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Abstract

After providing a systematic outline of the stochastic genesis of the Poisson-Tweedie
distribution, some computational issues are considered. More specifically, we introduce a
closed form for the probability function, as well as its corresponding integral representation
which may be useful for large argument values. Several algorithms for generating Poisson-
Tweedie random variates are also suggested. Finally, count data connected to the citation
profiles of two statistical journals are modeled and analyzed by means of the Poisson-
Tweedie distribution.
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1. Introduction. The Poisson-Tweedie integer-valued distribution has been introduced
independently by Gerber (1991) - as the generalized Negative Binomial distribution - and
Hougaard  (1997) - as the P-G distribution (where the acronym emphasizes its stochasticet al.
representation as a mixture Poisson, see Section 2 for more details). At first, the distribution
seems to be named ‘Poisson-Tweedie’ by Kokonendji Johnson et al. et al. (2004) - even if 
(2005, p.480) refer to it as  The denomination is  in their encyclopedia‘Tweedie-Poisson’ .
obviously due to the strong connection of this integer-valued law with the absolutely-
continuous Tweedie distribution introduced by Hougaard (1986) on the basis of the seminal
proposal by Tweedie (1984) - see Section 2 of the present paper. The  is aPoisson-Tweedie
very flexible model and contains as special cases classical families such as the Poisson and
the Negative Binomial, as well as large families such as the Generalized Poisson Inverse
Gaussian and the Poisson-Pascal - and even the Discrete Stable family (see El-Shaarawie.g. 
et al., 2011).

By following the notation adopted by El-Shaarawi  (2011), the probability generatinget al.
function (p.g.f.) of the Tweedie random variable (r.v.)  is given byPoisson- \PT

K Ð=Ñ œ /\
ÒÐ"-Ñ Ð"-=Ñ Ó

PT

,
+

+ +

 , (1)

where . It should beÐ+ß ,ß -Ñ − ÖÓ ∞ß !Ó ‚ Ó!ß∞Ò ‚ Ò!ß "Ò× ∪ ÖÓ!ß "Ó ‚ Ó!ß∞Ò ‚ Ò!ß "Ó×
remarked that the case  may be managed for analytical continuation. In the following,+ œ !
the Tweedie r.v. with p.g.f. given by (1) is eventually denoted as  forPoisson- cg Ð+ß ,ß -Ñ
convenience. The probability function (p.f.) of the r.v.  is usually computed by means of\PT

the recursive algorithm given by El-Shaarawi  (2011). Many properties of theet al.
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distribution may be found in the papers by Hougaard  (1997), Kokonendji  (2004)et al. et al.
and El-Shaarawi  (2011).et al.

As to the practical applications, the Tweedie distribution is very useful forPoisson-
modeling overdispersed count data arising in very different settings. As an example,
Hougaard 1997) provide an analysis of clinical data involving epileptic seizureet al. (
frequency, while El-Shaarawi 2011) consider environmental studies based on bacteriaet al. (
counts. In turn, the distribution is adopted by Kokonendji  (2004) in connection of caret al.
insurance claim data and by Hao-Chun Chuang and Oliva (2014) for analyzing retail demand
data. As a final example, Esnaola Tweedieet al. (2013) recently consider the Poisson-
distribution for modeling count data in RNA sequencing.

The present paper is focused on some theoretical and computational issues connected to
the Tweedie distribution. More precisely, a closed and simple expression - suitablePoisson-
for the evaluation of the p.f. - is initially introduced. This expression may be helpful in order
to save time and achieve a better accuracy in the computation of maximum likelihood
estimates, especially when the sample size is large. Alternatively, an integral expression for
the p.f. is proposed. This expression may be convenient when the p.f. has to be computed for
large argument values. Subsequently, some algorithms for random variate generation are
suggested on the basis of a discussion of the stochastic geneses of the distribution. The
comparison of the algorithms is theoretically and practically performed and some suggestions
on the most efficient generators are provided.

The paper is organized as follows. In Section 2, the representation of the Poisson-Tweedie
distribution as either a mixture Poisson distribution or a compound Poisson distribution is
considered. In Section 3, the expressions of the p.f. - suitable for computation purposes - are
given. Section 4 contains the algorithms for random variate generation, as well as their
comparison in terms of some performance benchmarks. Finally, a scientometric application is
considered in Section 5 by analyzing the citation profiles of two leading Italian statistical
journals.

2. Stochastic genesis of the Poisson-Tweedie distribution. In order to implement the
random variate generators which will be introduced in Section 4, it is useful to consider the
nature of the Poisson-Tweedie distribution as a mixture Poisson or a compound Poisson. The
following results - mostly known, even if scattered in literature - are given here in a
homogeneous notation, which should clarify the various distributional equivalences.

The Poisson-Tweedie distribution may be stochastically represented as a mixture Poisson
distribution, with a mixturing absolutely-continuous  r.v. Indeed, Hougaard (1986)Tweedie
and Hougaard  (1997) give tet al. he Laplace transform of the  Tweedieabsolutely-continuous
r.v.  with following parameterization\T

P Ð>Ñ œ Ð>Ñ  !\T /
$
#

# #Ò Ð >Ñ Ó) )  , Re  , (2)

where . Ð ß ß Ñ − ÖÓ ∞ß !Ò ‚ Ó!ß∞Ò ‚ Ó!ß∞Ò× ∪ ÖÓ!ß "Ó ‚ Ó!ß∞Ò ‚ Ó!ß∞Ò×# $ ) We eventually
denote this r.v. . by g Ð ß ß Ñ# $ ) B  andy reparametrizing in such a way that , # $œ + œ ,-+

) œ Ð"  -ÑÎ- and since on the basis of (1) and (2) the p. the Poisson-Tweedie may beg.f. of 
rewritten as
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it promptly follows the stochastic representation Hougaard , 1997) (see also et al.



cg c gÐ ß ,ß -Ñ œ Ð ß Î-ÑÑ+ +
_

Ð ,- ß Ð"  -Ñ+  , (3)

where  denotes a Poisson r.v. with parameter .c . .Ð Ñ
As to the Tweedie distribution, for  the r.v.  can beabsolutely-continuous # − Ó!ß "Ó \T

rephrased as an exponentially-tilted Positive Stable r.v. Indeed, let us consider the absolutely-
continuous Positive Stable r.v.  with Laplace transform given by\PS

P Ð>Ñ œ Ð>Ñ  !\PS / >- #

 , Re  ,

where . In the following, this Positive Stable r.v. is also denoted byÐ ß Ñ − ÖÓ!ß "Ó ‚ Ó!ß∞Ò×# -
cf # -Ð ß Ñ. By reparametrizing in such a way that , it follows that- $ #œ Î
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and hence the Tweedie distribution may be actually seen as anabsolutely-continuous 
exponentially-tilted Positive Stable distribution (see also . In contrast, forHougaard, 1986)
# − Ó ∞ß !Ò, the Laplace transform of the Tweedie distribution mayabsolutely-continuous 
be rewritten as

P Ð>Ñ œ\
"

T /
$)#

#
  )

)

#>

 ,

i.e. the r.v.  may be expressed as the compound of a Poisson distribution, with parameter\T

Ð  Ð  Ñ Ð"Î Ñ$) # # )#Î Ñ, of Gamma r.v.'s with shape parameter  and scale parameter i.i.d. 
(see also . More precisely, if  denotes a Gamma r.v. with shapeAalen, 1992) Z 5Ð5ß Ñ
parameter  and scale parameter , 5 5 owing to the reproductive property of the Gamma
distribution, absolutely-continuous the Tweedie r.v. may be stochastically represented as

g Z #cÐ ß ß Ñ œ Ñ# ) # )$ )
_

Ð  Ð  $ #Î Ñß "Î

(with the assumption that the Gamma r.v. with a null shape parameter degenerates to the
Dirac mass at zero). Hence, for  it also follows from (3)+ − Ó ∞ß !Ò,

cg c Z cÐ ß ,ß -Ñ œ ÑÑ+ Î+Ñß -ÎÐ"  -Ñ
_

Ð Ð  + Ð  ,Ð"  -Ñ+  , (4)

where the two Poisson r.v.'s involved in (4) are independent.
Finally, when  the Poisson-Tweedie r.v. reduces to a Negative Binomial r.v., say+ œ !

\NB, with p.g.f.

K Ð=Ñ œ\NB  "  -

"  -=

,

 ,

which is also denoted by aUÐ,ß -Ñ œ ! in the following. In addition, for  the absolutely-#
continuous Tweedie distribution reduces to a Gamma distribution with parameters  and . In$ )
such a case, the representation follows

cg aU c ZÐ ß ,ß -Ñ œ Ð,ß -Ñ œ ÑÑ! ß -ÎÐ"  -Ñ
_ _

Ð Ð,  . (5)

A further stochastic representation of the Poisson-Tweedie distribution may be obtained in
terms of a compound Poisson distribution. Actually, f the Poisson-Tweedie r.v.or , + − Ó!ß "Ó
is a compound Poisson r.v. with a compounding of a geometric down-weighting Sibuya r.v.
Indeed, let  be a Sibuya r.v. (as named by Devroye, 1993) with p.g.f.\SI



K Ð=Ñ œ "  Ð"  =Ñ\SI
# ,

where . The Sibuya distribution is a special case of the (shifted) Negative Binomial# − Ó!ß "Ó
Beta distribution introduced by Sibuya (1979) with parameters given by ,  and . In" Ð"  Ñ# #
the following, the Sibuya r.v. is also denoted by . On the basis of the findings byf\ #Ð Ñ
Sibuya (1979), if U 9 : 9 :Ð ß Ñ represents a Beta r.v. with shape parameters  and , the Sibuya
r.v. has the following stochastic representation

f\ #Ð Ñ œ "  Ð œ "  Ð
_ _

aU "ß Ð"  ß ÑÑ Ð"ß "Ñ Ð"  ß "ÑÎ Ð ß "ÑÑU # # Z Z # Z #c  , (6)

where the Exponential and the two Gamma r.v.'s  areinvolved in the previous expression
assumed to be independent. In this case, the geometric down-weighting Sibuya r.v. \DSI

displays the p.g.f.

K Ð=Ñ œ "  K Ð Ñ  K Ð =Ñ œ "  Ð"  Ñ  Ð"  =Ñ\ \ \DSI SI SI" " " "# # ,

where  (for more details, see Zhu and Joe, 2009). The geometricÐ ß Ñ − ÖÓ!ß "Ó ‚ Ó!ß "Ó×# "
down-weighting Sibuya r.v. is also denoted by . Therefore, if  represents aWf\ # " hÐ ß Ñ
Uniform r.v. on , the following representation holdsÒ!ß "Ó

W " hf\ f\Ð Ñ œ M Ð  Ñ Ð Ñ# " #ß
_

‘
f\ Ð Ñ#  , (7)

where the r.v.  is independent of the r.v. h f\Ð Ñ# , while  is the usual indicator function of aMF
set bF. Finally, y reparametrizing in such a way that  and # "œ + œ -, from (1) it turns out
that
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 ,

i.e. a Poisson compounding of a geometric down-weighting Sibuya r.v. is actually achieved.
Hence, the stochastic representation holds

c Wg f\Ð ß ,ß -Ñ œ Ð Ñ+ +ß -
_

c
3œ"

Ð,Î+Ñ

3  , (8)

where the geometric down-weighting Sibuya Wf\3Ð Ñ+ 's are  r.v.'s, which are in turni.i.d.
independent of .cÐ,Î+Ñ

When  from (1) it promptly follows that+ − Ó ∞ß !Ò,

K Ð=Ñ œ /\


PT

,Ð"-Ñ+

+
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+
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i.e. a Poisson compounding of a Negative Binomial r.v. with parameters  and  isÐ  +Ñ -
obtained. Hence, the following representation holds

c aUg Ð ß ,ß -Ñ œ Ð  Ñ+ +ß -
_

c 
3œ"

Ð, Î+ÑÐ"-Ñ+

3  ,

where the aU3Ð  Ñ+ß - 's are  Negative Binomial r.v.'s, which are in turn independent ofi.i.d.
cÐ  , Î+ÑÐ"  -Ñ+ . Owing to the reproductive property of the Negative Binomial, the
previous expression reduces to

c aU cg Ð ß ,ß -Ñ œ Ð  Ð  , Î+Ñ Ñ+ + ß -
_

Ð"  -Ñ+  ,



which is stochastically equivalent to (4) by considering (5). Finally, when  the+ œ !
representation (5) is in turn achieved.

3. Easy-computable expressions for the p.f. First, it is worth noting that the p.f.
corresponding to the p.g.f. (1) may be obtained as a finite sum. Indeed, from Result 1 in the
Appendix, it turns out to be

: Ð5Ñ œ / Ð  -Ñ Ð  "Ñ M Ð5Ñ
Ð,Î+Ñ 7 +4

7x 4 5
\

ÒÐ"-Ñ "Ó 5 4

7œ! 4œ!

5 77

PT

,
+

+        . (9)

In addition, from Result 2 in the Appendix, for it also follows that+ − Ó!ß "Ó 

: Ð5Ñ Ÿ "  / - 5
, ,

+ +
\

ÒÐ"-Ñ "Ó 5 +"
PT   ,

+
+

.

Moreover, by adopting the expression given in Result 2 for , for a fixed  the following: 5\ ‡PT

simple approximation   holds of :\PT

: Ð5Ñ œ / Ð  -Ñ Ð  "Ñ
+7 Ð,Î+Ñ

5 7x\
‡ Ð"-Ñ 5 7

7œ!

5 7

PT

,
+

+

‡    . (10)

We have numerically assessed that  usually suffices for obtaining an adequate5 œ #‡

approximation for a large  - which may avoid the computational burden involved in the5
evaluation of (9) in such a case.

Incidentally, it is interesting to remark that for the Poisson-Tweedie r.v. may be+ − Ó!ß "Ó 
rephrased as an exponentially-tilted Discrete Stable r.v. - i.e. the integer-valued counterpart
of an exponentially-tilted Stable r.v. Indeed, let us notice that the p.g.f. of the Discrete Stable
r.v.  of parameters  and  is given by\DS # -

K Ð=Ñ œ /\
 Ð"=Ñ

DS
- #

 ,

where  (for more details on this heavy-tailed distribution, see Ð ß Ñ − ÖÓ!ß "Ó ‚ Ó!ß∞Ò×# - e.g.
Marcheselli bet al., 2008). In the following, this r.v. is also denoted as . Hence, yWf # -Ð ß Ñ
reparametrizing in such a way that  and , on the basis of expression (1) it# -œ + œ ,Î+
follows that

K Ð=Ñ œ
K Ð-=Ñ

K Ð-Ñ
\

\

\
PT

DS
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 .

Thus, if :\DS  represents the p.f. of the Discrete Stable r.v. it turns out that

: Ð5Ñ œ /\
Ð"-Ñ

PT

,
+

+

- : Ð5Ñ5
\DS  , (11)

i.e. an exponentially-tilted Discrete Stable r.v. with tilting parameter  is actually achieved.-
From expressions (9) and (11), a closed form for the p.f. of the Discrete Stable r.v. Wf # -Ð ß Ñ
can be obtained as a by-product, i.e.

: Ð5Ñ œ / Ð  "Ñ Ð  "Ñ M Ð5Ñ
Ð,Î+Ñ 7 +4

7x 4 5
\

 5 4

7œ! 4œ!

5 77
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,
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For further discussion of integer-valued exponentially-tilted distributions related to the
Discrete Stable distribution see Barabesi and Pratelli (2014a).

As previously remarked, expression (9) is not obviously convenient for large values of ,5
even if its computation solely requires a finite summation. The recursive expression for :\PT

provided by El-Shaarawi  (2011) actually involves the same drawback. In such a case,et al.
the p.f.  may be alternatively computed by adopting a generalization of the Inversion:\PT

Theorem. Indeed, by following Barabesi and Pratelli (2014b), if  is an integer-valued r.v.\
with p.f.  and  is a measurable function defined on  such that , then it: 1 Òl1Ð\ÑlÓ  ∞\ ™ E
holds

: Ð5Ñ œ / Ò1Ð\Ñ/ Ó >
"
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for  and  and where  represents the imaginary unit. In the case of the 5 − 1Ð5Ñ Á !™ i Poisson-
Tweedie distribution, the previous expressionby selecting  for a given , 1Ð5Ñ œ ;5 ; − Ó!ß "Î-Ò
gives rise to
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d

d  ,œ cos cos sin

(12)

where

3+ß.
# +Î#Ð>Ñ œ Ð"  .  #. >Ñ

"

+
cos  ,

and

<+ß.Ð>Ñ œ +
. >

"  . >
arctan

sin
cos

 .

It is at once apparent that expression (12) reduces to the usual Inversion Theorem for ,; œ "
while a different and suitable choice of  may lead to a faster and more accurate evaluation of;
: + , ; -;\PT . Indeed, for given  and , the parameter  may be chosen in such a way that  is fixed
at a convenient value. In addition, the remarks provided by Dunn and Smyth (2008) for the
numerical integration with oscillating integrands may be helpful in this setting. itFinally, 
should be remarked that (12) implies that the r.v. cg Ð+ß ,ß -;Ñ may be achieved by the
exponentially-tilting of the r.v.  with tilting parameter  - when .cg Ð+ß ,ß -Ñ ; ; − Ó!ß "Ò

4. Random variate generation. As to the computer generation from the Poisson-Tweedie
distribution, in principle the representation (3) should be the cornerstone.mixture Poisson  
Actually, this equivalence in law leads to the following simple algorithm:

Algorithm 1
input +ß ,ß -
generate  absolutely-continuous Tweedie ] g Ð ß Î-Ñ+ ,- ß Ð"  -Ñ+

generate  Poisson \ Ð] Ñc
return \



Algorithm 1 is easy-to-implement when  owing to the further representation+ − Ó ∞ß !Ó
(4), since Poisson and Gamma variates are commonly available. However, the algorithm may
be not convenient when , since in this case the Tweedie r.v. is+ − Ó!ß "Ó absolutely-continuous 
cumbersome to generate and simple and efficient algorithms are not at disposal (see Devroye,
2009, and Hofert, 2011). Hence, the main focus of the present section is devoted to Poisson-
Tweedie in this parameter rangevariate generation .

When , a second procedure may be achieved by means of the compound Poisson+ − Ó!ß "Ó
representation (8) - and by suitably considering expressions (6) and (7) - which actually leads
to the following algorithm:

Algorithm 2
input +ß ,ß -
generate  Poisson R Ð,Î+Ñc
for 3 œ "ßá ßR
 generate         [ +ß -3 geometric down-weighting Sibuya Wf\Ð Ñ
continue
set \ œ [

3œ"
R

3

return \

Unfortunately, athe geometric down-weighting Sibuya distribution does not possess 
reproductive property and hence the cycles in Algorithm 2 cannot be avoided. In addition, it
should be remarked that the average number of cycles is given by  and hence AlgorithmÐ,Î+Ñ
2 is not suitable as Moreover, since a + Æ ! , Ä ∞ or . geometric down-weighting Sibuya
variate is obtained on the basis of representations (6) and (7), each cycle actually requires a
Geometric variate, a Beta variate and a Uniform variate - alternatively and less conveniently,
in turn on the basis of representation (6), each cycle involves a Poisson variate, an
Exponential variate, two Gamma variates and a Uniform variate.

As a further option, since in Section 3 it is emphasized that a Poisson-Tweedie r.v. may be
seen as an when a naive algorithm isexponentially-tilted Discrete Stable r.v. , + − Ó!ß "Ó
initially introduced. Let us remind that for the Discrete Stable r.v., Devroye (1993) proved
that

Wf # -Ð ß Ñ œ Ð Ð ß ÑÑ
_
c cf # -  . (13)

Moreover, from the classical Kanter's (1975) representation it turns out that

cf # -
# 1h - #1h

Z #1h 1h
Ð ß Ñ œ

ÐÐ"  Ñ Ñ Ð Ñ

Ð"ß "Ñ Ð Ñ Ð Ñ

_
# # #   sin sin

sin sin

Ð" ÑÎ "Î

 , (14)

where the r.v.'s  and  are independently distributed. Hence, since from (11) itZ hÐ"ß "Ñ
promptly follows that

: Ð5Ñ Ÿ / -\
Ð"-Ñ 5

PT

,
+

+

 ,

and by considering (13) and (14), an acceptance-rejection algorithm for the generation of an
exponentially-tilted Discrete Stable variate is given by:



Algorithm 3
input +ß ,ß -
repeat 
 generate  Discrete Stable ^ +ß ,Î+ÑWfÐ
 generate Y Uniform on Ó!ß "Ò
until Y Ÿ -^

set \ œ ^
return \

Unfortunately, Algorithm 3 may display a poor performance since the corresponding
rejection constant, say ,EN  is given by

E œN /
,
+ Ð"-Ñ+  .

As usual for an acceptance-rejection algorithm, the rejection constant represents the expected
number of iterations to obtain a random variate. Obviously, the best performance is achieved
for , while the worst performance is obtained when  or . In any case, the- œ " + Æ ! , Ä ∞
algorithm is not practically acceptable since E œ SÐN expÐ,Î+ÑÑ. In addition, on the basis of
representation (13), the algorithm requires an average of E #EN N Poisson variates,  Uniform
variates and  Exponential variates.EN

An improved version of the Algorithm 3 may be achieved. Indeed, it is worth remarking
that the sum of   is a 7 Ð+ß ,Î7ß -Ñi.i.d. Poisson-Tweedie r.v.'s Poisson-Tweedie r.v.cg
cg Ð+ß ,ß -Ñ -  the distribution is actually infinitely divisible with respect to the parameteri.e.
, 7. Hence, the random generation of  such r.v.'s by means of Algorithm 3 implies a rejection
constant given by

E Ð7Ñ œ 7IN /
,

7+ Ð"-Ñ+  ,

which is minimized in  when  7 œ 7 œ Ð"  -Ñ‡ +maxÐ"ß ÔÐ ÕÑ Ô † Õ,Î+Ñ  and where  represents
the rounding function. Hence, the following improved algorithm may be considered:

Algorithm 4
input +ß ,ß -
set 7 œ Ð"ß ÔÐ ÕÑmax ,Î+ÑÐ"  -Ñ+

for 3 œ "ßá ß7
 repeat 
  generate  Discrete Stable       ^ +ß ,ÎÐ7+ÑÑ3 WfÐ
  generate  Uniform on Y Ó!ß "Ò
 until Y Ÿ -^3

continue
set \ œ ^

3œ"
7

3

return \

It should be remarked that E EI IN N IN NÐ7 Ñ œ SÐ Ð7 Ñ Ÿ E Ð"Ñ œ E‡ ‡,Î+Ñ, while .
Therefore, even if Algorithm 4 always improves over Algorithm 3, in turn its performance
deteriorates when  or . Moreover, on the basis of the considerations carried out+ Æ ! , Ä ∞



for Algorithm 3, it should be remarked that Algorithm 4 involves an average of EINÐ7 Ñ‡

Poisson variates,  Uniform variates and  Exponential variates.# Ð7 Ñ Ð7 ÑE EI IN N
‡ ‡

A further algorithm could be implemented by considering a different acceptance-rejection
technique. Barabesi and Pratelli (2014b, 2015) provides a universal algorithm which is likely
to conjugate efficiency and simplicity if applied to the Poisson-Tweedie distribution for
+ − Ó!ß "Ó - Á " and . In this case, by following let us considerBarabesi and Pratelli (2015), 
the function

α
1 1

Ð;Ñ œ l l > Ò  >
/ /

Ò; / Ó Ð>Ñ Ð Ð>Ñ

, ,
+ +Ð"-Ñ Ð"-Ñ+ + 

! !

1 1

E cos\ >\
+ß-; +ß-;

i d d  ,œ ÑÓexp ,3 <

where 3 <+ß. +ß. and  are introduced in Section 3. It should be also remarked that  isαÐ;Ñ
defined for . Moreover,; − Ó!ß "Î-Ó  by assuming that ,  and α α α α / α" " # #

"œ Ð; Ñ œ Ð; Ñ œ Ð"Ñ
for the sake of simplicity, let us denote by

" α α α /" ; ; " # ; "œ ÐÚ Ð Î ÑÛß Ú Ð Î ÑÛÑmin log log
" # "

and

" α α / α# ; ; " # ; #œ ÐÚ Ð Î ÑÛ  "ß Ü Ð Î ÑÝÑmax log log
" # #

 ,

where  and  represent the floor function and the ceiling function, respectively.Ú † Û Ü † Ý
Moreover, let us consider the quantities

= = =
α α / " "

" # $
" # # "" #



" #
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; ; Ð   "Ñ

EÐ"  ; Ñ EÐ"  ; Ñ E

" "" #

 ,  ,  ,

and

E Ð; ß ; Ñ œ   Ð   "Ñ
; ;

"  ; "  ;
BP " # # "

" #" #


" #

α α
/ " "

" "" #

 .

Finally, let us choose  - where minimization is carried; ; Ð; ß ; Ñ œ" # " #
‡ ‡ and  as arg minEÐ; ß ; Ñ" #

out under the constrain on the domain of . It is worth noting that in such a caseαÐ;Ñ
E Ð ÑBP ; ß ;" #

‡ ‡  represents the rejection constant (see Barabesi and Pratelli, 2015). Thus, for the
Poisson-Tweedie distribution the universal algorithm specializes to:

Algorithm 5
input +ß ,ß -
input ; ß ;" #

compute / " "ß ßα α" #ß ß " #

compute = = =" # $ß ß
repeat
 generate  uniformly on Y ßY ß Y Ó!ß "Ò" # $

 if  set Y   \ ³  ÚÐ   "Ñ  "Û" " # " # "= = " " " Y#

 else
  if  set Y Ÿ \ ³  Ú Y Û" " " ; #= " log

"

  else
   set \ ³ Ú Y Û log; # ##

"
until :\PTÐ\Ñ  YminÐ ; ß ; ß Ñα α /" #" #

\ \
$

return \



Algorithm 5 involves the computation of :\PT  which may be carried out by using
expression (9) or by adopting eventually expression (12). In any case, in order to avoid the
complete evaluation of .:\PT , the approximation (10) could be considered for large arguments
Finally, it should be remarked that Algorithm 5  Uniforminvolves an average of $E Ð ÑBP ; ß ;" #

‡ ‡

variates.
 In order to assess the practical performance of the considered algorithms (except than

Algorithm 3 which is obviously too inefficient), we considered some studies for selected
values of the parameters . Since the four algorithms + , -,  and are quite rather different in
their own genesis (Algorithm 1 and 2 originate from stochastic representations, while
Algorithms 4 and 5 stem from the acceptance-rejection method), at first we opted to compare
Algorithms 4 and 5 on the basis of the values of the rejection constant. The results of the
study were reported in Table I. The analysis of Table I shows that Algorithm 5 is usually
better than Algorithm 4, except few cases when  is equal to . A large (not reported) study- !Þ*
has shown that Algorithm 5 is generally more efficient than Algorithm 4 and its the
performance increases as  increases. Hence, Algorithm 4 could be solely suitable for small , ,
and large . Incidentally, it is worth noting that the former algorithm proposed by Barabesi+
and Pratelli (2014b) for the generation of Poisson-Tweedie variates is slightly less efficient
than Algorithm 5 in term of the rejection constant (see Table 3 in their paper) - indeed,
exponential tails produces a better fit than quadratic tails in the acceptance-rejection method.
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As previously emphasized, owing to the different nature of the proposed algorithms, it is
not possible to evaluate their performance on the basis of a unique benchmark. Hence, we
decided to compare the algorithms on the basis of the time elapse in generating a set of "!!!



Poisson-Tweedie variates. The algorithms were implemented as routines by using the
Mathematica software (  and they were run on a personal computer.Wolfram Research, 2008)

As to the specific implementations of the algorithms, it should be remarked that Algorithm
1 strongly depends on the choice of the absolutely-continuous Tweedie variate generator. To
this aim, two generators are mainly available, i.e. Devroyethe algorithms introduced by 
(2009) and by Hofert (2011), . Hence, we implemented two versions of respectively
Algorithm 1,  Algorithm 1D ( Algorithm 1H (i.e. based on Devroye's based onmethod) and 
Hofert's method). Algorithm 2 was implemented by using the usual simple Geometric variate
generator (see  and the Beta variate generator based on the Jöhnke.g. Devroye, 1986, p. ?)
(1964) method - which is the most efficient in this case since the parameters of the Beta r.v.
involved in representation (6) are less than unity. Finally, as to Algorithms 1D, 1H, 2 and 4,
Poisson variates were obtained by using the method proposed by Ahrens and Dieter (1982),
which is implemented as a built-in routine in Mathematica.

The results of the study were reported in Table II. The analysis of this table shows that
Algorithm 5 has generally the best performance except than for , while Algorithm 2 is- œ !Þ*
generally the most efficient in the remaining cases. Algorithm 5 is rather inefficient for , œ "
and , even if we have assessed in further (not reported) simulations that its- œ !Þ*
performance markedly increases as  increases also in this case. The drawback depends on,
the time-consuming evaluation of :\PT , since the  distribution is long-tailedPoisson-Tweedie
as  approaches unity. - Algorithm 1D displays a quite steady performance and tends to be
more efficient than Algorithm 1H for , while the situation reverses for . Further, œ & , œ "
simulations (not reported) show that Algorithm 1D is preferable to Algorithm 1H as ,
increases. Finally, Algorithm 4 seems generally rather inefficient.

5. An analysis of scientometric data. Over-dispersed and heavy-tailed distributions are of
central relevance for bibliometric and scientometric scholars. First, Lotka (1926) presented a
power-law distribution for modeling data in a paper usually considered the milestone in the
bibliometric field. More precisely, Lotka investigated the frequency distribution of the
number of manuscripts authored by a group of chemists and physicists. Since then a huge
amount of papers has been dedicated to scientometrics. They can be grouped into two main
sets based on different perspectives (Wilson, 1999).

In the first stream, a deterministic approach is adopted by considering bibliometric data as
generated by a power law. Phenomena such as the number of papers produced by a single
researcher or a group of researchers, the number of papers published in journals, the number
of paper references are often modeled by considering a power law. Egghe (2005) suggests to
label this approach as “Lotkaian Informetrics”. Under this approach, a general process is
considered by assuming sources (such as authors or journals) which produce items (e.g.
papers and references). A power-law structure for frequency distribution is then assumed
without providing some empirical evidence in support (for a discussion, see Burrell, 2014).
This deterministic approach simply avoids the problem of zeroes owing to the underlying
generating process - which is unable to produce null values. For instance, Lotka (1926)
defines as authors the scholars listed in the bibliographic archive which he considered for his
analysis - and, therefore, an author of the list had authored at least a paper. Similarly, the
frequency distribution of papers - according to the number of times in which they appear in
the reference list of a set of journals - has obviously a minimum value of one, since the
considered papers are by definition included at least once in the reference list. These
distributions are “truncated in zero by their very nature” (Schubert and Glänzel, 1984). When
processes generating zero values are instead considered, the deterministic approach cannot



handle the complete available information. As an example, this is the case of the distribution
of the number of citations received by papers, which usually displays even an excess of
zeroes (see e.g. the discussion provided by Baccini  2014).et al.,

In the second perspective, bibliometric data are considered as the realization of an
underlying stochastic process. To this aim, Wilson (1999) remarks that “  given that theá
regularities are considered to arise largely from probabilistic processes, the degree to which
the purely deterministic inverse power law has dominated descriptions may seem surprising
á ”. Accordingly, compound and mixture models have been often considered in
scientometrics. As an example, Rao (1980) proposed the Negative Binomial distribution,
while Sichel (1985) introduced the Generalized Inverse Gaussian Poisson distribution (see
also Burrell and Fenton, 1993). However, when the major source of over-dispersion is related
to an excess of zero counts, further flexible models could be helpful. Owing to the genesis
described in Section 2, the Poisson-Tweedie distribution may adequately fit zero-inflated
data, as well as heavy-tailed data.

In order to illustrate a scientometric application of the Poisson-Tweedie distribution, a
total of  articles published by Metron and  articles published by Statistical8 œ $(" 8 œ $*&
Methods and Applications (whose usually-adopted acronym is SMAP). As is known, Metron
and SMAP are two Italian statistical journals surveyed by the Scopus database. Data were
retrieved in September 2014 from the Scopus repository and refer to the articles published in
the period 1999-2014 for Metron and in the period 2001-2014 for SMAP. The observed
frequencies  of the so-called “citation profile” were considered for both the journals and85

the results were reported in Table II. For the sake of clarity,  actually represents the85

number of published papers with  citations. On the basis of the observed frequencies, the5
maximum-likelihood estimates of the Poisson-Tweedie parameters were obtained for each
journal. More precisely, these estimates were  and+ œ !Þ$!%Ð!Þ!$(Ñ , œ !Þ%'$Ð!Þ!$"Ñs s, 
- œ !Þ*!#Ð!Þ!"#Ñ + œ !Þ#'$Ð!Þ!$%Ñ , œ !Þ&"$Ð!Þ!$#Ñs s s for Metron and  and, 
- œ !Þ*!*Ð!Þ!!*Ñs  for SMAP (standard deviations in parenthesis). The corresponding
estimated frequencies were reported in Table II. These values emphasize the excellent
agreement of the estimated frequencies to the observed frequencies. Indeed, the  statistic;#

turns out to be  for Metron data and  for SMAP data. In contrast, even if the results'Þ!( "(Þ!$
of this further study are not reported, we have assessed that the Generalized Inverse Gaussian
Poisson distribution does not adequately fit the same data. Incidentally, it is worth remarking
that estimates for the two journals are quite similar, showing that the two distributions are
quite heavy-tailed (the estimates of  are close to one - the value for which the Poisson--
Tweedie reduces to a Discrete Stable model). On the basis of this specific analysis, we argue
that the Poisson-Tweedie distribution could find an interesting use also in the scientometric
framework.

Table III. Observed and fitted citation distribution for Metron and .SMAP
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As to the computational issues involved in the evaluation of the maximum-likelihood
estimates of the Poisson-Tweedie parameters, it should be remarked that the likelihood
function was computed by means of both expression (9) and expression (12). The use of the
two expressions led to nearly identical values and did not produce numerical drawbacks. In
order to obtain a further validation of the results, the maximum-likelihood estimates were
also computed by means of the software package  for  proposed by tweeDEseq R Esnaola et
al. (2013). The package adopts the recursive expression provided by El-Shaarawi et al.
(2011) in order to compute . In turn, the results were in agreement with those computed:\PT

on the basis of expressions (9) and (12).
Finally, a further experiment was implemented in order to assess the quality of the variates

obtained by using the considered algorithms. Indeed, we generated the Poisson-Tweedie
variates by using the maximum-likelihood estimates of the Metron and SMAP data as the
values for the parameters ,  and  - .+ , - i.e. values which are likely to occur in a real scenario
The quality of the variates generated according to the algorithms considered in Table II was
verified on the basis of some empirical indexes which are compared with the corresponding
true model indexes - i.e. the mean, the standard deviation and the skewness and kurtosis
coefficients, which are denoted by means of the symbols , ,  and , respectively. The. 5 α α$ %

closed expressions for , ,  and  in terms of ,  and  may be easily found by. 5 α α$ % + , -
differentiating  . The empirical indexes wereK\PT  (see El-Shaarawi , 2011)e.g. et al.
computed on the basis of "ß !!! "!ß !!! "!!ß !!!,  and  variates generated by means of each
algorithm and the output was reported in Table IV. In addition, the  statistic was also;#

computed for the same sets of variates by grouping into  cells, similarly to Table III) andÐ #!
it was reported in Table IV. By analyzing this table, it can be concluded that the quality of
the generated variates is satisfactory for the considered algorithms.



Table IV. Quality assessment of the generated for the considered algorithms.variates 
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Result 1. By expanding (1) in exponential and binomial series, it follows that
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since  when . Thus, expression (9) promptly follows.. Ð"B Ñ
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Reply to Associate Editor

Dear Associate Editor,

we have modified the first draft of the manuscript according to the comments of the two
referees. As you have suggested, in addition to the minor changes proposed by the first
referee, we have especially considered the major requirements of the second referee. We
hope we have addressed the referees' suggestions satisfactorily.

Best regards
Alberto Baccini, Lucio Barabesi e Luisa Stracqualursi



Reply to Referee 1

Comment 1. In the derivation of equation 9, the authors subtracted 1 and added 1 then
expanded their generating function. This is really not needed at all if binomial expansion is
done directly and then changing the order of summation so the results can be directly
obtained and there are no needs for Results I in the appendix. This way no needs for the
many
lines of equations given with the addition of better clarification of the results.
Reply. Thank you for your suggestion on this subtle issue. According to your comment, we
have modified the initial part of Section 3 by also avoiding the use of the quantities A Ð5Ñ+ß7 .
In order to achieve a clearer (and shorter) exposition in the main text of Section 3, we have
decided to postpone the expansion in exponential and binomial series in Result 1 of the
Appendix, which - even if is kept - turns out to be much shorter in the new version.
Obviously, in Result 1, we also needed a passage in order to show that the summations in the
expression of the p.f.  are finite. Incidentally, on the basis of the expansion you: Ð5Ñ\PT

suggested, we have also realized that the inequality in Result 2 could be improved and a
simple and accurate approximation of  for large  could be obtained. Thus, Result 2 is: Ð5Ñ 5\PT

in turn modified and shortened.

Comment 2. The second is with applications one does not just go ahead to apply such a
model without considering the factors that led to the observed frequency. It seems to me that
the large number of zeros is related to the number of years since the publication appeared.
One can infer that a recently published paper will belong to zero class. I suggest adding
another column with average number of years since publication as a covariate would likely
improve the fit of the model and even may not need this heavy computation.
Reply.

We hope we have addressed your suggestions satisfactorily.
Thank you for your revision.

Alberto Baccini, Lucio Barabesi e Luisa Stracqualursi



Reply to Referee 2

General Comment. The authors introduce the stochastic genesis of Poisson-Tweedie
distribution and suggest several algorithms for generating the Poisson-Tweedie variates. The
authors also give two scientometric data, Metron and SMAP, and state, by the excellent
agreement of the estimated frequencies and observed frequencies, that that the two data do
follow the Poisson-Tweedie distributions. However, the materials present in the manuscript
looks not complete, since the last section (5. An analysis of scientometric data) of the
manuscript seems not related to the main topic of the manuscript - the five algorithms that
generate the Poisson-Tweedie variates. The readers who read the paper would expect to see
stuff like, based on the collected data, quality of variates generated by the five algorithms so
that the performance of the algorithms can be further compared. One way to achieve this
goal is to assume the scientometric data do follow the Poisson-Tweedie distributions, and
generates the Poisson-Tweedie variates using the MLEs of a, b, and c.
Reply. On the basis of your comments, we have realized that Section 5 is not homogeneous
with the other parts of the manuscript. Obviously, as you surely grasp, this Section was
introduced in the manuscript since our interest in the Poisson-Tweedie law originated from
the need of a flexible model able to fit data which may be eventually zero-inflated or heavy-
tailed - indeed, one of our aim consist in persuading practitioners to adopt this model which
may be very suitable in scientometrics for this reasons. Thus, on the basis of your suggestion,
we have largely modified Section 5 (see the final part of this section). In primis, we have
emphasized that the results given in Section 3 - dealing with the expressions of the p.f.
: Ð5Ñ\PT  - may provide a suitable computation of the maximum likelihood estimates of the
parameters (in this way, the link between Section 3 and Section 5 is more apparent).
Subsequently, as you recommend, we have generated the Poisson-Tweedie variates by using
the maximum likelihood estimates as the values for the parameters ,  and . The quality of+ , -
the variates (generated according the considered algorithms) has been assessed on the basis
of some empirical indexes which are compared with the corresponding true model indexes
(i.e. the mean, the variance and the skewness and kurtosis coefficients). In addition, the ;#

statistic was also computed for the same sets of test variates. Hence, the connection between
Section 4 and Section 5 should be clearer.

Specific comment 1. The authors apply rejection constants as the criterion in evaluating the
performance of the Algorithms 1, 4, and 5, but it is not so obvious what the rejection
constants are. The authors need to have a clearer definition. Also, for Algorithm 1, we have
hard time in figuring out how rejection constant plays a role in the performance evaluation.
A little bit detail seems necessary. Besides rejection constants, the time elapse in generating
the Poisson-Tweedie variates and the quality of the generated data should be evaluated, too.
Reply. We agree with the referee. Indeed, we attempted to present in a unique table some
performance benchmarks for algorithms which are too different in their own genesis. As a
matter of fact, Algorithm 1 is actually based on a stochastic representation - expressioni.e. 
(3) of our paper - involving the generation of a Poisson variate and a Tweedie variate.
Regrettably, the rejection constant reported in Table I of the previous version of the paper is
solely referred to the complex algorithm proposed by Devroye (2009) adopted for the
generation of the Tweedie variate - in addition, this algorithm stems from the double
rejection method for which is even difficult to define the rejection constant in comparison
with the usual acceptance-rejection method (indeed, we computed this constant by
simulation). Furthermore, Algorithm 2 is in turn based on a rather complex stochastic
representation - expression (8) of our paper - involving a (Poisson) stochastic sum ofi.e. 



functions of Geometric and Beta random variables. Hence, the adopted performance
benchmark - i.e. the expected number of cycles in the stochastic sum - does not adequately
inform on the complexity of the algorithm. In contrast, Algorithm 4 and Algorithm 5 are
actually based on the acceptance-rejection method and - more correctly - they may be judged
on the basis of the rejection constants. In such a case, we opted to compare solely Algorithm
4 and Algorithm 5 on the basis of such constants and accordingly we modified Table I. By
following your suggestion, we decided to compare the algorithms on the basis of the time
elapse in generating the Poisson-Tweedie variates. With this aim, we tried to implement the
algorithms as more efficiently as possible (we adopted the Mathematica software in so doing)
and we reported the results in Table II of the new version of the manuscript. Hence, as you
can see, also Section 4 was quite radically modified. Finally, by following your comment, we
also evaluated the quality of the generated variates in Section 5 of the new version of the
manuscript (see our reply to the general comment).

Specific comment 2. The expected number of cycles are calculated for Algorithm 2. Why the
expected number, as compared to rejection constants, is a reasonable choice?
Reply. As remarked in our reply to the specific comment 1, we decided to avoid the
comparison on the basis of this benchmark since it was not suitable.

Specific comment 3. For performance comparison in Table 1, people might expect to see the
value of N, and the number of Poisson-Tweedie variates generated.
Reply. As remarked in our reply to the specific comment 1, in the new version of the
manuscript, Table I solely contains the values of the rejection constant of Algorithm 4 and
Algorithm 5 - which are computed on the basis of their closed expressions, i.e. by means of
the values of EIN BPÐ7 Ñ E Ð Ñ‡  and ; ß ;" #

‡ ‡ .

Specific comment 4.  From page 11, the authors state that Algorithm 5 is usually the best,
except few cases for b=1 and a or c are equal to 0.9. With c values for Metron and SMAP
being 0.902 and 0.909, respectively, do the authors have any comments on these cases?
Reply. Actually, we put too emphasis on the performance of Algorithm 5. In the new version
of the manuscript we have modified our comments in Section 4.

We hope we have addressed your suggestions satisfactorily.
Thank you for your revision.

Alberto Baccini, Lucio Barabesi e Luisa Stracqualursi


