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Abstract Primary familial brain calcification is a neu-

ropsychiatric disorder with calcium deposits in the brain,

especially in basal ganglia, cerebellum and subcortical

white matter. The disease is characterized by a clinical

heterogeneity, with a various combination of symptoms

that include movement disorders and psychiatric distur-

bances; asymptomatic patients have been also reported. To

date, three causative genes have been found: SLC20A2,

PDGFRB and PDGFB. SLC20A2 gene codes for the

‘sodium-dependent phosphate transporter 2’ (PiT-2), a cell

membrane transporters of inorganic phosphate, involved in

Pi uptake by cells and maintenance of Pi body levels. Over

40 pathogenic variants of SLC20A2 have been reported,

affecting the regulation of Pi homeostasis. It was hy-

pothesized that SLC20A2 mutations cause brain calcifica-

tion most likely through haploinsufficiency. PDGFRB

encodes for the platelet-derived growth factor receptor-b
(PDGFRb), a cell-surface tyrosine-kinase (RTK) receptor

that regulates cell proliferation, migration, survival and

differentiation. PDGFB encodes for the ‘platelet-derived

growth factor beta’ (PDGFb), the ligand of PDGFRb. The

loss of function of PDGFRb and PDGFb could lead to the

impairment of the pericytes function and blood brain bar-

rier integrity, causing vascular and perivascular calcium

accumulation. SLC20A2 accounts for about 40 % of

familial form and 14 % of sporadic cases, while PDGFRB

and PDGFB mutations are likely rare. However, ap-

proximately 50 % of patients are not genetically defined

and there should be at least another causative gene.
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Introduction

Primary familial brain calcification (PFBC), also called

idiopathic basal ganglia calcification (IBGC), or Fahr’s

disease, is a neuropsychiatric disorder characterized by

bilateral brain calcification, usually transmitted as an au-

tosomal dominant trait with incomplete penetrance [1–5].

The disease was first described by Delacour in 1850 [1] and

recently, different genetic causes of PFBC have been dis-

covered [2–4]. PFBC patients show bilateral calcium de-

positions commonly in basal ganglia, but other brain

regions may be involved, such as the cerebellum, thalamus

and subcortical white matter (Fig. 1) [5]. Furthermore, a

mild frontal lobe atrophy with enlarged lateral ventricles

and cerebellar atrophy might be present [6]. Neuropatho-

logical examinations showed accumulation of granular

material, mostly calcium salts, around the walls of capil-

laries, small arteries and veins of the affected brain regions

[5, 6]. PFBC patients display normal serum levels of cal-

cium, phosphate, alkaline phosphatase and parathyroid

hormone features which distinguish ‘primary’ brain calci-

fication from those ‘secondary’ to parathyroid dysfunc-

tions. Indeed, a common cause of basal ganglia

calcification is hypoparathyroidism (HP): low serum levels

of parathyroid hormone (PTH) could give rise to
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hypocalcaemia and hyperphosphatemia, causing an ectopic

calcification in brain tissue [7]. Secondary brain calcifica-

tion might occur also in several conditions, such as mito-

chondrial disorders (mitochondrial encephalomyopathy,

lactic acidosis and stroke-like episodes—MELAS; my-

oclonic epilepsy associated with ragged red fibres—

MERRF), autoimmune diseases (systemic lupus erythe-

matosus), infectious and inflammation disorders. Further-

more, calcium deposition in the basal ganglia may be

encountered in some neurodegenerative disorders (pan-

tothenate kinase-associated neurodegeneration, PKAN;

polycystic lipomembranous osteodysplasia with sclerosing

leukoencephalopathy, PLOSL) and congenital syndromes

(Aicardi–Goutieres syndrome) [5, 8]. Last, brain calcifi-

cations of undefined pathogenicity are an incidental finding

in about 1–20 % of brain CT scans of healthy people,

especially elderly, as a consequence of the ageing process

[9]. PFBC is clinically characterized by a wide spectrum of

symptoms: movement disorders, cognitive impairment and

psychiatric signs [5–10]. Movement disorders include

akinetic-hypertonic syndrome with or without tremor,

chorea, dystonia and oro-facial dyskinesia. Among cogni-

tive impairment, the most common sign is memory loss;

furthermore, a large number of patients present a dysex-

ecutive syndrome. The main psychiatric signs are mood

disorders, including depression and bipolar disorder, fol-

lowed by psychosis. Moreover, seizures and chronic

headache have been also reported [5, 10]. Patients can

show a variable combination of these symptoms. The age

of onset of the disease is typically between 30 and

60 years, but both the severity of symptoms and the age of

onset are very variable. Furthermore, a large number of

patients with brain calcification, about 30 %, can remain

asymptomatic throughout life [5, 10]; therefore, sometimes

the diagnosis of PFBC is based only on CT scan findings

[5]. In addition, no correlation between the location, extent

of calcification and the severity of symptoms has been

observed [10]. The PFBC is usually inherited in an auto-

somal dominant fashion with incomplete clinical pene-

trance. Recent studies have shown that PFBC is genetically

heterogeneous; so far, mutations in three genes (SLC20A2,

PDGFRB, PDGFB) have been discovered as a cause of

autosomal dominant forms of PFBC. Yet, mutations in

these three genes account for only approximately 50 % of

the cases [2–4, 11], suggesting that additional disease-

causing genes remain to be identified. Very recently, a first

autosomal recessive form of brain calcification has been

reported [12]. The spectrum of PFBC-causing mutations is

very wide, with a uniform and widespread distribution

worldwide. So far, genotype–phenotype correlations have

not been observed in patients with SLC20A2 and PDGFRB

mutations [10].

Molecular genetics

SLC20A2

The SLC20A2 gene located on chromosome 8 (8p11.21)

codes for the PiT-2 protein (652 amino acids), the ‘sodi-

um-dependent phosphate transporter 2’. This protein be-

longs to the ‘SLC20-type III Na? co-transporter family’,

that also includes PiT-1 (sodium-dependent phosphate

transporter 1), encoded by SLC20A1 [11]. PiT-1 and PiT-

2 are cell membrane transporters of inorganic phosphate

(Pi), consisting of 12 transmembrane domains, a large

intracellular domain and extracellular N- and C- terminal

tails [13, 14]. These transporters are widely expressed at

Fig. 1 Brain calcifications detected at CT scans of different patients. Arrows indicate calcifications in basal ganglia (a, b), brainstem and

cerebellum (c)
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various levels in human tissues and play a housekeeping

role in Pi uptake by the cell and phosphate tissue home-

ostasis [13]. In 2012, Wang and colleagues [2] associated

PFBC with PiT-2 by the discovery of seven mutations in

the SLC20A2 gene (p.Gly498Arg, p.Ser601Gln,

p.Ser601Leu, p.Glu575Lys, p.Thr595Met, p.Val42del,

p.Pro470Leufs*37) in patients from seven PFBC families

of various ancestry. All the missense variants and the

deletion were used to perform 32Pi transport assays in

Xenopus laevis oocytes. By co-expressing mutated and

wild-type PiT-2 transporters, these Authors suggested that

mutations in SLC20A2 most likely have an effect through

haploinsufficiency [2]. In the mammalian brain, PiT-2 is

ubiquitously expressed; at cellular level, PiT-2 has been

mostly detected in neurons, astrocytes and endothelial

cells and also in vascular smooth muscle cells (VSMCs)

[15, 16]. Experiments with knockout mice for SLC20A2

gene confirmed the previously suggested hypothesis that

calcification starts around the walls of brain vessels [2,

16]. SLC20A2 mutations might impair the Pi uptake,

leading to a local increase in extracellular phosphate [16].

Afterwards, high levels of extracellular phosphate might

result in a passive precipitation of calcium-phosphate

products, triggering an active cell-mineralization process,

probably via PiT-1 [2, 16]. Indeed, PiT-1 transporter is

required for the normal bone cell differentiation and

mineralization and is also involved in pathological

smooth muscle cell (SMC) calcification. Interestingly,

inducers of calcification, as the bone morphogenetic

protein-2 (BMP-2), calcium and platelet-derived growth

factor PDGF, upregulated PiT-1, but not PiT-2 expression

[17, 18]. In vitro studies demonstrated that elevated

phosphate levels result in the loss of smooth muscle

markers (SM alpha actin, SM22 alpha) and expression of

osteochondrogenic markers (Runx2/Cbfa1, osterix, alka-

line phosphatase, osteopontin). Indeed, elevated phos-

phate concentrations may enhance the expression of the

transcription factor Cbfa-1 (core-binding factor-1), that

regulates the expression of osteogenic genes, such as os-

teopontin and osteocalcin [19]. Moreover, in vitro ex-

periments showed that the phosphonoformic acid (PFA),

an inhibitor of Pi transporters, abolishes the Pi uptake and

prevents the mineralization of human aortic smooth

muscle cells [20]. Although the involvement of PiT-1 in

bone differentiation and cell mineralization has been

deeply investigated, the molecular mechanism of calcifi-

cation caused by PiT-2 transport dysfunctions is still to be

elucidated and further studies are needed. So far, over 40

pathogenic variants in SLC20A2 gene have been reported

in patients with PFBC, including missense, frameshift and

non-sense mutations, but also deletions and one splice-site

mutation; among them, one de novo variant has been

found (Table 1) [21]. Missense mutations in PiT-2 protein

could impair transport function; for instance, His502 and

Glu575, substituted by a glutamine and a lysine, respec-

tively, are critical for Pi transport [2, 14, 22]. Some fra-

meshift and non-sense mutations, such as p.Leu170*,

p.Val195Leufs*61, p.Pro470Leufs*37 and p.R172fs*19,

are predicted to generate a premature termination codon

(PTC) leading to the ‘‘non-sense mediated decay’’ (NMD)

process, a surveillance mechanism that degrades aberrant

mRNA, causing the loss of the transcript [22, 23]. Par-

ticularly, the frameshift mutation p.R172fs*19 leads to a

30 % reduction of the SLC20A2 mRNA expression, re-

vealing that NMD process takes place and confirming

haploinsufficiency as the most likely disease mechanism

[23]. Furthermore, a genomic deletion of 563 kb in the

chromosome 8 (g.42275321_42329908del), including

SLC20A2, has been described in one large family. This

deletion comprised seven genes (VDAC3, SLC20A2,

C8ORF40, CHRNB3, CHRNA6, THAP1, RNF170) and

partial deletion of HOOK3; interestingly, THAP1 is the

causative gene of a familial form of dystonia (DYT16),

indeed the patients displayed dystonia as main symptom

[24]. In two studies, mutations in the SLC20A2 gene have

been found in 41 % of the familial PFBC cases and 14 %

of sporadic patients, showing that PiT-2 impairment is a

frequent and widespread cause of primary brain calcifi-

cation [22, 25].

PDGFRB

The PDGFRB gene is located on chromosome 5 (5q33.1)

and encodes the platelet-derived growth factor receptor-b
(PDGFRb, 1106 amino acids), recognized by growth factor

homodimers PDGF-BB and PDGF-DD [26]. PDGFRb is a

cell-surface tyrosine-kinase receptor, consisting of five

extracellular immunoglobulin (Ig) loops and an intracel-

lular tyrosine-kinase domain [26]. In the brain, it is ex-

pressed in neurons, VSMCs and pericytes [3, 26]. The

binding of the ligand triggers the dimerization, autophos-

phorylation and activation of the PDGFRb receptor, which,

in turn, initiates the downstream signalling leading to cell

proliferation, migration, survival and differentiation [3,

26]. Recently, four missense mutations in the PDGFRB

gene have been reported in one PFBC family and three

sporadic cases (Table 2). All mutations, p.Leu658Pro,

p.Arg695Cys, p.Arg987Trp and p.Glu1071Val, cause the

substitution of conserved amino acids and were predicted

to be pathogenic. Cell culture experiments showed that

variants in the tyrosine-kinase domain (from 562 to 953 aa)

reduce the receptor levels and the autophosphorylation

[27]. It has been demonstrated that the missense mutation

p.Leu658Pro reduces the kinase activity, while

p.Arg987Trp mutation causes a rapid degradation of the

receptor and impairs the activation of STAT3, a
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transcription activator, blocking the downstream signalling.

On the other hand, the mutation p.Glu1071Val does not

affect the phosphorylation and the signalling and probably

it might be a polymorphism [28]. It has been hypothesized

that the loss of function of PDGFRb could lead to the

impairment of the blood brain barrier (BBB) integrity,

Table 1 SLC20A2 mutations

found in patients with PFBC
Nucleotide change Amino acid change Location References

c.82G[A p.Asp28Asn Exon 2 [10, 25]

c.124_126delGTG p.Val42del Exon 2 [2]

c.152C[T p.Ala51Val Exon 2 [37]

c.185T[C P.Leu62Pro Exon 2 [25]

c.212G[A p.Arg71His Exon 2 [37]

c.260_261delTC p.Leu87Hisfs*6 Exon 2 [37]

c.323T[C p.Leu108Pro Exon 3 [38]

c.338C[G p.Ser113* Exon 3 [24]

c.344C[T p.Thr115Met Exon 3 [37]

c.431-1G[T p. Val144Glyfs*85 IVS 3 [3]

c.509delT p.Leu170* Exon 4 [22]

c.514A[T p.Lys172* Exon 4 [22]

c.515delA p.Leu172Arg172fs*20 Exon 4 [23]

c.551C[T p.Pro184Leu Exon 5 [3]

c.581A[G p.Asn194Ser Exon 5 [10]

c.583_584delGT p.Val195Leufs*61 Exon 5 [22]

c.760C[T p.Arg254* Exon 7 [22]

c.935-1G[A p.Gly312Valfs*8 IVS 7 [25]

c.1086delC p.His362Glnfs*54 Exon 8 [39]

c.1101_1102delCG p.Glu368Glyfs*46 Exon 8 [40]

c.1145G[A p.Arg382Gln Exon 8 [22]

c.1158C[G p.Tyr386* Exon 8 [20]

c.1301C[G p.Ser434Trp Exon 8 [40]

c.1399C[T p.Arg467* Exon 8 [37]

c.1409delC p.Pro470Leufs*37 Exon 8 [2]

c.1470_1478delGCAGGTCCT p.Gln491_Leu493del Exon 8 [25]

c.1483G[A p.Ala495Thr Exon 8 [41]

c.1492G[A p.Gly498Arg Exon 8 [2]

c.1506C[A p.His502Gln Exon 8 [22]

c.1520_1521delTG p.Val507Glufs*2 Exon 8 [42]

c.1523?1G[A p.Gly312Valfs*8 IVS 8 [22]

c.1527delT p.Asn509LysFs*7 Exon 9 [10]

c.1618G[A p. Gly540Arg Exon 9 [43]

c.1652G[A p.Trp551* Exon 9 [22]

c.1703C[T p.Pro568Leu Exon 9 [22]

c.1711G[A p.Glu571Ser Exon 10 [10]

c.1723G[A p.Glu575Lys Exon 10 [2]

c.1784C[T p.Thr595Met Exon 10 [2, 40]

c.1794?1G[A p.Ser570Argfs*30 IVS 10 [22]

c.1794?1G[C p.Ser570Argfs*30 IVS 10 [22]

c.1802C[G p.Ser601Trp Exon 11 [2]

c.1802C[T p.Ser601Leu Exon 11 [2, 22]

c.1828_1831delTCC p.Ser610Alafs*17 Exon 11 [22]

c.1909A[C p.Ser637Arg Exon 11 [37]

g.42275321_42329908del Whole gene [24]
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causing vascular and perivascular calcium accumulation

[3]. Moreover, a deficient PDGF-b signalling is highly

damaging to VSMCs and pericytes, resulting in complete

lack of pericytes or pericyte hypoplasia, endothelial hy-

perplasia, increased vessel diameter, increased vascular

permeability and vessel instability [4, 27]. Alternatively, it

has been suggested that mutations in PDGFRB gene might

be activating mutations, impairing the PDGFRb-PiT-1

signalling and inducing VSMCs mineralization. In

VSMCs, the PDGFRb pathway enhances the expression of

PiT-1, increasing the abundance of the receptor in the en-

doplasmic reticulum membranes and stimulating the Pi

uptake [29]. To date, few functional analyses have been

carried out to clarify the molecular mechanism of PFBC

due to PDGFRB mutations. Recently, PDGFRB mutations

have been also found in patients with autosomal dominant

infantile myofibromatosis, a disorder of mesenchymal

proliferation, characterized by benign tumour of soft tissue

in infancy and childhood [30, 31]. Two germinal muta-

tions, c.1681C[T (p.Arg561Cys) and c.1978C[A

(p.Pro660Thr), and one somatic mutation c.1998C[A

(p.Asn666Lys) have been reported. The variant

p.Arg561Cys is located outside the kinase domain and

probably compromises the auto-inhibition of the receptor.

While the amino acids Asn666 and Pro660 are located in

the kinase domain, and probably the variant p.Asn666Lys

may abolish the interaction with inhibitors, deregulating

the kinase activity [30, 31].

PDGFB

PDGFB gene is located on chromosome 22 (22q13.1) and

encodes for the ‘platelet-derived growth factor beta’

(PDGFb-241 amino acids), the ligand of the PDGFRb re-

ceptor. PDGFb is an antiparallel disulphide-linked dimer, a

paracrine factor synthesized and secreted by angiogenic

endothelial cells, which acts on pericytes and VSMCs

which in turn have PDGFRb in the cell-surface membrane

[26]. In these cells, the PDGF signalling promotes the

proliferation and migration along the newly developing

blood vessels [32]. So far, eight PDGFB mutations, in-

cluding one de novo variant, have been found in eight

PFBC patients [33] (Table 3). Three are missense muta-

tions: p.Leu9Arg inserts a charged amino acid in the signal

peptide that is essential for the protein export; p.Leu119Pro

occurs in the receptor-binding loop and p.*242[Tyrext*89

substitutes the stop codon with a tyrosine, leading to an

extension of 89 codons in the transcript [4]. Three non-

sense mutations, p.Gln145*, p.Gln147* and p.Arg149*, are

predicted to remove part of the protein [4, 33]. The mu-

tation P.Met1? may replace the start methionine, but the

consequences of this variant have not yet been clarified [4].

Finally, a large intragenic deletion (7.2-kb) within PDGFB

has been found in a patient with brain calcification and

leukoencephalopathy [34]. This deletion comprises exons

3, 4 and 5, which encode for receptor-binding sites and

dimerization domains, and might result in a truncated, not

functional protein [34]. Mutations in PDGFB are predicted

to be ‘loss of function’ and the discovery of a partial

PDGFB gene deletion confirms this hypothesis [34]. Fur-

thermore, Keller and colleagues showed that mice deficient

in PDGFb develop age-related calcified nodules in the

thalamus and midbrain, which are similar to the lesions

observed in the PFBC patients. Moreover, a correlation

between endothelial PDGFb, but not neuronal PDGFb, and

brain calcification in mice has been described [4]. Mice

expressing PDGFb, that lacks the retention motif which is

essential for the diffusion of the protein in the tissues in-

terstitium, showed an alteration of the local concentration

and bioavailability of PDGFb and a reduction of pericyte

recruitment. These data strongly support a correlation be-

tween brain calcification and BBB impairment, caused by

pericyte deficiencies [4].

Brain calcification and ISG15 gene

Recently, homozygous mutations in ISG15 gene have been

found in six young patients with brain calcification, from

three families from China, Iran and Turkey [12, 35]. ISG15

gene (1p36.33) encodes for an interferon (IFN)-a/b—in-

ducible-ubiquitin-like modifier involved in the innate im-

mune response to viral infection. It acts by conjugation to a

target protein (ISGylation) or as a free and unconjugated

protein and it is a negative regulator of IFN a/b immunity

Table 2 PDGFRB mutations found in patients with PFBC

Nucleotide change Amino acid change Location References

c.1973T[C p.Leu658Pro Exon 14 [3]

c.2083C[T p. Arg695Cys Exon 15 [27]

c.2959C[T p.Arg987Trp Exon 22 [3]

c.3212A[T p.Glu1071Val Exon 23 [10]

Table 3 PDGFB mutations found in patients with PFBC

Nucleotide change Amino acid change Location References

c.3G[A p.Met1? Exon 1 [4]

c.26T[G p.Leu9Arg Exon 1 [4]

c.356T[C p.Leu119pro Exon 4 [4]

c.433C[T p.Gln145* Exon 4 [4]

c.445C[T p.Arg149* Exon 4 [4, 44]

c.439C[T p.Gln147* Exon 4 [33]

c.726G[C[C p.*242Tyrext*89 Exon 6 [4]

7.2-kb Intragenic deletion Exons 3–5 [34]
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[12, 35]. Three mutations have been discovered in this

gene: c.379G[T (p.Glu127*), c.336_337insG (p.Leu114fs)

and c. 163 C[T (p.Gln55*). All mutations are in ho-

mozygous state and lead to the lack of ISG15 protein and a

subsequent increase of IFN-a/b immunity. Also the Ai-

cardi–Goutieres syndrome and spondyloenchondromatosis

(SPENCD), in which brain calcification is a common fea-

ture, have been associated with up-regulation of IFN-a/b
immunity [12, 35, 36]. ISG15 mutations are also linked to

Mendelian susceptibility to mycobacterial disease

(MSMD), in which severe clinical disease occurs following

infection with weakly virulent mycobacteria, due to an

insufficient production of ISG15-dependent IFN-c [35].

However, brain calcification disease caused by mutation in

ISG15 gene is quite different from PFBC, since the in-

volvement of the IFN-a/b immunity and the autosomal

recessive inheritance.

Conclusion

The recent genetic discoveries point to abnormalities of

PiT-2 transport and the PDGFb/PDGFRb pathway, leading

to the accumulation of calcium salts in the brain. PiT-2,

PDGFb and PDGFRb are widely expressed in human tis-

sues, but calcifications occur only in the brain. Future in-

vestigations are warranted to understand the detailed

molecular mechanism leading to PFBC. PFBC is a

clinically heterogeneous disease and the wide spectrum of

symptoms could make the diagnosis challenging. The re-

cent findings of disease-causing mutations in three genes

confirm the previously suggested genetic heterogeneity of

PFBC [11], and it allows a molecular diagnosis to be made

in several patients. However, the genetic defect remains

currently unknown in about 50 % of the autosomal domi-

nant PFBC cases, suggesting the existence of at least an-

other genetic form. Future work will be focused on the

identification of mutations in additional genes for PFBC.
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