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Abstract

Background: Biochemical reactions are often modelled as discrete-state continuous-time stochastic processes
evolving as memoryless Markov processes. However, in some cases, biochemical systems exhibit non-Markovian
dynamics. We propose here a methodology for building stochastic simulation algorithms which model more
precisely non-Markovian processes in some specific situations. Our methodology is based on Constraint
Programming and is implemented by using Gecode, a state-of-the-art framework for constraint solving.

Results: Our technique allows us to randomly sample waiting times from probability density functions that not
necessarily are distributed according to a negative exponential function. In this context, we discuss an important
case-study in which the probability density function is inferred from single-molecule experiments that describe the
distribution of the time intervals between two consecutive enzymatically catalysed reactions. Noticeably, this
feature allows some types of enzyme reactions to be modelled as non-Markovian processes.

Conclusions: We show that our methodology makes it possible to obtain accurate models of enzymatic reactions
that, in specific cases, fit experimental data better than the corresponding Markovian models.

Background
Experimental evidence at the single-cell level suggest that
random fluctuations at the microscopic scale can have an
important impact in determining the complex behaviour
of living organisms [1,2]. These findings have raised sig-
nificant interest towards discrete stochastic (DS) models
of biological systems as a tool for bridging the gap
between stochastic events arising at the molecular level
and the corresponding macroscopic phenomena. In DS
models, the system evolves according to a stochastic
algorithm which samples the probability of the next state
transition from a given probability density function
(PDF). Biochemical reactions, in particular, are often
modelled as discrete-state, continuous-time Markov Pro-
cesses (CTMP). This method represents an alternative to
the traditional continuous deterministic modelling

(CDM) approach when random fluctuations must be
properly taken into account. This is the case, for instance,
of systems composed of a small number of elements like
molecular subsystems in living cells (e.g., metabolic net-
works, signalling pathways, or gene regulatory networks).
In this context, descriptions provided by reaction rate
equations fail both to predict the fluctuations in molecu-
lar populations and to capture stochastic-driven phenom-
ena such as Stochastic Focusing [3], Stochastic Switching
[4] and Multiplicative Noise Effects [5]. The Gillespie’s
Stochastic Simulation Algorithm (GSSA) [6,7], based on
[8] and [9], is probably the most popular algorithm used
for simulating DS models of (bio)chemical systems. The
GSSA relies on a Monte Carlo technique, namely the
Inverse Transform Sampling (ITS). GSSA is used
to numerically simulate the Markov process described
analytically by the set of differential equations from the
Chemical Master Equation (CME). Since the CME can
rarely be solved either numerically or analytically espe-
cially for large systems, GSSA provides a computational
method to generate statistically correct trajectories
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(possible solutions) of the CME. These trajectories are
obtained by drawing random samples from the so-called
Reaction Probability Density Function (RPDF) [6,7]
through the ITS.
Gillespie’s SSA is designed for simulating sets of ele-

mentary chemical reactions occurring in a well-stirred
mixture in a fixed volume and at a constant temperature
[10]. Thus, the straightforward application of GSSA to a
biochemical context can be difficult. Indeed, it is easy to
realise the difficulties in specifying all the elementary
reactions composing a given biochemical system, mainly
because of the lack of needed information. Indeed, only
macroscopic and mesoscopic events can be observed
experimentally and, thus, it is not possible to know the
complete list of elementary reactions. The usual strategy
for tackling this problem consists of abstracting away
the non-observable elementary steps and replacing them
with a single reaction event rendered as a “Markov
jump” with the transition time (τ ) sampled from a nega-
tive exponential distribution. Even though heuristic, this
strategy can lead to simulation results showing a good
agreement with experimental data (see e.g., [11-13]).
However, the impact of the approximations introduced

by this abstraction process is difficult to evaluate or esti-
mate, as reported by Gillespie in [13] for enzymatically
catalysed reactions. One crucial issue of this abstraction-
approximation strategy is related to the modelling of the
time needed for a reaction to occur: even though each of
the elementary reactions composing a biochemical sys-
tem can be described as a CTMP (and, thus, with transi-
tion times probabilities following a negative exponential
PDF), the waiting times between two subsequent events
observed at a mesoscopic or macroscopic scale can be
non-exponential, as reported, e.g., in [14,15] and con-
firmed by experimental evidence [16,17]. It can be
demonstrated (see e.g., [18] that a stochastic process
exhibiting nonexponential waiting times does not enjoy
necessarily the so-called Markov Property (a.k.a. memory-
less property) and thus, strictly speaking, it cannot be a
Markov process. These arguments suggest the need for
modelling frameworks that allow us to deal with a more
general notion of waiting times, thus managing non-
memoryless (non-Markovian) systems’ evolutions. In
terms of waiting times, this corresponds to considering
frameworks in which the PDF describing transition times
can be different from a negative exponential.
Various proposals have been developed for addressing

the aforementioned issues. BioPEPAd [15] offers the
possibility of adding deterministic delays to the duration
of a reaction. In [19] an extension for process calculi is
proposed, allowing the expression of activity durations
through general probability distributions. A similar
approach is proposed in [20] for extending Petri Nets.
Furthermore, in [14] the authors improved the Beta

Workbench (BWB) framework with the possibility of
sampling waiting times from PDFs that are different
from the negative exponential, such as the Erlang or
Hyperexponential. This strategy results in better
matches with the observed non-Markovian biological
behaviours. However, even though the data-fitting can
enhance results, the considered PDFs do not exactly
match the experimental evidence. Hence, they may
themselves introduce unpredictable approximations.
In this paper, we propose a Constraint Programming

approach that is suited for being embedded in Monte
Carlo algorithms for discrete-state continuous-time sto-
chastic simulation of biochemical reactions. Our method
allows us to sample random numbers from PDFs that
may not necessarily follow a negative exponential distri-
bution including, e.g. the Erlang and Hyperexponential
distributions considered in [14].
Relying also on the results about single-molecule

enzyme reactions presented in [21], we exploit our
method for efficiently and accurately simulating the
occurrence of enzyme catalysed reactions that follows the
Michaelis-Menten (MM) scheme. Noticeably, our
approach allows us to simulate this kind of reactions as a
single S® P (Substrate ® Product) step without any loss
of accuracy, i.e., without introducing approximations.
The contribution of this paper is hence twofold: on the

one hand we propose a general method for building dis-
crete-state continuous-time stochastic simulations of
(bio)chemical systems, sampling waiting times from gen-
eral PDFs distributions; on the other hand, exploiting our
method, we provide an efficient and accurate strategy for
the stochastic simulation of MM enzyme reactions. In
the latter case, we provide a simulation technique that
overcomes some of the limitations of the corresponding
GSSA approach.
Our method is implemented on top of the Gecode

library (http://www.gecode.org), an efficient framework
to solve constraint satisfaction problems [22,23]. Essen-
tially, we use the real intervals constraint support of
Gecode for solving sets of interval constraints.
Although specific numerical methods may be computa-
tionally more efficient, declarative methods as Con-
straint Programming provide a flexible framework able
to quickly adapt to different situations, as we explain
later. Hence, the modellers have at their disposal a
more general (software) tool that minimises the need
for writing new code when the parameters of the
model change.
We will show the features of our method through its

application tot the simulation of enzyme reactions fol-
lowing the MM scheme. To do this, we first introduce in
the following subsection some details regarding the MM
reaction scheme and the results about single-molecule
enzyme reactions obtained in [21].
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Simulating Single-Molecule Enzyme Reactions
A convenient (and popular) way of describing all the
elementary steps of an enzymatically catalysed reaction
is through the Michaelis-Menten (MM) model. Accord-
ing to this reaction scheme, a catalysed reaction of the
kind S® P (where S and P are the substrate and pro-
duct molecules respectively, while E represents the
enzyme molecule and ES the enzyme-substrate complex)
can be approximated with three “elementary” reactions:

E + S
k1�
k−1

ES
k2→ E + P (1)

The reaction set (1) can be simulated as a CTMP via
GSSA using k1, k−1 and k2 as “elementary” rate con-
stants. It is described as a single Markov step and, thus,
the corresponding transition time follows a negative
exponential PDF. The propensity is calculated through
Equation (2), where v is the rate of product formation,
[S] the substrate concentration and KM the MM con-
stant (see, e.g., [13]).

v =
k2[S]

[S] + KM

MM kinetics is particularly convenient because it
effectively reduces the three reactions in Equation (1) to
a single reaction S ® P with rate v. Moreover, the
necessary parameters are easier to measure experimen-
tally than the rate constants ki.
However, modelling enzymatic reactions with the MM

kinetics introduces approximations at two different
levels. The first level of approximation is inherent to the
MM kinetics itself. Indeed, it should be noted that
Equation (2) does not capture the dynamics of reaction
set (1) exactly, being based on assumptions (e.g., the
steady-state assumption [24]) that are approximately
valid. The steady-state approximation is the first impor-
tant assumption involved in the MM reaction scheme.
According to this approximation, the concentration of
the ES complex will rapidly reach the steady-state, i.e.,
after an initial burst phase, the concentration of ES will
not change appreciably until a significant amount of
substrate is consumed [25]. In in vivo experiments this
assumption may not necessarily hold because the
enzyme concentrations can be comparable to the sub-
strate concentrations [26]. The steadystate approxima-
tion is well studied in the deterministic setting, where
the reaction set (1) is described through a set of ordin-
ary differential equations (ODEs).
Building a stochastic model à la Gillespie of the reac-

tion scheme (1), relying upon MM kinetics, requires the
conversion of an ODE model into a stochastic model.
As previously pointed out, this is straightforward if the
ODEs describe elementary reactions. Some authors (see

e.g., [12]) compared the output of a stochastic model
that uses MM kinetics and the corresponding model
decomposed into the three “elementary” reactions in (1),
and no significant differences in simulation results were
found. The work in [11] verified the equivalence of the
deterministic and the stochastic MM approximations
under a restricted set of initial conditions. In spite of
these results, however, there is no general (theoretical)
method for converting MM terms from the determinis-
tic to the stochastic setting. This problem has been
exhaustively studied in [13], where it is shown that a
“full” stochastic model of the reaction set in Equation
(1), describing explicitly the three reactions, can be safely
reduced to one S® P reaction with stochastic rate v under
certain conditions, namely, after the pre-steady-state tran-
sient period.
The second level of approximation regards the Marko-

vian modelling paradigm. Modelling the reaction set in
Equation (1) as a single Markov jump defined by the
lumped reaction S® P with rate v, implies subsuming
that the process satisfies the Markov (or memoryless)
property: the probability of transition from the current
state to one of the possible successors depends only on
the current state. This, in turn, means that the PDF
describing the waiting time τ must be a negative expo-
nential function. As showed by single-molecule experi-
ments [17,21], the PDF describing the occurrence of τ is
significantly different from an exponential. In other
words, experimental evidence suggests that the occur-
rence of an enzymatically catalysed reaction is not a
Markov process. The problem of evaluating the approxi-
mation introduced by Markovian models of natural sys-
tems is well known in physics and in some cases can be
quantified [27].
In the cases that have been studied, the waiting time τ

for a biochemical reaction catalysed by a single enzyme
results to be distributed according to the following PDF:

f (τ ) =
k1k2 [S]

2A
[e(A+B)τ − e(B−A)τ ] (3)

where [S] is the substrate concentration, k1, k−1, k2
and are the kinetic constants (see Equation (1)) and

A =

√
(k1[S] + k−1 + k2)

2

4
− k1k2[S] B =

−(k1[S] + k−1 + k2)
2

We note that A > 0 and B < 0. Differently from the
classical ensemble experiments (in which the variations
of reactive species concentrations are measured in solu-
tions containing “large” amounts of molecules), a single-
molecule experiment records the stochastic time trace
of repetitive reactions of an individual enzyme molecule.
In particular (see [21] and [17] for details) the measured
quantities regard the duration of the waiting time that
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passes between a reaction and the following one. There-
fore, in the absence of dynamic disorder, f (τ ) describes
the temporal behaviour of the single-molecule MM
system in Equation (3) at any specified substrate con-
centration. This PDF is exact and does not invoke the
steady-state assumption, but it can be reduced to the
steady-state case [17].
Note that Equation (3) is very different from the

negative exponential PDF for waiting times proposed
by Gillespie. This suggests that GSSA may be not ade-
quate to simulate biochemical reactions catalysed by
enzymes. Another remarkable fact to notice is that the

reciprocal of the mean waiting time
(

1
〈τ 〉

)
obeys a MM-

type equation (called the Single-Molecule-Michaelis-
Menten-Equation):

1
〈τ 〉 = −(A2 − B2)2

2Bk1k2[S]
=

k2[S]
[S] + KM

(4)

Figure 1 (right) shows a plot of [S] vs
1

〈τ 〉. Note that

this plot exhibits the characteristic hyperbolic profile of
the classical MM saturation curve. The reader may wish
to compare it with Figure 1 on the left, which is a plot
of [S] vs v drawn from the Equation (2), that refers to
the MM model for enzymatically catalysed reactions in

Equation (1). The fact that the fraction
1

〈τ 〉calculated from

Equation (4) exactly coincides with Equation (2) highlights
the ergodicity of the process, i.e., the consistency between
the single-molecule and the ensemble-averaged kinetics.

This issue is also evident by the fact that the same con-
stants (k1, k−1, k2 and KM ) appear both in Equation (2)
and Equation (4). This correspondence is useful for com-
puter-based stochastic simulations of single-molecule
reactions because it allows the safe use of the constants
k1, k−1, k2 and KM measured in the “ensemble”
experiments.
In the next section, we show how our technique allows

us to build a Monte Carlo-based algorithm for simulating
the occurrence of (networks of) single-molecule enzy-
matic reactions, by sampling waiting times from Equation
(3) through the ITS method.

Methods
Sampling waiting times through the ITS method
For the sake of readability, let us write the Equation (3)
as:

f (τ ) = α [e(βτ) − e(γ τ)] (5)

where β ≥ γ and

α =
k1k2[S]
2A

β = (A + B) γ = (B − A)

Let F (τ ) ∈ [0..1] be the cumulative distribution func-
tion for f (τ ):

F(τ ) =
∫ τ

−∞
f (τ )dτ = α

[
e(βτ)

β
− e(γ τ)

γ

]
− α

[
1
β

− 1
γ

]
= r (6)

At this point, the ITS technique requires to find those
values of τ such that F (τ ) = r by finding an analytical

Figure 1 Plots of [S] vs. v and [S] vs.
1

〈τ 〉 obeying a MM-type equation (adapted from [17,28]).
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expression for the equation τ = F −1(r). Unfortunately, it
is only possible to obtain such an expression in some
particular cases, e.g. when b = 2g.
It is easy to see that F (τ ) (τ > 0) satisfies the follow-

ing:

- for b < g the plot of F (τ ) is the one depicted in
Figure 2 on the right and so the equation F (τ ) = r
(being 0 < r < 1) has no solutions.
- for b > g the plot of F (τ ) is that depicted in
Figure 2 on the left and so the equation F (τ ) = r
(being 0 < r < 1) has certainly one (and only one)
solution for each r when τ > 0. This solution is
rarely available analytically but it can be estimated
through numerical methods.

In the next section, we present an efficient method
based on Constraint Programming for computing a
solution to the equation τ = F −1(r). This technique will
be shown to be useful for sampling the waiting times
taken from general PDFs. Then, we shall describe our
method based on experiments of individual enzyme
molecules, reporting the obtained simulation results.
In particular, we will compare our results with the
homologous ones presented in [13] in order to evaluate
the differences between Markovian (à la Gillespie) and
non-Markovian simulations in our case study.

The Constraint Programming Approach
As we have seen, the ITS method requires to compute a
solution for F (τ ) = r given a set of values for the con-
stants of the density function. Then, it generates a set of
random values for τ sampled from Equation (3), simulat-
ing for i-times the occurrence of a single-molecule enzy-
matic reaction, with parameters k1, k2 and k3 (k3 is used
to refer to k−1). To solve these equations, we use the
Gecode library (http://www.gecode.org), a state-of-the-

art framework for Constraint Programming including
a real intervals constraint system (Float variables).
Constraint systems are at the heart of Constraint Logic
Programming [22,23] where problems are solved
declaratively: one states the problem and a Search
Engine searches automatically for a solution. In Con-
straint Programming, constraints are asserted by means
of propagators that prune the domain of the variables
through efficient techniques such as Hull, Box and kB
−Consistency ( [29], [30]), thus allowing for solving sets
of interval constraints.
An interesting feature of this programming paradigm

is that constraints represent relations between the vari-
ables rather than assignments to values. The function of
the propagators is then to discard the values on the
domain of the variables that are not part of any solution
(domain narrowing). Let us explain this situation with a
simple example. Assume, for instance, three variables x1,
x2, x3 with domains (intervals) [l1, u1], [l2, u2], [l3, u3],
respectively. If we add the constraint x1 +x2 = x3, the
propagators implementing the relation between the
expression “x1 + x2“ and the right-hand side x3 will
prune the domains of the three variables to assert that
[l1, u1] + [l2, u2] = [l3, u3]. Hence, l3 ≥ l1 + l2 and u3 ≤
u1 + u2.
Rarely, propagation of constraints is enough to solve a

constraint satisfaction problem. In our example, if x1 =
[2, 3], x2 = [4, 6] and x3 = [0, 20], the propagators can
only narrow the domain of x3 to [6, 9] by discarding the
unfeasible values [0, 5] (resp. [9, 20]) in the lower (resp.
upper) part of the interval. At this point, when no
further propagation is possible, the search engine chooses
a variable x = [l, u] such that u − l is greater than a given
precision E. Then, the problem is split into two: one
searching for a solution considering x = [l, u/2) and
another considering x = [u/2, u] where u/2 is the mid-
point. This is known in Constraint Programming as

Figure 2 Plots of the function F (τ ) in Equation (6). (a): Case b > g. (b): Case b < g.
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labelling or enumeration and leads to a depth-first search
strategy.
The combination of constraint propagation and enu-

meration yields a complete solution method: all solutions
generated are indeed solutions to the problem and, if a
solution exists, the procedure will eventually find it. In
our previous example, the domains (intervals) x1 = [3, 3],
x2 = [6, 6], x3 = [9, 9] are one of the possible solutions for
the constraint x1 + x2 = x3.
Now we show how to find a solution for Equation (3)

by using the Constraint Programming approach imple-
mented in Gecode. The main parts of the needed code
are in Figure 3 and explained below.
Lines 2-4 include the required libraries from Gecode.

Line 7 defines the class Exp Function as a subclass of
the the Gecode class Script. Hence, an instance of the
class Exp Function can be used to solve our problem
since this class actually defines the solver, i.e., the vari-
ables and the constraints needed.

The variables (of type FloatVar) are declared in line
10. The required constants, i.e., the parameters of the
function, are declared in line 12. In lines 16-39 we
declare the constructor of the class. The constructor
takes as parameters the concentration (i.e., S) and the
rates k1, k2 and k3. The first parameter opt is needed in
Gecode to determine the number of solutions that the
solver must generate. Lines 18-24 initialise the variables.
Note for instance that TAU is a variable that can take
any value greater than 0.0. As we know, B (see Equation
(3)) cannot be positive and so this variable is initialised
in the interval (−∞, 0.0]. The same holds also for the
other variables.
In lines 27-35 we add the needed propagators to solve

the equation F (τ ) = r. For instance, in line 35 we estab-
lish the relation between R and the rest of variables. As
we already explained, such a relation allows us to both
determine r given a τ and compute τ given some r (the
inverse of the function needed here). We note that we

Figure 3 Gecode script for solving r = F (τ ) in the Equation (3).
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simply write the relations as the equations presented in
the previous section by using the appropriate notation
such as, for instance, sqrt to denote the square root and
exp to denote the exponential function.
The labelling strategy is in line 37 where we specify

that the variable TAU is chosen for labelling and the
values not greater than the mid-point are explored first.
It is worth mentioning some advantages of using Con-

straint Programming instead of classical numerical
methods to solve F (τ ) = r. The most important one is
that in Constraint Programming, interval arithmetic
allows us to bound numeric errors appearing when
doing calculations. Such accuracy is the result of repre-
senting a real number by means of an interval [l, u]
instead of a single floating-point number. Hence, when
a solution is found, we have a guarantee that the result
is indeed a solution satisfying all the constraints.
Another advantage is that in Constraint Programming,
it is possible to find all the solutions for a given set of
constraints. Moreover, due to the labelling process, the
method is complete, i.e., if there is a solution, the solver
eventually will find it. Finally, in constraint solving no
initial parameters for iteration are required (see [22,23]
for further details).

Implementation
Now we are ready to show how to implement our tech-
nique to simulate biochemical reactions. The input of
our tool is a biochemical system specified through a set
of reactions having the generic:

a1X1 + . . . + anXn
k−→ b1Y1 + . . . + bmYm (7)

where the constants a1, ..., an and b1, ..., bm are the
stoichiometric coefficients. k stands for the kinetic rate
constant. Therefore, a1X1, ..., anXn are reactants that
interact (and are consumed) yielding to the products
b1Y1, ..., bmYm. In addition, for each reaction we can
define the corresponding PDF (with its needed para-
meters) that will be used to sample the duration of a
particular reaction.
Besides the parser which loads the input, the tool is

composed by two main modules that work together. One
module is invoked each time we want to compute a solu-
tion for F (τ ) = r. It takes as input the concentrations of
the reactants, and a reaction; then it chooses the suitable
PDF and it uses the Constraint Programming approach
to compute the solution. The other module is the core
engine of the tool:
It takes the value of τ for each reaction for which

there are enough reactants in the system and then it
chooses which reaction will take place, selecting the one
with the smallest τ value. At this point, it simulates the
designated reaction by consuming the reagents and

adding to the system the products. After that, τ is added
to the current time and it starts over again. In this way,
given a set of reactions and a set of concentrations, we
are able to simulate the evolution of the modelled sys-
tem. The output of the tool is a list comprising a time
stamp, the concentrations at that time, and the last reac-
tion used.

Results and discussion
To show how our method works we report on two
experiments consisting of generating random samples of
Equation (3) and comparing the sampled data with the
PDF used.
Example 1 (Performing the sampling) Consider the

following set of parameters taken from [17]:

A1 : k1 = 107M−1s−1 A2 : k1 = 107M−1s−1 A3 : k1 = 107M−1s−1

k2 = 250s−1 k2 = 250s−1 k2 = 250s−1

k−1 = 0s−1 k−1 = 50s−1 k−1 = 2000s−1

[S] = 0.005mM [S] = 0.005mM [S] = 0.005mM

By using the code in Figure 3, we obtained 1000 sam-
ples of τ. The histogram of the resulting values and the
plot of the Equation (3) for the three sets of parameters
is depicted in Figure 4.
The second example is used to illustrate how our

method can be used for simulating reactions catalysed
by single enzymes based on the parameters studied in
[31]. That paper provides kinetic parameters referring to
the enzyme b-lactamase which is present in bacteria
such as S. aureus and E. coli. This enzyme hydrolyses
benzylpenicillin so preserving the micro-organisms from
being killed by this antibiotic. The kinetic parameters
from [31] are not measured from single-molecule assays
but rather from traditional “ensemble” observations, in
which reactants and enzymes are allowed to react in
concentrations of the order of moles per litre. Our aim
is to verify whether our method, which satisfies the rela-
tion expressed in Equation (3), can be used to perform
simulations also using data coming from ensemble
experiments which are the most frequently present in
the literature.
Example 2 (Simulating single-molecule reactions)

Let us consider the following set of parameters reported
in [31]:

B1 : k1 = 41μM−1s−1 B2 : k1 = 22μM−1s−1 B3 : k1 = 123μM−1s−1

k2 = 1920s−1 k2 = 62s−1 k2 = 980s−1

k−1 = 2320s−1 k−1 = 196s−1 k−1 = 11800s−1

We range [S] from 0.001 to 200. For each value of [S] we
compute the average of 100 values for τ (denoted by 〈τ 〉 ).
In Figure 5 we show the plot of [S] vs

1
〈τ 〉 along with the

MM saturation curve obtained from Equation (4).
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As shown in Figure 5 and confirmed by the good
results of a fit test (Pearson’s c2 test, with p < 0.005),
the values of τ we obtained through our method are
consistent with the underlying MM model which is
represented in each Figure together with the respective
1

〈τ 〉 plot. These results, again, show that the technique

we propose allows us to faithfully simulate in one step
the occurrence of an enzymatic reaction directly using
the data coming from the literature.
The method we have presented for sampling probabil-

istic distribution functions can be generally applied to
other ones such as Exponential (a.k.a. negative exponen-
tial distribution) and Erlang by using the same para-
meters reported in [14].
Example 3 (Exponential PDF) Let f (τ ) = l e−lτ for

τ ≥ 0 be an exponential PDF and F (τ ) = 1 − e−lτ be
the corresponding cumulative distribution function.
Figure 6(a) shows the histogram of the occurrence of τ
obtained with a Gecode code similar to that in Figure 3.
The parameter l is set to 0.0078.
Example 4 (Erlang PDF) Let f (τ ) and F (τ ) be an

Erlang PDF (resp. cumulative PDF) defined as:

f (τ ) =
λkxk−1

e−λx

(k − 1)!
F(τ ) = 1 −

k−1∑
n=0

1
n!

e−λx(λx)n

with the parameters k = 2 and l = 0.0078. Figure 6(b)
shows the histogram of the occurrence of τ obtained with
a Gecode code similar to that in Figure 3.
Now let us show how our method can be used to

simulate a network of biochemical reactions.
Example 5 (A simple Network) Consider the follow-

ing elementary reactions:
(1) A ® B (2) A ® C
Initial concentrations are A = 100, B = 0 and C = 0.

Reaction (1) follows the PDF in Equation (3) with para-
meters k1 = 1.0, k2 = 1.0 and k−1 = 10.0. In reaction (2) τ
is sampled from the exponential PDF f (τ ) = 10[A]e−[A]τ.
The results are depicted in Figure 7.
Comparing Markovian and non-Markovian

simulations
In this section we analyse the differences emerging in

describing the reaction set in Equation (1) through two
different DS models. In one case, we use an approach àla
Gillespie, lumping the reaction scheme in Equation (1)
into one S ® P reaction. In this scenario, the occurrence
of a reaction is seen as a single Markov transition with the
waiting time distributed accordingly to a negative expo-
nential PDF. The propensity a = v is calculated from
Equation (2), as suggested in [13]. In the other case, we
reduce the reaction scheme in Equation (1) to a single
S ® P reaction but the waiting times are computed (using

Figure 4 Histograms representing the occurrences of τ obtained from the code in Figure 3 which provides samples of τ according to the
density function in Equation (3). The continuous line represents the function in Equation (3) calculated using the parameters in Example 1. The
graphs should be compared with the results obtained in [17].

Figure 5 Plots of [S] vs
1

〈τ 〉 using the parameters in Example 2. The red (continuous) lines represent the MM equations calculated with the

same (experimentally evaluated) parameters used for the probability density functions.
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our method) according to Equation (3), thus obtaining a
non-Markovian model.
As previously noticed, experimental evidence provided

by studies on single molecule experiments suggests that
the occurrence of a reaction catalysed by single enzymes

when observed at the mesoscopic level (i.e., as a single
S ® P reaction) exhibits non-Markovian dynamics. Our
aim here is to evaluate the impact of the approximation
introduced by simulating single-molecule enzymatic
reactions as a Markov process through the GSSA. To do

Figure 6 Histograms represent the samples of τ according to the density functions and parameters in Examples 3 and 4.

Figure 7 Temporal trace of the species concentrations in a simple network of two reactions: (1) A ® B, (2) A ® C. PDFs and parameters
are described in Example 5.

Chiarugi et al. BMC Systems Biology 2015, 9(Suppl 3):S8
http://www.biomedcentral.com/1752-0509/9/S3/S8

Page 9 of 13



this, we first compare the trend of the two PDFs for
waiting times (the negative exponential with propensity
a and Equation (3)) when the initial values of S (S0), k1,
k−1 and k2 are varied. It can be noticed in Figure 8 that
the differences between the two PDFs mainly concern
the low values of waiting times: according to the nega-
tive exponential PDF, waiting times close to zero have
higher values of F (τ ), while accordingly to the PDF in
Equation (3) the higher values for F (τ ) are not close to
zero. Noticeably, these differences are greater when S0 is
low and when k−1 is significantly less than k2. This
implies that, with respect to the experimental findings
on single-molecule enzymatic reactions, the Markovian
approach introduces more approximations when the
modelled system is composed of a low number of reac-
tants and when the kinetic characteristics of the enzy-
matic reaction (i.e., various combinations of the values
of k1, k−1 and k2) prevent the system from quickly
reaching the steady state.
To study the impact of the differences amongst PDFs

on the dynamics of the system, we simulated the occur-
rence of single-enzyme catalysed reactions as single S ®
P Markov or non-Markov jumps. We compared the
obtained results with the outputs of simulations per-
formed describing the set of reactions in Equation (1)
through the GSSA specifying each single step (call it full
model). As proposed in [13], given the correctness of
GSSA, the full model can be used as a convenient
benchmark for evaluating the precision of simulations
against the MM model. As can be noticed in Figure 9
(and confirmed by Pearson’s test), the results of our
simulations fit the full model significantly better than
the corresponding Markovian approach. Thus, our tech-
nique allows us to describe the considered enzymatic
reaction as a single S ® P step with an accuracy com-
parable to that of the full model.

Comparison with other systems
In this section, we compare the computational cost of
our method with respect to Gillespie’s Direct Method
(DM). Our interest here is to consider only those imple-
mentations of GSSA which provide exact solutions as
our method does. Thus, we will not consider approaches
such as the tau-leaping [32] that can be computationally
less costly but provides approximate solutions of the
CME. The other exact implementation of GSSA, namely
first reaction method (FRM), is known to be computa-
tionally more expensive than the DM and hence does
not represent a good benchmark for our comparative
tests. The same rationale applies also to Gibson and
Bruck next reaction method which, in essence, is an
optimisation of the FRM and has been shown to have a
worse performance than the so-called Optimised Direct
Method (ODM) [33].
We shall consider two different implementations of

Gillespie’s DM: (1) an implementation in the package R
of GSSA as-it-is ( http://cran.r-project.org/ web/
packages/GillespieSSA/) and (2) an implementation of
the ODM provided by Stochkit, a popular extensible of
the algorithm as-it-is, provided by the “GillespieSSA”
package for the R suite ( http://cran.r-project.org/web/
packages/ GillespieSSA/) and (2) an implementation of
Gillespie’s ODM provided by StochKit, a popular exten-
sible stochastic simulation framework developed in C++
(http://stochkit.sourceforge.net). We choose Gillespie’s
ODM as representative of a group of methods, such as
logarithmic direct method [34], sorting direct method
[35] and a tailored version of a kinetic Monte-Carlo
method [36], which aim at optimising Gillespie’s DM
through various heuristics that reduce the complexity of
finding the next reaction to be fired. According to the
literature, the computational performances of these
methods are similar. Hence, we chose to consider only

Figure 8 Plots of the negative-exponential PDF (red) and the PDF according to Equation (3) (green). The plot on the left ([S] vs. v) is

obtained with low S0 and with k−1 << k2 while the plot on the right ([S] vs.
1

〈τ 〉) with higher S0 and k2 > k−1.
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the ODM whose implementation in StochKit is well
known and verified by the users.
Comparing our approach with both a native and an

optimised version of the DM will provide more com-
plete information. The ODM, in particular, increases the
efficiency of the reaction-selection step in which the
random number r is generated (i.e., index value), which
is a key bottleneck in the DM. This is done in the ODM
by pre-ordering the reactions so that those with larger
propensity functions have smaller index values in the
search list so that reactions occurring more frequently
are higher up (hence applied first), thus reducing the
search depth of the linear search. Moreover, the ODM
only updates the propensity functions that change and a
pre-simulation step is performed in order to ascertain
the relative frequencies of each reaction.
In our comparative tests, we considered two different

scenarios: (1) the MM reaction scheme; (2) a linear chain
of reactions. All the simulations presented here were per-
formed on an iMac 2.9GHz, with a quad-core Intel Core
i5 and 8GB of RAM. The data reported correspond to
the average of executing the tests 10 times.
Test set 1: the Michaelis-Menten reaction scheme
In the previous subsections we showed that, using our
approach, we can safely lump the MM reaction scheme
into one S ® P reaction. We also showed that, for
achieving the same accuracy exhibited by our method,
the corresponding simulation a la Gillespie must be per-
formed considering explicitly all the reactions of the MM

scheme (call it full Gillespie). Given these results, for ana-
lysing the computational cost of our approach, we per-
formed a series of tests simulating the occurrence of
enzymatically catalysed reactions. We assumed that the
considered enzyme exhibits MM kinetics and thus we
compared our method versus the corresponding full Gil-
lespie approach. Our aim here is to show that our
method allows us to safely lump the MM reaction
scheme into a single S ® P reaction without significant
loss of computational efficiency.
We found that our method outperforms the corre-

sponding Gillespie approach when the reaction system
becomes more stiff, i.e., the reaction rates will assume
significantly different values spanning various orders of
magnitude. To show this, we performed different tests,
varying the value of the k2 parameter. As k2 takes lower
values (keeping k1 and k−1 constant) the system becomes
more stiff. For each value of k2, we recorded the compu-
tational time and the number of iterations needed for
obtaining 500 molecules of the product P , starting from
106 molecules of S and 102 molecules of E . The results
of these tests are shown in Table 1. Noticeably, our
method outperforms the native R implementation for
each one of the selected values of k2. Moreover, it turns
out that when k2 becomes smaller our method outper-
forms also the StochKit implementation. This can be
explained by the following facts. As the value of k2
decreases, the values of the sampled τ also decreases.
Hence, the simulation time needed to reach a given

Figure 9 Plots of number of product molecules vs. time obtained simulating a single-molecule reaction through a Markovian (green) or non-
Markovian (red) single jump. The blue plot is obtained describing the corresponding full model. The parameters were taken from [13].
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amount of the product (in this case 500 units) is greater.
In our approach, the number of iterations for producing
the 500 units remains the same since in each case (inde-
pendently of the parameters) we always need to sample
the PDF 500 times. On the contrary, GSSA requires
more iterations to deal with simulations where the
simulated time is longer. Hence, the computational time
grows.
Test set 2: a chain of reactions
In this test we aimed to investigate the variations of the
computational effort needed for performing simulations
when the number of reactions composing the system
grows. To do this, we tested both our method and the
StochKit implementation of the ODM against simple sys-
tems composed of “chains” of (bio)chemical reactions,
i.e., series of reactions in which the product of a given
reaction becomes the reactant of the following. In each of
our tests, the number of reactions composing the chain
was increased by one. The smallest system comprised a
single A ® B reaction, while the largest system we con-
sidered comprised twenty reactions. In each simulation
all the parameters, namely the rate constants and the
initial amount of reactants were kept constant, allowing
only the length of the “chain” to vary. The results are
reported in Table 2. It turned out that our method scales
better than StochKit when the number of reactions
grows in the tests performed. Moving from n to n + 1
reactions, in our case, implies that an extra value of τ for
the new reaction must be computed. Moreover, the linear
search for the lowest value of τ needed in each iteration
must consider an array of n + 1 positions. We note that
StochKit is a more general tool than the one we are pro-
posing here including, for instance, different simulation
algorithms. Hence, it could be the case that more com-
plex data structures are involved. This may explain why
by increasing the number of reactions we get a better
performance than the one exhibited by StochKit for the
set of experiments reported in Table 2.

Conclusions
In this paper, we presented a method for describing sto-
chastic simulations of nonMarkovian processes. In parti-
cular, we used this method for sampling waiting times
from general distributions and from a PDF inferred from
wet-lab experiments regarding reactions catalysed by sin-
gle-enzyme molecules. For this case-study, we provided a
simulation algorithm which has some advantages over
the corresponding Markovian approach. Specifically, it
turned out to be more precise in those cases charac-
terised by a low number of molecules and by a dynamics
that makes the steady-state not quickly reachable.
Encouraged by these findings, we are planning to use our
technique for performing case-specific discrete-state con-
tinuoustime non-Markovian algorithms for sampling
waiting times from experimentally inferred PDFs. More-
over, we are currently embedding the algorithm proposed
here in BioWayS [37,38], our piece of software designed
for modelling and simulating biochemical processes.
Another interesting issue for future work would be to
study through our method how competition for enzymes
by different reactions may affect the overall dynamics of
the investigated system.

Table 1. Comparisons between StochKit, the SSA
implementation on the R-System and our approach for a
MM reaction scheme

Gecode R-System StochKit

2 Time Iterations Time Iterations Time Iterations

100 0.28 500 1.10 10412.40 0.04 5

10−1 0.35 500 28.78 99929.2 0.11 48

10−2 0.39 500 1855.92 990849.5 0.26 500

10−3 0.43 500 - - 0.78 5000

10−4 0.42 500 - - 7.75 50000

10−5 0.39 500 - - 77.50 500000

Times in seconds reported correspond to the average of 10 runs. Constants k1
and k3 were set to 10 and k2 varies as shown in the table. The initial
concentrations of S and E were set to 100000 and 100 molecules, respectively.

Table 2. Comparisons between StochKit and our
approach for a chain of N reactions of the shape
Ai ® Ai+1

N. Gecode StochKit

1 0.008 0.019

2 0.012 0.034

3 0.012 0.056

4 0.014 0.086

5 0.015 0.126

6 0.017 0.167

7 0.018 0.208

8 0.02 0.26

9 0.021 0.3

10 0.022 0.354

11 0.022 0.424

12 0.027 0.447

13 0.028 0.494

14 0.028 0.545

15 0.03 0.592

16 0.033 0.654

17 0.033 0.714

18 0.037 0.758

19 0.039 0.818

20 0.039 0.87

In each case, the kinetic constants were set to 1.0, the initial amount of each
component is 100000 molecules and the simulation time corresponds to
5 time-units.
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