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Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-
Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, andCostello syndrome.
Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with
particular regard tomitochondrial dysfunction. Sincemitochondria are one of themajor sites of ROSproduction aswell as one of the
major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis
of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted
agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients.

1. Introduction

Reactive oxygen species (ROS) have crucial roles in many
physiological and pathophysiological processes. A delicate
balance between oxidants and antioxidants is essential for
physiological functioning. On the contrary, the loss of this
balance usually leads to dysfunctions and cellular damage at
various levels, including membrane phospholipids, proteins,
and nucleic acids [1–6].

In 1956 Harman postulated the free radical theory of age-
ing, according to which a redox imbalance and a ROS surplus
are involved in the cellular damage that accompanies ageing
and age-related diseases such as neurodegenerative diseases
and cancer [7]. Since then, a huge body of literature has been
produced on the role of oxidative stress (OS) in ageing and
carcinogenesis, and a clear link between OS and the develop-
ment of specific types of cancer has been ascertained [8–11].
In particular, the DNA damage inflicted by ROS contributes
to the initiation and progression of carcinogenesis. ROS are
able to react with DNA, damaging nitrogenous bases or pro-
ducing double-strand breaks.They can also oxidize lipids and

proteins, resulting in the production of intermediate species
which in turn react with DNA. Several repair mechanisms
intervene in removing DNA injuries; however, disrepair of
DNA damage may occur in some cases, resulting in base
substitutions or deletions leading to cancer development.
In addition, DNA repair mechanisms have the tendency to
decay with age: this leads to progressive accumulation of
DNA injuries that accounts for the increased incidence of
cancer with age [3, 12–15].

A second theory proposed to explain the mechanisms
involved in ageing and in age-related diseases, including can-
cer, is the mitochondrial theory of ageing, postulated in 1984
by Miquel and Fleming and based on the presence of a mito-
chondrial dysfunction [16]. Increased ROS production, accu-
mulation of damaged mitochondrial DNA (mtDNA), and
progressive respiratory chain dysfunction are the three main
principles of the theory. With age, a vicious cycle takes place:
increased ROS production causes accumulation of oxidative
damage in mtDNA, which is more sensitive to ROS-induced
damage than nuclear DNA; mutated mtDNA codifies mal-
functioning subunits of respiratory complexes that in turn

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 4782426, 7 pages
http://dx.doi.org/10.1155/2016/4782426

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università degli Studi di Siena

https://core.ac.uk/display/53675456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1155/2016/4782426


2 Oxidative Medicine and Cellular Longevity

increase ROS production [17–20]. Signs of altered mitochon-
drial activity can be recognized inmanyOS related disorders,
thus proving the existence of a strict connection between OS
and mitochondrial dysfunction [21].

OS is a hallmark in several genetic diseases. In par-
ticular, evidence has been reported of an OS intervention
in the pathogenesis of a number of cancer-prone genetic
syndromes. In some of these diseases a mitochondrial dys-
function has also been demonstrated [22].

Taking into account the link between OS and carcino-
genesis and the pivotal role exerted by mitochondrial dys-
function, the use of mitochondrial-targeted antioxidants and
micronutrients might be a good clinical strategy to prevent
cancer development in these syndromes.

2. Mitochondrial Dysfunction and
Cancer Development: Mitochondrial-
Targeted Antioxidants

Abnormalities inmitochondrial functions have been reported
in several human pathologies, including cardiologic, haema-
tologic, autoimmune, neurologic, and psychiatric disorders.
One of the main lines of research in this respect investigates
the link between mitochondrial dysfunction and cancer [21].
In cancer cells the increased ROS production is linked to
mtDNA mutations and to alterations of the bioenergetics
and the biosynthetic state of cancer cells [23]. Cancer
cells show indeed several metabolic alterations, including
increased fatty acid synthesis and glutaminemetabolism, and
an increased aerobic glycolysis [24, 25]; the latter feature is
known as the “Warburg effect” and is thought to be due
to defective mitochondria [26]. The switch towards aerobic
glycolysis enables cancer cells to use glucose supplies for
the biosynthesis of macromolecules, to support their rapid
growth. ROS surplus can also determine the peroxidation
of fatty acids in mitochondrial membranes: for example, the
peroxidation ofmitochondrial phospholipid cardiolipin leads
to the formation of reactive aldehydes which in turn react
with proteins and DNA [23]. Alterations of mitochondrial
proteins are involved in mitochondrial dysfunctions charac-
teristic of cancer cells.Moreover, dysfunctionalmitochondria
are able to modulate cell cycle, gene expression, metabolism,
and cell viability [27].

In view of these findings, a supportive therapeutic
approach based on the use of mitochondrial-targeted sub-
stances might be an appropriate strategy. A mitochondrial
nutrient is an agent able to protect mitochondria from oxida-
tive damage and to improve mitochondrial function by pre-
venting generation of ROS, scavenging free radicals, and pre-
venting oxidized inactive proteins accumulation. It can also
repair oxidative damage by enhancing antioxidant defense
systems [28–30]. A number of mitochondrial cofactors have
been tested in several clinical trials to verify their potential
benefits. Among them, the most studied are alpha-lipoic acid
(ALA), coenzyme Q

10
(CoQ

10
), and L-carnitine. ALA is a

dithiol compound, derived from octanoic acid, that is known
as an essential cofactor for mitochondrial bioenergetics’
enzymes. It is a natural antioxidant found in every cell

of the body and it is able to trigger the mitochondrial
pathway of apoptosis in cancer cells [31, 32]. CoQ

10
is an

endogenous lipid synthesized by the human organism and
also introduced in small amounts through the diet. It is an
electron acceptor and donor, and it may occur in an oxidized
form (ubiquinone) and a reduced form (ubiquinol). It is
important for themaintenance ofmitochondrial homeostasis
and the prevention of free radical production; in the form
of ubiquinol, it also acts directly as a scavenger [33–35]. L-
Carnitine (𝛽-hydroxy-𝛾-trimethyl-ammonium butyric acid)
is involved in mammalian lipid metabolism: it is required in
the transport of activated fatty acids from the cytosol into
the mitochondrial matrix, where 𝛽-oxidation takes place. In
addition, it seems to take part in the repair of induced single-
strand DNA breaks and in the protection of DNA from ROS
[36–38].

3. Oxidative Stress and
Mitochondrial Dysfunction in
Cancer-Prone Genetic Diseases

A group of genetic diseases, including Down syndrome (DS),
Ataxia-Telangiectasia (AT), Fanconi Anemia (FA), Bloom
syndrome (BS), and Werner syndrome (WS), show OS and
mitochondrial dysfunction as a phenotypic hallmark. These
genetic disorders share, among other things, predisposition
to cancer development and premature ageing.

AT is characterized by progressive neurodegeneration,
immunodeficiency, oculocutaneous telangiectasias, endo-
crine abnormalities, high cancer incidence, genome insta-
bility, and hypersensitivity to ionizing radiation [39, 40]. The
lifetime prevalence of cancer is about 40% [41]. In children
withAT themost frequent cancer cases are acute lymphocytic
leukemia and lymphoma [42]. AT is an autosomal recessive
disorder caused by mutational inactivation of ATM gene,
located on the long arm of chromosome 11. ATM gene
encodes a protein belonging to the PI3/PI4-kinase family.
TheATMprotein is an important cell cycle checkpoint kinase
involved in the repair response to DNA double-strand breaks
[43, 44]. Loss of ATM function leads to genomic instability
with chromosome breaks, translocations, and aneuploidy
[45]. A link between OS and AT has been demonstrated in
several studies [46–49]; recent research has provided some
possible new mechanisms for oxidative damage associated
with ATM deficiency that are independent of the DNA
damage response pathway. In particular, ATM seems to be
able to influence ROS production through the modulation
of mitochondrial activity [50–52]. AT cells established from
AT patients show an abnormal structural organization of
mitochondria with a decreased membrane potential and an
increased basal expression level of several nuclear DNA-
encoded genes whose proteins are involved in oxidative
damage response and are targeted to mitochondria. In addi-
tion, they show decreased overall mitochondrial respiratory
activity: this activity could be rescued by treating the cells
either with ALA or by the expression of full-length ATM,
suggesting that the protein is required for the regulation of
mitochondrial dysfunction [53]. In the light of these data,
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the use of antioxidants directed at mitochondrial ROS could
be a therapeutic strategy for AT patients. D’Souza et al.
demonstrated that reducing mitochondrial ROS through
overexpression of catalase targeted to mitochondria (mCAT)
alleviates AT-related pathology in ATM-deficient mice,
with particular regard to cancer pathology [54]. Berni et al.
studied the effect of pretreatment with L-carnitine on DNA
damage in normal and ATM-deficient cells established by
AT patients and found that L-carnitine enhanced the rate
and extent of DNA repair in AT cell lines; a reduction of all
types of chromosomal aberrations was also observed [55].

FA is characterized by bone marrow failure leading
to pancytopenia, physical abnormalities (including short
stature, abnormal skin pigmentation, malformation of the
thumbs, forearms, skeletal system, eyes, kidneys and urinary
tract, ears, heart, gastrointestinal system, and central ner-
vous system), type 2 diabetes mellitus, hypogonadism, and
developmental delay [56]. Affected patients have an increased
risk of malignancy, primarily acute myeloid leukemia. The
risk of solid tumors is also increased [57]. FA is caused by
mutation in 15 known genes whose functions are especially
linked to DNA repair pathways [58–61]. There is a huge
body of literature on the link between OS and FA, with
numerous studies since the 1970s. The cells from FA patients
show a prooxidant state and some of the genes linked to the
syndrome’s pathogenesis encode proteins involved in redox
homeostasis. Moreover, FA patients display downregulation
of major antioxidant defense genes [62–65]. The presence
of mitochondrial defects in FA cells has been highlighted
by recent literature: these defects seem to be directly con-
nected to the increased ROS production and to the con-
current depletion of antioxidant defenses. In particular, FA
cells show excess formation of mitochondrial ROS with
a decreased mitochondrial membrane potential, decreased
ATP production, impaired oxygen uptake, abnormalities in
mitochondrial ultrastructure, and inactivation of mitochon-
drial activities involved in bioenergetics pathways and ROS
detoxification [66–68]. Ponte et al. studied the protective
effect of ALA and N-acetylcysteine (NAC) on chromosome
instability in cells established from FA patients and found
that themicronutrients cocktail is able to improve the genetic
stability of FA lymphocytes in vitro [68]. A possible role for
mitochondrial nutrients as chemopreventive agents in FA
is suggested by these data. In this regard, a pilot study on
the use of quercetin in children with FA has been set up
by the Cincinnati Children’s Hospital Medical Center and
is currently recruiting participants. Primary outcome of the
study is to assess the feasibility, toxicity, and pharmacoki-
netics of oral quercetin therapy in FA; secondary outcomes
include assessment of the impact of quercetin on ROS
reduction (Clinical Trial Identifier:NCT01720147).Quercetin
(3,3,4,5,7-pentahydroxyflavone) is a flavonoid with anti-
inflammatory and antioxidant properties and seems also to
enhance mitochondrial functionality [69, 70].

DS is one of the most common genetic anomalies.
The main features of the syndrome are cognitive impair-
ment, craniofacial dysmorphism, gastrointestinal abnormal-
ities, congenital heart defects, endocrine abnormalities, neu-
ropathology leading to dementia, and immunological defects.

In approximately 95% of patients, DS is caused by full
trisomy 21; the remaining cases are linked to mosaicism and
translocations [71]. Affected children show a higher incidence
of leukemia than the general population [72, 73]. DS seems
to be characterized by a chronic prooxidant state: ongoing
OS can be demonstrated from embryonic life and evidence
of mitochondrial dysfunction has been reported, including
alteration in the membrane potential, oxidative damage to
mtDNA, ultrastructure changes such as abnormally shaped
mitochondria, and diminished levels of microtubules [22, 74,
75]. Chromosome 21 contains several genes implicated in
OS, above all Cu/Zn superoxide dismutase (SOD1). SOD1 is
implicated in antioxidant defense: it catalyzes the dismutation
of ∙O
2

− to molecular oxygen (O
2
) and H

2
O
2
, which can be

converted by catalase and glutathione peroxidase to water.
The triplication of chromosome 21 leads to an imbalance in
the ratio of SOD1 to catalase and glutathione peroxidase,
resulting in the accumulation of H

2
O
2
[76, 77]. Tiano et al.

evaluated the effect of CoQ
10
administration to DS patients.

At the beginning amild protective effect onDNAwas demon-
strated at the cellular level, but the treatment failed to modify
the overall oxidative damage at the patient level. After a longer
follow-up and prolonged treatment, an age-specific reduction
in the percentage of cells showing the highest amount of
oxidized bases was highlighted, indicating a potential role of
CoQ
10
in modulating DNA repair mechanisms [78, 79].

BS is a rare, autosomal recessive disorder exhibiting
numerous clinical features including sensitivity to sunlight,
growth retardation, immunological disorders, and predispo-
sition to cancer [80, 81]. Cells established by BS patients
show excess DNA damage with a decreased glutathione
disulfate : glutathione (GSSG :GSH) ratio [21, 82].

Finally, progeroid syndromes are a group of disorders
characterized by clinical features mimicking physiological
ageing at an early age. Several causative genes have been
identified: genes encoding DNA repair factors (DNA heli-
cases) and genes affecting the structure or posttranslational
maturation of lamin A, which is a major nuclear component.
Moreover, several animal models show abnormal mitochon-
drial function [83]. In particular, in WS involvements of
the defective WRN protein in DNA stability and in redox
balance have been observed andmitochondrial ultrastructure
anomalies were found in cells fromWSmousemodel [21, 84].

4. Oxidative Stress and Beckwith-Wiedemann,
Costello, and Prader-Willi Syndromes

BWS is a genomic imprinting disorder characterized by
abdominal wall defects, macroglossia, pre- and postna-
tal overgrowth, neonatal hypoglycemia, visceromegaly, and
increased risk of developing cancer in childhood, such as
Wilms’ cancer, hepatoblastoma, neuroblastoma, adrenocor-
tical carcinoma, and rhabdomyosarcoma.The lifetime risk of
developing cancer is approximately 7.5% [85]. The syndrome
is associatedwith alterations in 2 distinct imprinting domains
on 11p15: a telomeric domain containing the H19 and IGF2
genes and a centromeric domain including the KCNQ1OT1
and CDKNIC genes. Disorders of imprinting in the telomeric
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domain are associated with overgrowth and tumor develop-
ment; imprinting defects at KCNQ1OT1 are associated with
the development of other embryonal tumors [85].

Costello syndrome is a rare genetic disease characterized
by coarse facies, short stature, loose folds of skin on the
hands and feet, severe feeding difficulties and failure to thrive,
cardiac anomalies, developmental disability, and increased
risk of malignancies, especially rhabdomyosarcoma, with an
approximately 15% lifetime risk. The only gene currently
known to be associated with the syndrome is Harvey rat
sarcoma viral oncogene homolog (HRAS). Defects in this
gene are implicated in a variety of cancers, including bladder
cancer, follicular thyroid cancer, and oral squamous cell carci-
noma [86].The protein encoded byHRAS belongs to the Ras-
mitogen-activated protein kinase (MAPK) pathway. Recent
data demonstrated a functional connection between the Ras-
MAPK pathway and mitochondrial function, and functional
defects in mitochondrial respiration could be induced by
oncogenic HRAS transformation, suggesting a possible role
formitochondrial dysfunction in the pathogenesis of CS [87–
89].

By measuring a redox biomarker profile, the presence of
a prooxidant state in patients affected by CS and BWS was
documented.The administration of potassiumascorbatewith
ribose (PAR), which acts as antioxidant, determined a pro-
gressive decrease in OS biomarkers until their normalization,
togetherwith an improvement in the clinical conditions of the
patients. No neoplastic disease was observed during a follow-
up period of 10 years [90].

Potassium ascorbate is a salt derived from natural ascor-
bic acid; it is totally nontoxic and has antioxidant effects, com-
bining the antioxidant action of vitaminCwith the stabilizing
intracellular effects of potassium.The ribose acts as a catalyst
strengthening the action of potassium ascorbate [91, 92].
Ascorbic acid has been used in the prevention of cancer with
promising results [93]. Mitochondria may be one of the prin-
cipal targets of its activity: at higher concentrations vitamin
C seems to increase ATP production by increasingmitochon-
drial electron flux and to induce apoptosis in cancer cells [94].

PAR supplementation gave promising results also in
Prader-Willi syndrome (PWS), a genomic imprinting disor-
der whose most important feature is severe obesity leading to
atherosclerosis and type 2 diabetes mellitus, in which a close
relationship with OS has been widely demonstrated [95].
Interestingly, mitochondrial dysfunction was found in an
imprinting center deletion mouse model of PWS, suggesting
that an altered mitochondrial activity may contribute to
the PWS pathogenesis [96]. Prader-Willi syndrome is not
a cancer-prone disease; however, in recent years cases of
early-onset cancer have been reported in PWS patients,
probably due to the increased life expectancy, raising the
question whether PWS predisposes to cancer development
[97]. Indeed, there is evidence of a potential role of genomic
imprinting and DNA methylation in human cancer [98, 99].
In addition, Necdin gene, which maps to chromosome 15q11–
13, the region implicated in the pathogenesis of PWS, may
have a potential tumor suppressor role, and it seems to be
downregulated and hypermethylated or mutated in cancer
[100, 101].

Antioxidant supplementation (PAR) in a PWSpatientwas
associated with a progressive reduction of OS biomarkers
occurring together with improvement in the clinical aspects
of the patient, including the lack of development of the
characteristic obesity [95]. Studies on relationship between
oxidative stress and BWS, CS, and PWS, although being
preliminary and based on a small group of patients, raise the
prospect of future clinical trials based on larger case histories
and with longer follow-up periods.

5. Conclusions

Oxidative stress is an important hallmark in several genetic
diseases characterized by predisposition to tumor devel-
opment and/or premature ageing. Studying the molecular
mechanisms linking OS to the pathogenesis of these con-
ditions allows identifying new possible therapeutic targets.
Antioxidants administration to the affected patients might
counteract their prooxidant state. Since a prooxidant state
is often associated with mitochondrial dysfunction, the use
of mitochondrial-targeted agents might be an appropriate
clinical strategy in order to improve the quality of life and the
life span of the patients.
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