1)/2e),
tm(n, (N + 1)/2) = 0 if N is odd,
tm(n, x) = −tm(n, (N + 1)− x) ≤ 0 if x∈(b(N + 1)/2c , N + 1].

(52)

P2: The integer sequence τm(n) can also be defined by the recurrence realtion

tm(n, x)
def
= tm(n− 1, x) + tm(n− 1, x− 1) + . . .+ tm(n− 1, x− (m− 1)) (53)

with initial conditions tm(0, 0)
def
= 1, tm(0, 1)

def
= −1 and tm(0, x)

def
= 0 ⇐⇒ x 6= 0, 1.

P3: Given c∈ZZ, let s̃m(n, c)
def
=
∑

x∈(m−1)ZZ+c tm(n, x). Then, for all c∈ZZ,

s̃m(n, c) = 2s̃m(n− 1, c) + s̃m(n− 1, c− 1) + . . .+ s̃m(n− 1, c− (m− 2)).

P4: Given c∈ZZ, let

sm(n, c)
def
=

∑
x∈[(m−1)ZZ+c]∩{x∈ZZ: tm(n,x)>0}

tm(n, x) = (54)

∑
x∈[(m−1)ZZ+c]∩[0,d(N+1)/2e)

tm(n, x) =
∑

x∈[(m−1)ZZ+c]∩[0,bN/2c]
tm(n, x).

Then, for all c∈ZZm−1,

s̃m(n, c) = sm(n, c)− sm(n,m− c) =


+1 if c = 0,
−1 if c = 1,

0 if c∈ [2,m− 2].
(55)

Proof: The properties P1 and P2 follow directly from (50). The property P3 follows from
(53) and s̃m(n− 1, c) = s̃m(n− 1, c− (m− 1)), which holds for all m,n∈IIN and c∈ZZ. With
regard to P4, first note that

{x ∈ ZZ : tm(n, x) > 0} ∪ {x ∈ ZZ : tm(n, x) = 0} = {x ∈ ZZ : tm(n, x) ≥ 0} =

{x ∈ ZZ : x∈ [0, d(N + 1)/2e)} = {x ∈ ZZ : x∈ [0, bN/2c]}

because of (52). Hence, all the equalities in (54) hold because

sm(n, c) =
∑

x∈[(m−1)ZZ+c]∩{x∈ZZ: tm(n,x)≥0}
tm(n, x).

With regard to the leftmost equality in (55), the property P1 implies

s̃m(n, c) =
∑

x∈(m−1)ZZ+c

tm(n, x) = (56)

∑
[x∈(m−1)ZZ+c]∩{x∈ZZ: tm(n,x)≥0}

tm(n, x)−
∑

[x∈(m−1)ZZ+c]∩{x∈ZZ: tm(n,x)≤0}
(−tm(n, x)) =
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sm(n, c)−
∑

[x∈(m−1)ZZ+c]∩(b(N+1)/2c,N+1]

(−tm(n, x)) =

sm(n, c)−
∑

[x∈(m−1)ZZ+c]∩(b(N+1)/2c,N+1]

tm(n, (N + 1)− x).

Now, since N = (m − 1)n ∈ (m − 1)ZZ, if we let y def
= (N + 1) − x then x ∈ (m −

1)ZZ + c ⇐⇒ y ∈ (m − 1)ZZ + (m − c). Furthermore, x ∈ (b(N + 1)/2c , N + 1] ⇐⇒
y∈

[
0, (N + 1)− b(N + 1)/2c =

⌈
N+1

2

⌉)
. Hence,

x∈ [(m− 1)ZZ + c] ∩
(⌊
N + 1

2

⌋
, N + 1

]
⇐⇒ y∈ [(m− 1)ZZ + (m− c)] ∩

[
0,
⌈
N + 1

2

⌉)
.

The above relation, (54) and (56) imply s̃m(n, c) = sm(n, c)− sm(n,m− c). Finally, using the
property P3, the rightmost equality in (55) can be proved by induction on n. As a matter of fact,
since τm(0) = {. . . , 0, tm(0, 0) = 1,−1 = tm(0, 1), 0, . . .}, the rightmost equality of (55) is true
for n = 0. Now, the relation in P3 for c = 0, the periodicity of s̃m(n, c) as a function of c with
period m− 1, and the inductive hypothesis imply,

s̃m(n+ 1, 0) = 2s̃m(n, 0) + s̃m(n,−1) + s̃m(n,−2) + . . .+ s̃m(n,−(m− 2)) =

2s̃m(n, 0) + s̃m(n,m− 2) + s̃m(n,−3) + . . .+ s̃m(n, 1) = +2 + 0 + 0 + . . .− 1 = +1.

Also, for c = 1, we have

s̃m(n+ 1, 1) = 2s̃m(n, 1) + s̃m(n, 0) + s̃m(n,−1) + . . .+ s̃m(n, 1− (m− 2)) =

2s̃m(n, 1) + s̃m(n, 0) + s̃m(n,m− 2) + . . .+ s̃m(n, 2) = −2 + 1 + 0 + . . .+ 0 = −1.

Whereas, for c = 2, we have

s̃m(n+ 1, 2) = 2s̃m(n, 2) + s̃m(n, 1) + s̃m(n, 0) + . . .+ s̃m(n, 2− (m− 2)) =

2s̃m(n, 2) + s̃m(n, 1) + s̃m(n, 0) + . . .+ s̃m(n, 3) = 0− 1 + 1 + . . .+ 0 = 0;

and we analogously obtain the same conclusion for c = 3, 4, . . . ,m− 2.
At this point, the property P4 of Theorem 7 implies Theorem 6.

Appendix II
Here we give the proof of Theorem 5.

Proof: For all h∈ [0, p− 1], the integer dh is defined by (19) and 0 = d0 < d1 < . . . < dp−1

because none of the Γh’s is empty. Now, only the following cases are possible when h∈ [1, p−1].
C1: c = 1, h = t∈2ZZ, t∈ [0, |A1 ∪B1| − 1]. So, Γh∈A1 = Sm(r, 0) and Γh−1∈B1 = Sm(r, 1).

In this case, dh−dh−1∈(m−1)ZZ (hence, dh−dh−1 ≥ m−1). In fact, from (41) and (40),⌈
|Γh|

2

⌉
∈
⌈
R + 1

2

⌉
− [(m− 1)ZZ] and

⌊
|Γh−1|

2

⌋
∈
⌊
R + 1

2

⌋
− [(m− 1)ZZ + 1].
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Hence, from (19) and R = (m− 1)r∈(m− 1)ZZ,

dh − dh−1 =

⌊
|Γh−1|

2

⌋
+

⌈
|Γh|

2

⌉
∈

⌊
R + 1

2

⌋
− [(m− 1)ZZ + 1] +

⌈
R + 1

2

⌉
− [(m− 1)ZZ] =

R + 1− 1 + (m− 1)ZZ = (m− 1)ZZ.

C2: c = 1, h = t∈2ZZ+1, t∈ [1, |A1∪B1|−1]. So, Γh∈B1 = Sm(r, 1) and Γh−1∈A1 = Sm(r, 0).
In this case, dh−dh−1∈(m−1)ZZ (hence, dh−dh−1 ≥ m−1). In fact, from (41) and (40),⌈
|Γh|

2

⌉
∈
⌈
R + 1

2

⌉
− [(m− 1)ZZ + 1] and

⌊
|Γh−1|

2

⌋
∈
⌊
R + 1

2

⌋
− [(m− 1)ZZ].

As in C1, from (19) and R∈(m−1)ZZ we get dh−dh−1 = b|Γh−1|/2c+d|Γh|/2e∈(m−1)ZZ.
C3: c = 2, h = |A1∪B1|∈2ZZ+ 1, t = 0. So, Γh∈B2 = Sm(r, 2) and Γh−1∈A1 = Sm(r, 0). In

this case, dh − dh−1∈(m− 1)ZZ− 1 = (m− 1)ZZ + (m− 2) (hence, dh − dh−1 ≥ m− 2).
In fact, from (41) and (40),⌈
|Γh|

2

⌉
∈
⌈
R + 1

2

⌉
− [(m− 1)ZZ + 2] and

⌊
|Γh−1|

2

⌋
∈
⌊
R + 1

2

⌋
− [(m− 1)ZZ].

So, from (19) and R∈(m−1)ZZ we get dh−dh−1 = b|Γh−1|/2c+d|Γh|/2e∈(m−1)ZZ−1.
C4: c ≥ 2, h =

∑c−1
i=1 |Ai ∪ Bi|+ t∈2ZZ + 1, t∈ [1, |Ac ∪ Bc| − 1]. So, Γh∈Bc = Sm(r, c) and

Γh−1∈Ac = Sm(r,m− c). In this case, dh− dh−1∈(m− 1)ZZ (hence, dh− dh−1 ≥ m− 1).
In fact, from (41) and (40),⌈
|Γh|

2

⌉
∈
⌈
R + 1

2

⌉
− [(m− 1)ZZ + c] and

⌊
|Γh−1|

2

⌋
∈
⌊
R + 1

2

⌋
− [(m− 1)ZZ + (m− c)].

So, from (19) and R∈(m− 1)ZZ we get dh − dh−1 = b|Γh−1|/2c+ d|Γh|/2e∈(m− 1)ZZ.
C5: c ≥ 2, h =

∑c−1
i=1 |Ai ∪Bi|+ t∈2ZZ, t∈ [1, |Ac ∪Bc| − 1]. So, Γh∈Ac = Sm(r,m− c) and

Γh−1∈Bc = Sm(r, c). So, as above, dh − dh−1∈(m− 1)ZZ (hence, dh − dh−1 ≥ m− 1).
C6: c ≥ 2, h =

∑c
i=1 |Ai ∪Bi|∈2ZZ + 1, t = 0. So, Γh∈Bc+1 = Sm(r, c+ 1) and Γh−1∈Ac =

Sm(r,m− c). So, as above, dh − dh−1∈(m− 1)ZZ− 1 (hence, dh − dh−1 ≥ m− 2).
From the definition (45) of CS , all the above, (22), (23) and d0 = 0 ∈ (m − 1)ZZ inductively
imply (46), (47) and (48). In particular, from (23), (46) and c∈ [1, bm/2c], we get

j(dh) = (dh − 1) mod (m− 1) + 1 = (m− c)− 1 + 1 = m− c∈ [dm/2e ,m− 1];

which is (48). At this point, since (47), it is possible to let ϕi(dh)
def
= fm(m − c) as in (49). In

this way, CS and F match (that is, satisfy (34)) because the fm(m − c)’s where defined to be
j-step invertible smooth complementation functions for j = m − c∈ [dm/2e ,m − 1] (and so,
j 6= (m − 1)/2 if m is odd). Hence, B is a well defined set of one-to-one balancing function
because of Theorem 3.
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TABLE I
RESULTS OF SIMPLE SCHEME. THE FOUR COLUMNS ARE REFERRED TO THE VALUES OF m = 2, 3, 4 AND 5. FOR EACH m,

THE FIRST AND SECOND SUBCOLUMNS SHOW THE NUMBER OF INFORMATION DIGITS, k, AND THE NUMBER OF CHECK

DIGITS, r, RESPECTIVELY. THE THIRD SUBCOLUMN SHOWS THE QUANTITY k′
def
= k + δk, WHERE δk IS THE INFORMATION

GIVEN BY THE BALANCING INDEX CHOICE. THE FOURTH SUBCOLUMN SHOWS ∆
def
= kopt − k′ .

m = 2
k r k′ ∆
1 2 1.500 0.085
2 2 2.500 0.085
3 4 5.050 0.079
4 4 6.050 0.079
5 4 6.746 0.232
6 4 7.746 0.232
7 5 9.627 0.225
8 5 10.504 0.241
9 5 11.389 0.356
10 5 12.292 0.359
11 6 14.294 0.276
12 6 15.294 0.276
13 6 16.177 0.318
14 6 17.177 0.318
15 6 18.067 0.361
16 6 19.067 0.361
17 6 19.957 0.410
18 6 20.957 0.410
19 6 21.829 0.482
20 6 22.829 0.482
21 7 24.769 0.488
22 7 25.704 0.505
23 7 26.692 0.517
24 7 27.634 0.529
25 7 28.620 0.543
26 7 29.568 0.552
27 7 30.551 0.569
28 7 31.504 0.575
29 7 32.483 0.596
30 7 33.442 0.599

34 7 37.244 0.751
35 8 39.136 0.825
70 8 73.616 0.915
71 9 75.436 1.077
126 9 129.925 1.211
127 10 131.674 1.451
252 10 256.288 1.370
253 11 257.840 1.812
462 11 466.487 1.744
463 12 467.937 2.291
924 12 928.870 1.869
925 13 930.235 2.503
1716 13 1721.214 2.083
1717 14 1722.490 2.806
3432 14 3437.548 2.250
3433 15 3438.771 3.028
6434 15 6439.895 2.452
6435 16 6441.078 3.269

m = 3
k r k′ ∆
1 2 1.667 0.105
2 3 3.513 0.066
3 3 4.322 0.182
4 4 6.300 0.080
5 4 7.211 0.118
6 4 8.129 0.154
7 4 9.048 0.193
8 4 9.965 0.238
9 4 10.868 0.300
10 5 12.854 0.250
11 5 13.801 0.274
12 5 14.752 0.297
13 5 15.706 0.317
14 5 16.663 0.336
15 5 17.622 0.354
16 5 18.584 0.370
17 5 19.548 0.386
18 5 20.513 0.400
19 5 21.480 0.415

25 5 27.327 0.473
26 6 29.202 0.569
70 6 72.587 0.790
71 7 74.263 1.102
196 7 198.826 1.104
197 8 200.345 1.581
553 8 556.033 1.434
554 9 557.449 2.016
1569 9 1572.375 1.621
1570 10 1573.636 2.360
4476 10 4479.735 1.786
4477 11 4480.893 2.628
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −

m = 4
k r k′ ∆
1 2 1.698 0.094
2 3 3.598 0.040
3 3 4.494 0.096
4 3 5.336 0.192
5 4 7.331 0.112
6 4 8.277 0.137
7 4 9.204 0.170
8 4 10.158 0.192
9 4 11.097 0.220
10 4 12.058 0.238
11 4 13.005 0.262
12 4 13.969 0.280
13 4 14.918 0.306
14 4 15.878 0.329
15 5 17.793 0.377

51 5 53.164 0.641
52 6 54.841 0.951
193 6 195.330 1.018
194 7 196.870 1.474
709 7 711.597 1.289
710 8 712.919 1.966
2697 8 2699.924 1.482
2698 9 2701.105 2.301
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −

m = 5
k r k′ ∆
1 2 1.745 0.085
2 3 3.665 0.027
3 3 4.571 0.069
4 3 5.472 0.122
5 4 7.417 0.103
6 4 8.353 0.135
7 4 9.294 0.166
8 4 10.239 0.194
9 4 11.189 0.220
10 4 12.144 0.243
11 4 13.102 0.264
12 4 14.063 0.283
13 4 15.027 0.300

21 4 22.812 0.401
22 5 24.657 0.533
95 5 97.001 0.782
96 6 98.615 1.162
437 6 439.202 1.118
438 7 440.581 1.739
2033 7 2035.482 1.364
2034 8 2036.683 2.163
9541 8 9543.842 1.524
9542 9 9544.942 2.424
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
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TABLE II
RESULTS OF REFINED SCHEME. THE FOUR COLUMNS ARE REFERRED TO THE VALUES OF m = 2, 3, 4 AND 5. FOR EACH m,

THE FIRST AND SECOND SUBCOLUMNS SHOW THE NUMBER OF INFORMATION DIGITS, k, AND THE NUMBER OF CHECK

DIGITS, r, RESPECTIVELY. THE THIRD SUBCOLUMN SHOWS THE QUANTITY k′
def
= k + δk, WHERE δk IS THE INFORMATION

GIVEN BY THE BALANCING INDEX CHOICE. THE FOURTH SUBCOLUMN SHOWS ∆
def
= kopt − k′ .

m = 2
k r k′ ∆
1 1 1.000 0.000
2 2 2.500 0.085
3 2 3.250 0.072
4 2 4.250 0.072
5 3 6.032 0.097
6 3 6.852 0.125
7 3 7.852 0.125
8 4 9.699 0.153
9 4 10.589 0.156
10 4 11.589 0.156
11 4 12.510 0.142
12 4 13.510 0.142
13 4 14.426 0.144
14 4 15.426 0.144
15 4 16.340 0.155
16 4 17.340 0.155
17 5 19.148 0.280
18 5 20.097 0.270
19 5 21.097 0.270
20 5 22.066 0.244
21 5 23.066 0.244
22 5 24.037 0.221
23 5 25.037 0.221
24 5 26.004 0.205
25 5 27.004 0.205
26 5 27.965 0.198
27 5 28.965 0.198
28 5 29.914 0.206
29 5 30.914 0.206
30 5 31.864 0.215

31 5 32.872 0.218
32 6 34.448 0.603
64 6 66.390 0.220
65 7 67.977 0.612
127 7 129.786 0.355
128 8 131.338 0.792
256 8 259.280 0.372
257 9 260.711 0.935
511 9 514.772 0.391
512 10 516.199 0.961
1024 10 1028.267 0.401
1025 11 1029.546 1.120
2047 11 2051.724 0.447
2048 12 2053.005 1.165
4096 12 4101.195 0.477
4097 13 4102.450 1.222
8191 13 8196.662 0.511
8192 14 8197.862 1.311

m = 3
k r k′ ∆
1 1 1.000 0.000
2 2 2.614 0.066
3 2 3.532 0.047
4 2 4.445 0.060
5 3 6.228 0.153
6 3 7.188 0.141
7 3 8.168 0.115
8 3 9.132 0.109
9 3 10.094 0.109
10 3 11.069 0.099
11 3 12.041 0.094
12 3 13.005 0.100
13 3 13.972 0.103
14 4 15.576 0.447
15 4 16.555 0.444
16 4 17.599 0.377
17 4 18.583 0.371
18 4 19.565 0.368
19 4 20.598 0.315

40 4 41.469 0.157
41 5 42.962 0.644
121 5 122.942 0.205
122 6 124.299 0.841
364 6 366.405 0.252
365 7 367.725 0.930
1093 7 1095.887 0.274
1094 8 1097.129 1.031
3280 8 3283.353 0.309
3281 9 3284.526 1.136
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −

m = 4
k r k′ ∆
1 1 1.000 0.000
2 2 2.672 0.058
3 2 3.585 0.053
4 2 4.540 0.050
5 2 5.472 0.056
6 3 7.003 0.440
7 3 8.143 0.271
8 3 9.109 0.266
9 3 10.164 0.186
10 3 11.174 0.143
11 3 12.159 0.137
12 3 13.140 0.127
13 3 14.127 0.122
14 3 15.109 0.114
15 3 16.098 0.110

21 3 22.010 0.101
22 4 23.463 0.618
85 4 86.481 0.157
86 5 87.860 0.769
341 5 342.965 0.183
342 6 344.218 0.928
5461 7 5463.903 0.250
5462 8 5465.036 1.117
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −

m = 5
k r k′ ∆
1 1 1.000 0.000
2 2 2.681 0.080
3 2 3.636 0.057
4 2 4.582 0.058
5 2 5.545 0.050
6 2 6.499 0.056
7 3 8.033 0.456
8 3 9.011 0.449
9 3 10.052 0.381
10 3 11.066 0.343
11 3 12.099 0.288
12 3 13.111 0.255
13 3 14.136 0.210

31 3 32.041 0.077
32 4 33.355 0.746
156 4 157.486 0.151
157 5 158.771 0.862
781 5 782.947 0.195
782 6 784.146 0.995
3906 6 3908.431 0.213
3907 7 3909.558 1.086
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
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